Skip to main content
Top

2025 | OriginalPaper | Chapter

Can OOD Object Detectors Learn from Foundation Models?

Authors : Jiahui Liu, Xin Wen, Shizhen Zhao, Yingxian Chen, Xiaojuan Qi

Published in: Computer Vision – ECCV 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data. Inspired by recent advancements in text-to-image generative models, such as Stable Diffusion, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples, thereby enhancing OOD object detection. We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models to automatically extract meaningful OOD data from text-to-image generative models. This offers the model access to open-world knowledge encapsulated within off-the-shelf foundation models. The synthetic OOD samples are then employed to augment the training of a lightweight, plug-and-play OOD detector, thus effectively optimizing the in-distribution (ID)/OOD decision boundaries. Extensive experiments across multiple benchmarks demonstrate that SyncOOD significantly outperforms existing methods, establishing new state-of-the-art performance with minimal synthetic data usage. The project is available at https://​github.​com/​CVMI-Lab/​SyncOOD.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Concepts overlapping with the test data are removed to avoid information leakage.
 
Literature
2.
go back to reference Bendale, A., Boult, T.E.: Towards open set deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1563–1572 (2016) Bendale, A., Boult, T.E.: Towards open set deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1563–1572 (2016)
3.
go back to reference Bishop, C.M.: Novelty detection and neural network validation. IEE Proc.-Vis. Image Sig. Process. 141(4), 217–222 (1994)CrossRef Bishop, C.M.: Novelty detection and neural network validation. IEE Proc.-Vis. Image Sig. Process. 141(4), 217–222 (1994)CrossRef
4.
go back to reference Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems 33, pp. 1877–1901 (2020) Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems 33, pp. 1877–1901 (2020)
5.
6.
go back to reference Chowdhery, A., et al.: PaLM: scaling language modeling with pathways. J. Mach. Learn. Res. 24(240), 1–113 (2023) Chowdhery, A., et al.: PaLM: scaling language modeling with pathways. J. Mach. Learn. Res. 24(240), 1–113 (2023)
7.
go back to reference Deepshikha, K., Yelleni, S.H., Srijith, P., Mohan, C.K.: Monte Carlo dropblock for modelling uncertainty in object detection. arXiv preprint arXiv:2108.03614 (2021) Deepshikha, K., Yelleni, S.H., Srijith, P., Mohan, C.K.: Monte Carlo dropblock for modelling uncertainty in object detection. arXiv preprint arXiv:​2108.​03614 (2021)
9.
go back to reference Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:​1810.​04805 (2018)
10.
go back to reference Dhamija, A., Gunther, M., Ventura, J., Boult, T.: The overlooked elephant of object detection: open set. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1021–1030 (2020) Dhamija, A., Gunther, M., Ventura, J., Boult, T.: The overlooked elephant of object detection: open set. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1021–1030 (2020)
11.
go back to reference Du, X., Fang, Z., Diakonikolas, I., Li, Y.: How does unlabeled data provably help out-of-distribution detection? arXiv preprint arXiv:2402.03502 (2024) Du, X., Fang, Z., Diakonikolas, I., Li, Y.: How does unlabeled data provably help out-of-distribution detection? arXiv preprint arXiv:​2402.​03502 (2024)
12.
go back to reference Du, X., Gozum, G., Ming, Y., Li, Y.: SIREN: shaping representations for detecting out-of-distribution objects. In: Advances in Neural Information Processing Systems 35, pp. 20434–20449 (2022) Du, X., Gozum, G., Ming, Y., Li, Y.: SIREN: shaping representations for detecting out-of-distribution objects. In: Advances in Neural Information Processing Systems 35, pp. 20434–20449 (2022)
13.
go back to reference Du, X., Sun, Y., Zhu, J., Li, Y.: Dream the impossible: outlier imagination with diffusion models. In: Advances in Neural Information Processing Systems 36 (2024) Du, X., Sun, Y., Zhu, J., Li, Y.: Dream the impossible: outlier imagination with diffusion models. In: Advances in Neural Information Processing Systems 36 (2024)
14.
go back to reference Du, X., Wang, X., Gozum, G., Li, Y.: Unknown-aware object detection: learning what you don’t know from videos in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13678–13688 (2022) Du, X., Wang, X., Gozum, G., Li, Y.: Unknown-aware object detection: learning what you don’t know from videos in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13678–13688 (2022)
15.
go back to reference Du, X., Wang, Z., Cai, M., Li, Y.: VOS: learning what you don’t know by virtual outlier synthesis. arXiv preprint arXiv:2202.01197 (2022) Du, X., Wang, Z., Cai, M., Li, Y.: VOS: learning what you don’t know by virtual outlier synthesis. arXiv preprint arXiv:​2202.​01197 (2022)
16.
go back to reference Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)CrossRef Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)CrossRef
