Skip to main content
Top

2024 | OriginalPaper | Chapter

Can Monetary Policy Uncertainty Predict Exchange Rate Volatility? New Evidence from Hybrid Neural Network−GARCH Model

Authors : Parevee Maneejuk, Terdthiti Chitkasame, Chaiwat Klinlampu, Pichayakone Rakpho

Published in: Applications of Optimal Transport to Economics and Related Topics

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper aims to examine the capacity of the US Monetary Policy Uncertainty (MPU) Index in accurately forecasting the volatility of foreign exchange rates for the Dollar Index, Euro/US$, and Yen/US$. To achieve this, we introduce several hybrid Artificial Neural Networks (ANN)−GARCH models, namely GARCH, ANN−EGARCH, and ANN−GJR−GARCH, which incorporate MPU as the exogenous variable (X). In addition to that, a significant challenge in ANN modeling is choosing the appropriate activation function. Therefore, we consider and compare various forms of activation functions, including logistic, Gompertz, Tanh, ReLU, and leakyReLU. Our results demonstrate that incorporating MPU improves the forecasting performance of the benchmark ANN−GARCH−type models both in- and out-of-sample. In particular, we find that incorporating MPU into the ANN−EGARCH model yields the largest forecasting gains compared to all other variants of the ANN−GARCH−type models. Additionally, our findings reveal that ReLU is the best activation function for predicting Dollar and Yen volatility, while Gompertz performs the best for predicting Euro volatility.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arouri, M., Estay, C., Rault, C., Roubaud, D.: Economic policy uncertainty and stock markets: long-run evidence from the US. Finance Res. Lett. 18, 136–141 (2016)CrossRef Arouri, M., Estay, C., Rault, C., Roubaud, D.: Economic policy uncertainty and stock markets: long-run evidence from the US. Finance Res. Lett. 18, 136–141 (2016)CrossRef
2.
go back to reference Asseery, A., Peel, D.A.: The effects of exchange rate volatility on exports: some new estimates. Econ. Lett. 37(2), 173–177 (1991)CrossRef Asseery, A., Peel, D.A.: The effects of exchange rate volatility on exports: some new estimates. Econ. Lett. 37(2), 173–177 (1991)CrossRef
3.
go back to reference Bala, D.A., Asemota, J.O.: Exchange-rates volatility in Nigeria: application of GARCH models with exogenous break. CBN J. Appl. Stat. 4(1), 89–116 (2013) Bala, D.A., Asemota, J.O.: Exchange-rates volatility in Nigeria: application of GARCH models with exogenous break. CBN J. Appl. Stat. 4(1), 89–116 (2013)
4.
go back to reference Balcilar, M., Gupta, R., Kyei, C., Wohar, M.E.: Does economic policy uncer-tainty predict exchange rate returns and volatility? Evidence from a nonparametric cau-sality-in-quantiles test. Open Econ. Rev. 27, 229–250 (2016)CrossRef Balcilar, M., Gupta, R., Kyei, C., Wohar, M.E.: Does economic policy uncer-tainty predict exchange rate returns and volatility? Evidence from a nonparametric cau-sality-in-quantiles test. Open Econ. Rev. 27, 229–250 (2016)CrossRef
5.
go back to reference Beckmann, J., Czudaj, R.: Exchange rate expectations and economic policy uncertainty. European J. Polit. Econ. 47, 148–162 (2017)CrossRef Beckmann, J., Czudaj, R.: Exchange rate expectations and economic policy uncertainty. European J. Polit. Econ. 47, 148–162 (2017)CrossRef
6.
go back to reference Clement, A., Samuel, A.: Empirical modeling of Nigerian exchange rate vola-tility. Math. Theory Model. 1(3), 8–15 (2011) Clement, A., Samuel, A.: Empirical modeling of Nigerian exchange rate vola-tility. Math. Theory Model. 1(3), 8–15 (2011)
