Skip to main content
Top
Published in: Physics of Metals and Metallography 5/2022

01-05-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Calorimetry and Peculiarities of Reverse ω → α Phase Transformation in Zr and Ti Pseudo-Single Crystals

Authors: L. Yu. Egorova, Yu. V. Khlebnikova, V. P. Pilyugin, N. N. Resnina

Published in: Physics of Metals and Metallography | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Differential scanning calorimetry, X-ray diffraction analysis, transmission electron microscopy, and microhardness measurements are used to study the reverse ω → α phase transformation in titanium and zirconium, which were subjected to deformation in a Bridgman chamber under close loading conditions in order to obtain additional data on the degree of stability of the studied metals. It was found that, despite the qualitative similarity of heat release processes that occurred in the metals under study, which are recorded by differential scanning calorimetry, the reverse phase transformation in titanium, in contrast to that in zirconium, is realized at lower temperatures and within narrower temperature range over the whole range of preliminary true strain. It was found that the characteristics, such as the temperature of the onset of reverse phase transformation and value of released thermal energy are stabilized on reaching the certain true strain (е ≈ 9), when the mixed nano- and submicrocrystalline structure forms in both the metals, in which deformation defects and extensive interfaces make the maximum energy contribution to the system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. C. Jamieson, “Crystal structures of titanium, zirconium, and hafnium at high pressures,” Science 140, No. 3562, 72–73 (1963).CrossRef J. C. Jamieson, “Crystal structures of titanium, zirconium, and hafnium at high pressures,” Science 140, No. 3562, 72–73 (1963).CrossRef
2.
go back to reference M. T. Pe’rez-Prado, A. A. Gimazov, O. A. Ruano, M. E. Kassner, and A. P. Zhilyaev, “Bulk nanocrystalline x-Zr by high-pressure torsion,” Scr. Mater. 58, 219–222 (2008).CrossRef M. T. Pe’rez-Prado, A. A. Gimazov, O. A. Ruano, M. E. Kassner, and A. P. Zhilyaev, “Bulk nanocrystalline x-Zr by high-pressure torsion,” Scr. Mater. 58, 219–222 (2008).CrossRef
3.
go back to reference H. Damn-d, A. Dunlop, and D. Lesueur, “Phase transformation induced by swift heavy ion irradiation of pure metals,” Nucl. Instrum. Methods Phys. Res., Sect. B, No. 107, 204–211 (1996). H. Damn-d, A. Dunlop, and D. Lesueur, “Phase transformation induced by swift heavy ion irradiation of pure metals,” Nucl. Instrum. Methods Phys. Res., Sect. B, No. 107, 204–211 (1996).
4.
go back to reference L. Yu. Egorova, Yu. V. Khlebnikova, and V. P. Pilyugin, “On the issue of stability of the metastable ω phase in pseudo-single-crystalline zirconium,” Tech. Phys. 65, 96–100 (2020).CrossRef L. Yu. Egorova, Yu. V. Khlebnikova, and V. P. Pilyugin, “On the issue of stability of the metastable ω phase in pseudo-single-crystalline zirconium,” Tech. Phys. 65, 96–100 (2020).CrossRef
5.
go back to reference A. V. Dobromyslov and N. V. Kazantseva, “Formation of ω-phase in Zr–4 at % Cr alloy,” Scr. Mater. 35, No. 7, 811–815A (1996).CrossRef A. V. Dobromyslov and N. V. Kazantseva, “Formation of ω-phase in Zr–4 at % Cr alloy,” Scr. Mater. 35, No. 7, 811–815A (1996).CrossRef
6.
go back to reference A. P. Zhilyaev, V. A. Popov, A. R. Sharafutdinov, and V. N. Danilenko, “Shear induced ω-phase in titanium,” Lett. Mater. 1, 203–207 (2011).CrossRef A. P. Zhilyaev, V. A. Popov, A. R. Sharafutdinov, and V. N. Danilenko, “Shear induced ω-phase in titanium,” Lett. Mater. 1, 203–207 (2011).CrossRef
7.
go back to reference A. V. Dobromyslov and N. I. Taluts, “Mechanical alloying of Ti–Fe alloys using severe plastic deformation by high-pressure torsion,” Phys. Met. Metallogr. 119, 1127–1132 (2018).CrossRef A. V. Dobromyslov and N. I. Taluts, “Mechanical alloying of Ti–Fe alloys using severe plastic deformation by high-pressure torsion,” Phys. Met. Metallogr. 119, 1127–1132 (2018).CrossRef
