Skip to main content
Top
Published in:

01-10-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Calorimetric Studies of Phase Transformations in Fe–Ni Alloys

Authors: L. A. Stashkova, N. V. Mushnikov, V. S. Gaviko, A. V. Protasov

Published in: Physics of Metals and Metallography | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Differential scanning calorimetry (DSC) has been used to study the martensitic transformation in Fe100 – xNix alloys containing 3 to 25 at % Ni. The temperature dependence of the DCS signal exhibits δ-like peaks related to the α–γ transformation; for the alloys with x ≤ 10, an additional λ-like anomaly related to the magnetic phase transformation has been observed. The concentration dependence of the martensitic transformation temperature has been plotted, heat effects have been determined, and the activation energy of the transition has been calculated. It is shown that at Ni concentration of more than 15 at % concentration separation of the alloys occurs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. Y. Tian, O. Eriksson, and L. Vitos, “Pressure effect on the order–disorder transformation in L10 FeNi,” Sci. Rep. 10, 1–7 (2020).CrossRef L. Y. Tian, O. Eriksson, and L. Vitos, “Pressure effect on the order–disorder transformation in L10 FeNi,” Sci. Rep. 10, 1–7 (2020).CrossRef
2.
go back to reference J. Chen, P. Li, and E. E. Lin, “A molecular dynamics study on the mechanical properties of Fe–Ni alloy nanowires and their temperature dependence,” RSC Adv. 10, 40084–40091 (2020).CrossRef J. Chen, P. Li, and E. E. Lin, “A molecular dynamics study on the mechanical properties of Fe–Ni alloy nanowires and their temperature dependence,” RSC Adv. 10, 40084–40091 (2020).CrossRef
3.
go back to reference N. Srakaew, P. Jantaratana, P. Nipakul, and C. Sirisathitkul, “Structural and magnetic properties of FexNi100 – x alloys synthesized using Al as a reducing metal,” J. Magn. Magn. Mater. 435, 201–205 (2017).CrossRef N. Srakaew, P. Jantaratana, P. Nipakul, and C. Sirisathitkul, “Structural and magnetic properties of FexNi100 – x alloys synthesized using Al as a reducing metal,” J. Magn. Magn. Mater. 435, 201–205 (2017).CrossRef
4.
go back to reference D. Fukui, N. Nakada, and S. Onaka, “Internal residual stress originated from Bain strain and its effect on hardness in Fe–Ni martensite,” Acta Mater. 196, 660–668 (2020).CrossRef D. Fukui, N. Nakada, and S. Onaka, “Internal residual stress originated from Bain strain and its effect on hardness in Fe–Ni martensite,” Acta Mater. 196, 660–668 (2020).CrossRef
5.
go back to reference A. I. Poteryaev, N. A. Skorikov, V. I. Anisimov, and M. A. Korotin, “Magnetic properties of Fe1 – xNix alloy from CPA + DMFT perspectives,” Phys. Rev. B 93, 1–7 (2016).CrossRef A. I. Poteryaev, N. A. Skorikov, V. I. Anisimov, and M. A. Korotin, “Magnetic properties of Fe1 – xNix alloy from CPA + DMFT perspectives,” Phys. Rev. B 93, 1–7 (2016).CrossRef
6.
go back to reference L. Y. Tian, O. Gutfleisch, O. Eriksson, and L. Vitos, “Alloying effect on the order–disorder transformation in tetragonal FeNi,” Sci. Rep. 11, 1–9 (2021). L. Y. Tian, O. Gutfleisch, O. Eriksson, and L. Vitos, “Alloying effect on the order–disorder transformation in tetragonal FeNi,” Sci. Rep. 11, 1–9 (2021).