7.
go back to reference Chiang, T.C.: Spillovers of US market volatility and monetary policy uncertainty to global stock markets. North Am. J. Econ. Finance 58, 101523 (2021)CrossRef Chiang, T.C.: Spillovers of US market volatility and monetary policy uncertainty to global stock markets. North Am. J. Econ. Finance 58, 101523 (2021)CrossRef
8.
go back to reference De Grauwe, P.: Exchange rate variability and the slowdown in growth of international trade. Staff Pap. 35(1), 63–84 (1988)CrossRef De Grauwe, P.: Exchange rate variability and the slowdown in growth of international trade. Staff Pap. 35(1), 63–84 (1988)CrossRef
9.
go back to reference Devereux, M.B., Lane, P.R., Xu, J.: Exchange rates and monetary policy in emerging market economies. Econ. J. 116(511), 478–506 (2006)CrossRef Devereux, M.B., Lane, P.R., Xu, J.: Exchange rates and monetary policy in emerging market economies. Econ. J. 116(511), 478–506 (2006)CrossRef
10.
go back to reference Dhamija, A.K., Bhalla, V.K.: Financial time series forecasting: comparison of various arch models. Glob. J. Financ. Manag. 2(1), 159–172 (2010) Dhamija, A.K., Bhalla, V.K.: Financial time series forecasting: comparison of various arch models. Glob. J. Financ. Manag. 2(1), 159–172 (2010)
11.
go back to reference Dornbusch, R.: Exchange rate expectations and monetary policy. J. Int. Econ. 6(3), 231–244 (1976)CrossRef Dornbusch, R.: Exchange rate expectations and monetary policy. J. Int. Econ. 6(3), 231–244 (1976)CrossRef
12.
go back to reference Gali, J., Monacelli, T.: Monetary policy and exchange rate volatility in a small open economy. Rev. Econ. Stud. 72(3), 707–734 (2005)CrossRef Gali, J., Monacelli, T.: Monetary policy and exchange rate volatility in a small open economy. Rev. Econ. Stud. 72(3), 707–734 (2005)CrossRef
13.
go back to reference Glosten, L.R., Jagannathan, R., Runkle, D.E.: On the relation between the expected value and the volatility of the nominal excess return on stocks. J. Financ. 48(5), 1779–1801 (1993)CrossRef Glosten, L.R., Jagannathan, R., Runkle, D.E.: On the relation between the expected value and the volatility of the nominal excess return on stocks. J. Financ. 48(5), 1779–1801 (1993)CrossRef
14.
go back to reference Hakkio, C.S.: Exchange rate volatility and federal reserve policy. Econ. Rev. 69(Jul), 18–*31 (1984) Hakkio, C.S.: Exchange rate volatility and federal reserve policy. Econ. Rev. 69(Jul), 18–*31 (1984)
15.
go back to reference Husted, L., Rogers, J., Sun, B.: Monetary policy uncertainty. J. Monetary Econ. 115, 20–36 (2020)CrossRef Husted, L., Rogers, J., Sun, B.: Monetary policy uncertainty. J. Monetary Econ. 115, 20–36 (2020)CrossRef
16.
go back to reference Kristjanpoller, W., Minutolo, M.C.: Gold price volatility: a forecasting approach using the Artificial Neural Network-GARCH model. Exp. Syst. Appl. 42(20), 7245–7251 (2015)CrossRef Kristjanpoller, W., Minutolo, M.C.: Gold price volatility: a forecasting approach using the Artificial Neural Network-GARCH model. Exp. Syst. Appl. 42(20), 7245–7251 (2015)CrossRef
17.
go back to reference Lastrapes, W.D.: Exchange rate volatility and US monetary policy: an ARCH application. J. Money Credit Bank. 21(1), 66–77 (1989)CrossRef Lastrapes, W.D.: Exchange rate volatility and US monetary policy: an ARCH application. J. Money Credit Bank. 21(1), 66–77 (1989)CrossRef
18.
