Skip to main content
Top
Published in: Designs, Codes and Cryptography 6/2021

06-04-2021

Cameron–Liebler sets in bilinear forms graphs

Author: Jun Guo

Published in: Designs, Codes and Cryptography | Issue 6/2021

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cameron–Liebler sets of subspaces in projective spaces were studied recently by Blokhuis et al. (Des Codes Cryptogr 87:1839–1856, 2019). In this paper, we discuss Cameron–Liebler sets in bilinear forms graphs, obtain several equivalent definitions and present some classification results.
Footnotes
1
For each \((x_1,\ldots ,x_{n})^t\in \mathbb {F}_q^{n}\), let \(V_{(x_1,\ldots ,x_{n})}=\langle e_1+x_1e_{n+1},\ldots ,e_n+x_ne_{n+1},e_{n+2},\ldots ,e_{n+\ell }\rangle .\) Then \(\{V_{(x_1,\ldots ,x_{n})}: (x_1,\ldots ,x_{n})^t\in \mathbb {F}_q^{n}\}\subseteq {\mathcal {M}}(n+\ell -1,\ell -1;n+\ell ,E)\) and \({\mathcal {M}}_n(V_{(x_1,\ldots ,x_{n})})\cap {\mathcal {M}}_n(V_{(y_1,\ldots ,y_{n})})=\emptyset \) for all \((x_1,\ldots ,x_{n})\not =(y_1,\ldots ,y_{n})\).
 