7.
go back to reference V. V. Sagaradze, N. V. Kataeva, V. A. Zavalishin, V. A. Shabashov, K. A. Kozlov, and M. F. Klyukina, “Conditions for the violation of concentrational homogeneity of Fe–Ni Invar alloys,” Phys. Met. Metallogr. 122 (10), 969–975 (2021).CrossRef V. V. Sagaradze, N. V. Kataeva, V. A. Zavalishin, V. A. Shabashov, K. A. Kozlov, and M. F. Klyukina, “Conditions for the violation of concentrational homogeneity of Fe–Ni Invar alloys,” Phys. Met. Metallogr. 122 (10), 969–975 (2021).CrossRef
8.
go back to reference M. P. Kashchenko, N. M. Kashchenko, and V. G. Chashchina, “Dynamic theory of the effect of a strong magnetic field on the martensitic transformation in steels with austenite grain sizes close to a critical value,” Phys. Met. Metallogr. 122 (1), 47–53 (2021).CrossRef M. P. Kashchenko, N. M. Kashchenko, and V. G. Chashchina, “Dynamic theory of the effect of a strong magnetic field on the martensitic transformation in steels with austenite grain sizes close to a critical value,” Phys. Met. Metallogr. 122 (1), 47–53 (2021).CrossRef
9.
go back to reference I. V. Zolotarevskii, M. O. Shchetinina, and A. I. Zolotarevskii, “Martensitic transformation in Fe–Ni alloys with addition of chromium, manganese, and carbon in high magnetic fields,” Phys. Met. Metallogr. 122 (2), 127–133 (2021).CrossRef I. V. Zolotarevskii, M. O. Shchetinina, and A. I. Zolotarevskii, “Martensitic transformation in Fe–Ni alloys with addition of chromium, manganese, and carbon in high magnetic fields,” Phys. Met. Metallogr. 122 (2), 127–133 (2021).CrossRef
10.
go back to reference G. Cacciamani, A. Dinsdale, M. Palumbo, and A. Pasturel, “The Fe–Ni system: Thermodynamic modelling assisted by atomistic calculations,” Intermetallics 18, 1148–1162 (2010).CrossRef G. Cacciamani, A. Dinsdale, M. Palumbo, and A. Pasturel, “The Fe–Ni system: Thermodynamic modelling assisted by atomistic calculations,” Intermetallics 18, 1148–1162 (2010).CrossRef
11.
go back to reference Y. Wang, K. Li, F. Soisson, and C. S. Becquart, “Combining DFT and CALPHAD for the development of on-lattice interaction models: The case of Fe–Ni system,” Phys. Rev. Mater. 4, 113801-1–13 (2020). Y. Wang, K. Li, F. Soisson, and C. S. Becquart, “Combining DFT and CALPHAD for the development of on-lattice interaction models: The case of Fe–Ni system,” Phys. Rev. Mater. 4, 113801-1–13 (2020).
12.
go back to reference I. Ohnuma, S. Shimenouchi, T. Omori, K. Ishida, and R. Kainuma, “Experimental determination and thermodynamic evaluation of low-temperature phase equilibria in the Fe–Ni binary system,” Calphad 67, 101677-1-9 (2019).CrossRef I. Ohnuma, S. Shimenouchi, T. Omori, K. Ishida, and R. Kainuma, “Experimental determination and thermodynamic evaluation of low-temperature phase equilibria in the Fe–Ni binary system,” Calphad 67, 101677-1-9 (2019).CrossRef
13.
go back to reference H. Okamoto, “Supplemental literature review of binary phase diagrams: Au–La, Ce–Pt, Co–Pt, Cr–S, Cu–Sb, Fe–Ni, Lu–Pd, Si–Te, Ta–V, and V–Zn,” J. Phase Equilib. Diffus. 40, 743–756 (2019).CrossRef H. Okamoto, “Supplemental literature review of binary phase diagrams: Au–La, Ce–Pt, Co–Pt, Cr–S, Cu–Sb, Fe–Ni, Lu–Pd, Si–Te, Ta–V, and V–Zn,” J. Phase Equilib. Diffus. 40, 743–756 (2019).CrossRef
14.
go back to reference M. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, 1958).CrossRef M. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, 1958).CrossRef
15.