go back to reference Liao, R., Yamaka, W., Sriboonchitta, S.: Exchange rate volatility forecasting by hybrid neural network Markov switching Beta-t-EGARCH. IEEE Access 8, 207563–207574 (2020)CrossRef Liao, R., Yamaka, W., Sriboonchitta, S.: Exchange rate volatility forecasting by hybrid neural network Markov switching Beta-t-EGARCH. IEEE Access 8, 207563–207574 (2020)CrossRef
19.
go back to reference Liu, L., Zhang, T.: Economic policy uncertainty and stock market volatility. Financ. Res. Lett. 15, 99–105 (2015)CrossRef Liu, L., Zhang, T.: Economic policy uncertainty and stock market volatility. Financ. Res. Lett. 15, 99–105 (2015)CrossRef
20.
go back to reference Li, Xiafei, Wei, Yu., Chen, Xiaodan, Ma, Feng, Liang, Chao, Chen, Wang: Which un-certainty is powerful to forecast crude oil market volatility? New evidence. Inte. J. Financ. Econ. 27(4), 4279–4297 (2022)CrossRef Li, Xiafei, Wei, Yu., Chen, Xiaodan, Ma, Feng, Liang, Chao, Chen, Wang: Which un-certainty is powerful to forecast crude oil market volatility? New evidence. Inte. J. Financ. Econ. 27(4), 4279–4297 (2022)CrossRef
21.
go back to reference Mueller, P., Tahbaz-Salehi, A., Vedolin, A.: Exchange rates and monetary policy uncertainty. J. Financ. 72(3), 1213–1252 (2017)CrossRef Mueller, P., Tahbaz-Salehi, A., Vedolin, A.: Exchange rates and monetary policy uncertainty. J. Financ. 72(3), 1213–1252 (2017)CrossRef
22.
go back to reference Nelson, D.B.: Conditional heteroskedasticity in asset returns: a new approach. Econometrica: J Econom. Soc. 347–370 (1991) Nelson, D.B.: Conditional heteroskedasticity in asset returns: a new approach. Econometrica: J Econom. Soc. 347–370 (1991)
23.
go back to reference Rakpho, P., Yamaka, W., Phadkantha, R.: Predicting energy price volatility using hybrid artificial neural networks with GARCH-Type models. In: Integrated Un-certainty in Knowledge Modelling and Decision Making: 9th International Symposium, IUKM 2022, Ishikawa, Japan, March 18–19, 2022, Proceedings, pp. 317–328. Springer International Publishing, Cham (2022)CrossRef Rakpho, P., Yamaka, W., Phadkantha, R.: Predicting energy price volatility using hybrid artificial neural networks with GARCH-Type models. In: Integrated Un-certainty in Knowledge Modelling and Decision Making: 9th International Symposium, IUKM 2022, Ishikawa, Japan, March 18–19, 2022, Proceedings, pp. 317–328. Springer International Publishing, Cham (2022)CrossRef
24.
go back to reference Ramasamy, R., Munisamy, S.: Predictive accuracy of GARCH, GJR and EGARCH models select exchange rates application. Glob. J. Manag. Bus. Res. 12(15), 89–100 (2012) Ramasamy, R., Munisamy, S.: Predictive accuracy of GARCH, GJR and EGARCH models select exchange rates application. Glob. J. Manag. Bus. Res. 12(15), 89–100 (2012)
25.
go back to reference Siklos, P.L.: Central Banks into the Breach: from Triumph to Crisis and the Road Ahead. Oxford University Press (2017) Siklos, P.L.: Central Banks into the Breach: from Triumph to Crisis and the Road Ahead. Oxford University Press (2017)
26.
go back to reference Zurada, J.: Introduction to Artificial Neural Systems. West Publishing Co (1992) Zurada, J.: Introduction to Artificial Neural Systems. West Publishing Co (1992)
Metadata
Title
Can Monetary Policy Uncertainty Predict Exchange Rate Volatility? New Evidence from Hybrid Neural Network−GARCH Model
Authors
Parevee Maneejuk
Terdthiti Chitkasame
Chaiwat Klinlampu
Pichayakone Rakpho
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-67770-0_18