8.
go back to reference A. V. Dobromyslov, N. I. Taluts, and V. P. Pilyugin, “Mechanical alloying of Zr–Fe alloys using severe plastic deformation by high pressure torsion,” Phys. Met. Metallogr. 121, 150–156 (2020).CrossRef A. V. Dobromyslov, N. I. Taluts, and V. P. Pilyugin, “Mechanical alloying of Zr–Fe alloys using severe plastic deformation by high pressure torsion,” Phys. Met. Metallogr. 121, 150–156 (2020).CrossRef
9.
go back to reference V. A. Zil’bershtein, G. I. Nosova, and E. I. Estrin,“ Alpha-omega transformation in titanium and zirconium,” Fiz. Met. Metalloved. 35, No. 3, 584–589 (1973). V. A. Zil’bershtein, G. I. Nosova, and E. I. Estrin,“ Alpha-omega transformation in titanium and zirconium,” Fiz. Met. Metalloved. 35, No. 3, 584–589 (1973).
10.
go back to reference V. I. Zel’dovich, N. Yu. Frolova, A. M. Patselov, V. M. Gundyrev, A. E. Kheifets, and V. P. Pilyugin, “The ω‑phase formation in titanium upon deformation under pressure,” Phys. Met. Metallogr. 109, No. 1, 30–38 (2010).CrossRef V. I. Zel’dovich, N. Yu. Frolova, A. M. Patselov, V. M. Gundyrev, A. E. Kheifets, and V. P. Pilyugin, “The ω‑phase formation in titanium upon deformation under pressure,” Phys. Met. Metallogr. 109, No. 1, 30–38 (2010).CrossRef
11.
go back to reference H. Zong, T. Lookman, X. Ding, C. Nisoli, D. Brown, S. R. Niezgoda, and S. Jun, “The kinetics of the ω to α phase transformation in Zr, Ti: Analysis of data from shock-recovered samples and atomistic simulations,” Acta Mater. 77, 191–199 (2014).CrossRef H. Zong, T. Lookman, X. Ding, C. Nisoli, D. Brown, S. R. Niezgoda, and S. Jun, “The kinetics of the ω to α phase transformation in Zr, Ti: Analysis of data from shock-recovered samples and atomistic simulations,” Acta Mater. 77, 191–199 (2014).CrossRef
12.
go back to reference A. Kumar, C. A. Bronkhorst, and T. Lookman, “First-principles study of the α–ω Phase transformation in Ti and Zr coupled to slip modes,” J. Appl. Phys. 123, No.4, 045903 (2018).CrossRef A. Kumar, C. A. Bronkhorst, and T. Lookman, “First-principles study of the α–ω Phase transformation in Ti and Zr coupled to slip modes,” J. Appl. Phys. 123, No.4, 045903 (2018).CrossRef
13.
go back to reference L. Gao, X. Ding, T. Lookman, J. Sun, and E. K. H. Salje, “Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures,” Appl. Phys. Lett. 109, 031912 (2016).CrossRef L. Gao, X. Ding, T. Lookman, J. Sun, and E. K. H. Salje, “Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures,” Appl. Phys. Lett. 109, 031912 (2016).CrossRef
14.
go back to reference L. Yu. Egorova, Yu. V. Khlebnikova, V. P. Pilyugin, and E. G. Chernyshev, “Structural-phase transformations in the zirconium single crystal under the pressure of the deformation,” Lett. Mater. 8, No. 1, 94–99 (2018).CrossRef L. Yu. Egorova, Yu. V. Khlebnikova, V. P. Pilyugin, and E. G. Chernyshev, “Structural-phase transformations in the zirconium single crystal under the pressure of the deformation,” Lett. Mater. 8, No. 1, 94–99 (2018).CrossRef
15.
go back to reference M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, L. S. Davydova, and V. P. Pilyugin, “Deformation strengthening and structure of structural steel upon shear under pressure,” Phys. Met. Metallogr. 90, No. 6, 604–611 (2000). M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, L. S. Davydova, and V. P. Pilyugin, “Deformation strengthening and structure of structural steel upon shear under pressure,” Phys. Met. Metallogr. 90, No. 6, 604–611 (2000).
16.
go back to reference E. Yu. Tonkov, Phase Diagrams of Elements under High Pressure (Nauka, Moscow, 1979) [in Russian]. E. Yu. Tonkov, Phase Diagrams of Elements under High Pressure (Nauka, Moscow, 1979) [in Russian].
17.