go back to reference A. Chamberod, J. Laugier, and J. M. Penisson, “Electron irradiation effects on iron-nickel invar alloys,” J. Magn. Magn. Mater. 10, 139–144 (1979).CrossRef A. Chamberod, J. Laugier, and J. M. Penisson, “Electron irradiation effects on iron-nickel invar alloys,” J. Magn. Magn. Mater. 10, 139–144 (1979).CrossRef
16.
go back to reference O. Kubaschewski, Iron Binary Phase Diagram (Springer, New York, 1982), pp. 73–78. O. Kubaschewski, Iron Binary Phase Diagram (Springer, New York, 1982), pp. 73–78.
17.
go back to reference T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Materials Park, 1990). T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Materials Park, 1990).
18.
go back to reference L. J. Swartzendruber, V. P. Itkin, and C. B. Alcock, “The Fe–Ni (Iron–Nickel) system,” J. Phase Equilib. 12 (3), 288–312 (1991).CrossRef L. J. Swartzendruber, V. P. Itkin, and C. B. Alcock, “The Fe–Ni (Iron–Nickel) system,” J. Phase Equilib. 12 (3), 288–312 (1991).CrossRef
19.
go back to reference K. Honda and S. Miura, “On the determination of the heterogeneous field in the system Fe–Ni,” Sci. Rep. Tohoku Imp. Univ. 16, 745–753 (1927). K. Honda and S. Miura, “On the determination of the heterogeneous field in the system Fe–Ni,” Sci. Rep. Tohoku Imp. Univ. 16, 745–753 (1927).
20.
go back to reference E. A. Owen and A. H. Sully, “The equilibrium diagram of iron-nickel alloys,” Philos. Mag. 27, 634–636 (1939).CrossRef E. A. Owen and A. H. Sully, “The equilibrium diagram of iron-nickel alloys,” Philos. Mag. 27, 634–636 (1939).CrossRef
21.
go back to reference E. A. Owen and Y. H. Liu, “Further X-Ray study of the equilibrium diagram of the iron–nickel alloy,” J. Iron Steel Inst. 123, 132–136 (1949). E. A. Owen and Y. H. Liu, “Further X-Ray study of the equilibrium diagram of the iron–nickel alloy,” J. Iron Steel Inst. 123, 132–136 (1949).
22.
go back to reference F. N. Jones and W. I. Pumphrey, “Free energy and metastable states in the iron–nickel and iron–manganese systems,” J. Iron Steel Inst. 163, 121–131 (1949). F. N. Jones and W. I. Pumphrey, “Free energy and metastable states in the iron–nickel and iron–manganese systems,” J. Iron Steel Inst. 163, 121–131 (1949).
23.
go back to reference L. Kaufman and C. Morris, “The martensitic transformation in the iron–nickel system,” JOM 8 (10), 1393–1401 (1956).CrossRef L. Kaufman and C. Morris, “The martensitic transformation in the iron–nickel system,” JOM 8 (10), 1393–1401 (1956).CrossRef
24.
go back to reference E. A. Wilson, “Gamma–alpha transformation in Fe, Fe–Ni and Fe–Cr alloys,” Metal Sci. 18 (10), 471–484 (1984).CrossRef E. A. Wilson, “Gamma–alpha transformation in Fe, Fe–Ni and Fe–Cr alloys,” Metal Sci. 18 (10), 471–484 (1984).CrossRef
25.
go back to reference D. A. Mirzayev, O. P. Morozov, and M. M. Shteynberg, “The γ → α transformation in iron and its alloys,” Phys. Met. Metallogr. 6, 99–105 (1973). D. A. Mirzayev, O. P. Morozov, and M. M. Shteynberg, “The γ → α transformation in iron and its alloys,” Phys. Met. Metallogr. 6, 99–105 (1973).