Literature
2.
go back to reference Bamberg J., Kelly S., Law M., Penttila T.: Tight sets and \(m\)-ovoids of finite polar spaces. J. Combin. Theory Ser. A 114, 1293–1314 (2007).MathSciNetCrossRef Bamberg J., Kelly S., Law M., Penttila T.: Tight sets and \(m\)-ovoids of finite polar spaces. J. Combin. Theory Ser. A 114, 1293–1314 (2007).MathSciNetCrossRef
3.
go back to reference Beutelspacher, A.: Partitions of finite vector spaces: an application of the Frobenius number in geometry. Arch. Math. (Basel) 31, 202–208 (1978/1979) Beutelspacher, A.: Partitions of finite vector spaces: an application of the Frobenius number in geometry. Arch. Math. (Basel) 31, 202–208 (1978/1979)
4.
go back to reference Blokhuis A., De Boeck M., D’haeseleer J.: Cameron–Liebler sets of \(k\)-spaces in PG\((n,q)\). Des. Codes Cryptogr. 87, 1839–1856 (2019).MathSciNetCrossRef Blokhuis A., De Boeck M., D’haeseleer J.: Cameron–Liebler sets of \(k\)-spaces in PG\((n,q)\). Des. Codes Cryptogr. 87, 1839–1856 (2019).MathSciNetCrossRef
5.
go back to reference Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs. Springer, Berlin (2012).MATH Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs. Springer, Berlin (2012).MATH
6.
go back to reference Bruen A.A., Drudge K.: The construction of Cameron–Liebler line classes in PG\((3, q)\). Finite Fields Appl. 5, 35–45 (1999).MathSciNetCrossRef Bruen A.A., Drudge K.: The construction of Cameron–Liebler line classes in PG\((3, q)\). Finite Fields Appl. 5, 35–45 (1999).MathSciNetCrossRef
7.
go back to reference Cameron P.J., Liebler R.A.: Tactical decompositions and orbits of projective groups. Linear Algebra Appl. 46, 91–102 (1982).MathSciNetCrossRef Cameron P.J., Liebler R.A.: Tactical decompositions and orbits of projective groups. Linear Algebra Appl. 46, 91–102 (1982).MathSciNetCrossRef
8.
go back to reference De Beule J., Demeyer J., Metsch K., Rodgers M.: A new family of tight sets in \(Q^+(5, q)\). Des. Codes Cryptogr. 78, 655–678 (2016).MathSciNetCrossRef De Beule J., Demeyer J., Metsch K., Rodgers M.: A new family of tight sets in \(Q^+(5, q)\). Des. Codes Cryptogr. 78, 655–678 (2016).MathSciNetCrossRef
10.
11.
go back to reference De Boeck M., Rodgers M., Storme L., Švob A.: Cameron–Liebler sets of generators in finite classical polar spaces. J. Combin. Theory Ser. A 167, 340–388 (2019).MathSciNetCrossRef De Boeck M., Rodgers M., Storme L., Švob A.: Cameron–Liebler sets of generators in finite classical polar spaces. J. Combin. Theory Ser. A 167, 340–388 (2019).MathSciNetCrossRef
12.
13.
go back to reference Delsarte P.: Properties and applications of the recurrence \(F(i+1, k+1, n+1)=q^{k+1}F(i, k+1, n)-q^kF(i, k, n)\). SIAM J. Appl. Math. 31, 262–270 (1976).MathSciNetCrossRef Delsarte P.: Properties and applications of the recurrence \(F(i+1, k+1, n+1)=q^{k+1}F(i, k+1, n)-q^kF(i, k, n)\). SIAM J. Appl. Math. 31, 262–270 (1976).MathSciNetCrossRef
15.
go back to reference Deng S., Li Q.: On the affine geometry of algebraic homogeneous spaces. Acta Math. Sinica. 15, 651–663 (1965).MathSciNet Deng S., Li Q.: On the affine geometry of algebraic homogeneous spaces. Acta Math. Sinica. 15, 651–663 (1965).MathSciNet
16.
17.
go back to reference Feng T., Momihara K., Xiang Q.: Cameron–Liebler line classes with parameter \(x=\frac{q^2-1}{2}\). J. Combin. Theory Ser. A 133, 307–338 (2015).MathSciNetCrossRef Feng T., Momihara K., Xiang Q.: Cameron–Liebler line classes with parameter \(x=\frac{q^2-1}{2}\). J. Combin. Theory Ser. A 133, 307–338 (2015).MathSciNetCrossRef
18.
go back to reference Filmus Y., Ihringer F.: Boolean degree 1 functions on some classical association schemes. J. Combin. Theory Ser. A 162, 241–270 (2019).MathSciNetCrossRef Filmus Y., Ihringer F.: Boolean degree 1 functions on some classical association schemes. J. Combin. Theory Ser. A 162, 241–270 (2019).MathSciNetCrossRef
19.
go back to reference Gavrilyuk A.L., Mogilnykh I.Y.: Cameron–Liebler line classes in PG\((n,4)\). Des. Codes Cryptogr. 73, 969–982 (2014).MathSciNetCrossRef Gavrilyuk A.L., Mogilnykh I.Y.: Cameron–Liebler line classes in PG\((n,4)\). Des. Codes Cryptogr. 73, 969–982 (2014).MathSciNetCrossRef
20.
go back to reference Gavrilyuk A.L., Matkin I., Pentilla T.: Derivation of Cameron–Liebler line classes. Des. Codes Cryptogr. 86, 231–236 (2018).MathSciNetCrossRef Gavrilyuk A.L., Matkin I., Pentilla T.: Derivation of Cameron–Liebler line classes. Des. Codes Cryptogr. 86, 231–236 (2018).MathSciNetCrossRef
21.
go back to reference Gong C., Lv B., Wang K.: The Hilton–Milner theorem for the distance-regular graphs of bilinear forms. Linear Algebra Appl. 515, 130–144 (2017).MathSciNetCrossRef Gong C., Lv B., Wang K.: The Hilton–Milner theorem for the distance-regular graphs of bilinear forms. Linear Algebra Appl. 515, 130–144 (2017).MathSciNetCrossRef
22.
go back to reference Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Oxford Mathematical Monographs. Oxford University Press, Oxford (1991). Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Oxford Mathematical Monographs. Oxford University Press, Oxford (1991).
24.
go back to reference Lv B., Wang K.: The energy of \(q\)-Kneser graphs and attenuated \(q\)-Kneser graphs. Discret. Appl. Math. 161, 2079–2083 (2013).MathSciNetCrossRef Lv B., Wang K.: The energy of \(q\)-Kneser graphs and attenuated \(q\)-Kneser graphs. Discret. Appl. Math. 161, 2079–2083 (2013).MathSciNetCrossRef
26.
go back to reference Metsch K.: The non-existence of Cameron–Liebler line classes with parameter \(2<x<q\). Bull. Lond. Math. Soc. 42, 991–996 (2010).MathSciNetCrossRef Metsch K.: The non-existence of Cameron–Liebler line classes with parameter \(2<x<q\). Bull. Lond. Math. Soc. 42, 991–996 (2010).MathSciNetCrossRef
27.
go back to reference Metsch K.: An improved bound on the existende of Cameron–Liebler line classes. J. Combin. Theory Ser. A 121, 89–93 (2014).MathSciNetCrossRef Metsch K.: An improved bound on the existende of Cameron–Liebler line classes. J. Combin. Theory Ser. A 121, 89–93 (2014).MathSciNetCrossRef
30.
go back to reference Rodgers M., Storme L., Vansweevelt A.: Cameron–Liebler \(k\)-classes in PG\((2k+1, q)\). Combinatorica 38, 739–757 (2018).MathSciNetCrossRef Rodgers M., Storme L., Vansweevelt A.: Cameron–Liebler \(k\)-classes in PG\((2k+1, q)\). Combinatorica 38, 739–757 (2018).MathSciNetCrossRef
31.
go back to reference Tanaka H.: Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs. J. Combin. Theory Ser. A 113, 903–910 (2006).MathSciNetCrossRef Tanaka H.: Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs. J. Combin. Theory Ser. A 113, 903–910 (2006).MathSciNetCrossRef
32.
go back to reference Wan Z.: Geometry of Classical Groups over Finite Fields, 2nd edn. Science Press, Beijing (2002). Wan Z.: Geometry of Classical Groups over Finite Fields, 2nd edn. Science Press, Beijing (2002).
33.
Metadata
Title
Cameron–Liebler sets in bilinear forms graphs
Author
Jun Guo
Publication date
06-04-2021
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 6/2021
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-021-00864-w

Other articles of this Issue 6/2021

Designs, Codes and Cryptography 6/2021 Go to the issue

Premium Partner