go back to reference S. K. Sikka, Y. K. Vohra, and R. Chidambaram, “Omega phase in materials,” Prog. Mater. Sci. 27, Nos. 3–4, 245–310 (1982).CrossRef S. K. Sikka, Y. K. Vohra, and R. Chidambaram, “Omega phase in materials,” Prog. Mater. Sci. 27, Nos. 3–4, 245–310 (1982).CrossRef
18.
go back to reference V. D. Blank and E. I. Estrin, Phase Transformations in Solids under High Pressure (Fizmatlit, 2011). V. D. Blank and E. I. Estrin, Phase Transformations in Solids under High Pressure (Fizmatlit, 2011).
19.
go back to reference Properties of Elements: Handbook, Ed. by M. E. Drits (Metallurgiya, Moscow, 1985) [in Russian]. Properties of Elements: Handbook, Ed. by M. E. Drits (Metallurgiya, Moscow, 1985) [in Russian].
20.
go back to reference K. Edalati, Z. Horita, and S. Yagi, “Allotropic phase transformation of pure zirconium by high-pressure torsion,” Mater. Sci. Eng., A 523, 277–281 (2009).CrossRef K. Edalati, Z. Horita, and S. Yagi, “Allotropic phase transformation of pure zirconium by high-pressure torsion,” Mater. Sci. Eng., A 523, 277–281 (2009).CrossRef
21.
go back to reference N. Adachi, Y. Todaka, K. Irie, and M. Umemoto, “Phase transformation kinetics of ω-phase in pure Ti formed by high-pressure torsion,” J. Mater. Sci. 51, 2608–2615 (2016).CrossRef N. Adachi, Y. Todaka, K. Irie, and M. Umemoto, “Phase transformation kinetics of ω-phase in pure Ti formed by high-pressure torsion,” J. Mater. Sci. 51, 2608–2615 (2016).CrossRef
22.
go back to reference D. Brown, J. Almer, L. Balogh, E. Cerreta, B. Clausen, J. Escobedo-Diaz, T. Sisneros, P. Mosbrucker, E. Tulk, and S. Vogel, “Stability of the two-phase (α/ω) microstructure of shocked zirconium,” Acta Mater. 67, 383–394 (2014).CrossRef D. Brown, J. Almer, L. Balogh, E. Cerreta, B. Clausen, J. Escobedo-Diaz, T. Sisneros, P. Mosbrucker, E. Tulk, and S. Vogel, “Stability of the two-phase (α/ω) microstructure of shocked zirconium,” Acta Mater. 67, 383–394 (2014).CrossRef
23.
go back to reference D. R. Trinkle, R. G. Hennig, S. G. Srinivasan, D. M. Hatch, M. D. Jones, H. T. Stokes, R. C. Albers, and J. W. Wilkins, “New mechanism for the α to ω martensitic transformation in pure titanium,” Phys. Rev. Lett. 91, 025701 (2003).CrossRef D. R. Trinkle, R. G. Hennig, S. G. Srinivasan, D. M. Hatch, M. D. Jones, H. T. Stokes, R. C. Albers, and J. W. Wilkins, “New mechanism for the α to ω martensitic transformation in pure titanium,” Phys. Rev. Lett. 91, 025701 (2003).CrossRef
24.
go back to reference J. M. Silcock, “An X-Ray examination of the ω phase in TiV, TiMo and TiCr alloys,” Acta Metall. 6, No. 7, 481–493 (1958).CrossRef J. M. Silcock, “An X-Ray examination of the ω phase in TiV, TiMo and TiCr alloys,” Acta Metall. 6, No. 7, 481–493 (1958).CrossRef
25.
go back to reference Eg L. J. Egorova, Y. V. Khlebnikova, and V. P. Pilyugin, “Influence value of deformation on the evolution of structure of monocrystal zirconium shear pressure,” Lett. Mater. 6, No. 3, 237–242 (2016).CrossRef Eg L. J. Egorova, Y. V. Khlebnikova, and V. P. Pilyugin, “Influence value of deformation on the evolution of structure of monocrystal zirconium shear pressure,” Lett. Mater. 6, No. 3, 237–242 (2016).CrossRef
26.
go back to reference A. Rabinkin, M. Talianker, and O. Botstein, “Crystallography and a model of the α → ω phase transform ation in zirconium,” Acta Metall. 29, No. 4, 691–698 (1981).CrossRef A. Rabinkin, M. Talianker, and O. Botstein, “Crystallography and a model of the α → ω phase transform ation in zirconium,” Acta Metall. 29, No. 4, 691–698 (1981).CrossRef
Metadata
Title
Calorimetry and Peculiarities of Reverse ω → α Phase Transformation in Zr and Ti Pseudo-Single Crystals
Authors
L. Yu. Egorova
Yu. V. Khlebnikova
V. P. Pilyugin
N. N. Resnina
Publication date
01-05-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 5/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22050027

Other articles of this Issue 5/2022

Physics of Metals and Metallography 5/2022 Go to the issue