26.
go back to reference K. B. Reuter, D. B. Williams, and J. I. Goldstein, “Determination of the Fe–Ni Phase Diagram below 400°C,” Metall. Trans. A 20 (4), 719–725 (1989).CrossRef K. B. Reuter, D. B. Williams, and J. I. Goldstein, “Determination of the Fe–Ni Phase Diagram below 400°C,” Metall. Trans. A 20 (4), 719–725 (1989).CrossRef
27.
go back to reference A. T. Dinsdale, “SGTE data for pure elements,” Calphad 15 (4), 317–425 (1991).CrossRef A. T. Dinsdale, “SGTE data for pure elements,” Calphad 15 (4), 317–425 (1991).CrossRef
28.
go back to reference G. Ghosh and G. B. Olson, “Computational thermodynamics and the kinetics of martensitic transformation,” J. Phase Equilib. 22 (3), 199–207 (2001).CrossRef G. Ghosh and G. B. Olson, “Computational thermodynamics and the kinetics of martensitic transformation,” J. Phase Equilib. 22 (3), 199–207 (2001).CrossRef
29.
go back to reference E. Scheil and W. Normann, “Investigation of the thermodynamics of the α–γ transformation in iron–nickel alloy,” Arch. Eisenhuttenwes 30 (12), 751–754 (1959). E. Scheil and W. Normann, “Investigation of the thermodynamics of the α–γ transformation in iron–nickel alloy,” Arch. Eisenhuttenwes 30 (12), 751–754 (1959).
30.
go back to reference L. V. Spivak and N. E. Shchepina, “Calorimetric effects in the structural and phase transitions of metals and alloys,” Phys. Met. Metallogr. 121 (10), 968–995 (2020).CrossRef L. V. Spivak and N. E. Shchepina, “Calorimetric effects in the structural and phase transitions of metals and alloys,” Phys. Met. Metallogr. 121 (10), 968–995 (2020).CrossRef
31.
go back to reference N. V. Mushnikov, A. G. Popov, V. S. Gaviko, Protasov, N. M. Kleinerman, O. A. Golovnya, and S. P. Naumov, “Peculiarities of phase diagram of Fe–Ni system at Ni concentrations 0–20 at %,” Acta Mater. 240, 118330 (2022).CrossRef N. V. Mushnikov, A. G. Popov, V. S. Gaviko, Protasov, N. M. Kleinerman, O. A. Golovnya, and S. P. Naumov, “Peculiarities of phase diagram of Fe–Ni system at Ni concentrations 0–20 at %,” Acta Mater. 240, 118330 (2022).CrossRef
32.
go back to reference K. H. Illers, “Die ermittlung des schmelzpunktes von kristallinen polymeren mittels wärmeflusskalorimetrie (DSC),” Eur. Polym. J. 10, 911–916 (1974).CrossRef K. H. Illers, “Die ermittlung des schmelzpunktes von kristallinen polymeren mittels wärmeflusskalorimetrie (DSC),” Eur. Polym. J. 10, 911–916 (1974).CrossRef
33.
go back to reference L. V. Spivak and N. E. Shchepina, “Polymorphic transformations in iron and zirconium,” Tech. Phys. 65 (7), 1100–1105 (2020).CrossRef L. V. Spivak and N. E. Shchepina, “Polymorphic transformations in iron and zirconium,” Tech. Phys. 65 (7), 1100–1105 (2020).CrossRef
34.
go back to reference H. E. Kissinger, “Reaction kinetics in differential thermal analysis,” Anal. Chem. 29 (11), 1702–1706 (1957).CrossRef H. E. Kissinger, “Reaction kinetics in differential thermal analysis,” Anal. Chem. 29 (11), 1702–1706 (1957).CrossRef
Metadata
Title
Calorimetric Studies of Phase Transformations in Fe–Ni Alloys
Authors
L. A. Stashkova
N. V. Mushnikov
V. S. Gaviko
A. V. Protasov
Publication date
01-10-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 10/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22600907

Other articles of this Issue 10/2022

Physics of Metals and Metallography 10/2022 Go to the issue