17.
go back to reference Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary object detection via vision and language knowledge distillation. In: International Conference on Learning Representations (2022) Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary object detection via vision and language knowledge distillation. In: International Conference on Learning Representations (2022)
18.
go back to reference Gupta, A., Narayan, S., Joseph, K., Khan, S., Khan, F.S., Shah, M.: OW-DETR: open-world detection transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9235–9244 (2022) Gupta, A., Narayan, S., Joseph, K., Khan, S., Khan, F.S., Shah, M.: OW-DETR: open-world detection transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9235–9244 (2022)
19.
go back to reference Hall, D., et al.: Probabilistic object detection: definition and evaluation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1031–1040 (2020) Hall, D., et al.: Probabilistic object detection: definition and evaluation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1031–1040 (2020)
20.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
21.
22.
go back to reference Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: International Conference on Learning Representations (2017) Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: International Conference on Learning Representations (2017)
23.
24.
go back to reference Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems 33, pp. 6840–6851 (2020) Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems 33, pp. 6840–6851 (2020)
25.
go back to reference Hsu, Y.C., Shen, Y., Jin, H., Kira, Z.: Generalized ODIN: detecting out-of-distribution image without learning from out-of-distribution data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10951–10960 (2020) Hsu, Y.C., Shen, Y., Jin, H., Kira, Z.: Generalized ODIN: detecting out-of-distribution image without learning from out-of-distribution data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10951–10960 (2020)
26.
go back to reference Huang, R., Geng, A., Li, Y.: On the importance of gradients for detecting distributional shifts in the wild. In: Advances in Neural Information Processing Systems 34, pp. 677–689 (2021) Huang, R., Geng, A., Li, Y.: On the importance of gradients for detecting distributional shifts in the wild. In: Advances in Neural Information Processing Systems 34, pp. 677–689 (2021)
27.
go back to reference Joseph, K., Khan, S., Khan, F.S., Balasubramanian, V.N.: Towards open world object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5830–5840 (2021) Joseph, K., Khan, S., Khan, F.S., Balasubramanian, V.N.: Towards open world object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5830–5840 (2021)
28.
go back to reference Katz-Samuels, J., Nakhleh, J.B., Nowak, R., Li, Y.: Training OOD detectors in their natural habitats. In: International Conference on Machine Learning, pp. 10848–10865. PMLR (2022) Katz-Samuels, J., Nakhleh, J.B., Nowak, R., Li, Y.: Training OOD detectors in their natural habitats. In: International Conference on Machine Learning, pp. 10848–10865. PMLR (2022)
30.
go back to reference Kong, S., Ramanan, D.: OpenGAN: open-set recognition via open data generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 813–822 (2021) Kong, S., Ramanan, D.: OpenGAN: open-set recognition via open data generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 813–822 (2021)
31.
go back to reference Kuznetsova, A., et al.: The open images dataset V4: unified image classification, object detection, and visual relationship detection at scale. Int. J. Comput. Vis. 128(7), 1956–1981 (2020)CrossRef Kuznetsova, A., et al.: The open images dataset V4: unified image classification, object detection, and visual relationship detection at scale. Int. J. Comput. Vis. 128(7), 1956–1981 (2020)CrossRef
32.
go back to reference Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for detecting out-of-distribution samples. In: International Conference on Learning Representations (2018) Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for detecting out-of-distribution samples. In: International Conference on Learning Representations (2018)
33.
go back to reference Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: Advances in Neural Information Processing Systems 31 (2018) Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: Advances in Neural Information Processing Systems 31 (2018)
34.
go back to reference Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. In: International Conference on Learning Representations, ICLR 2018 (2018) Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. In: International Conference on Learning Representations, ICLR 2018 (2018)
36.
go back to reference Liu, J., Chang, C., Liu, J., Wu, X., Ma, L., Qi, X.: MarS3D: a plug-and-play motion-aware model for semantic segmentation on multi-scan 3D point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9372–9381 (2023) Liu, J., Chang, C., Liu, J., Wu, X., Ma, L., Qi, X.: MarS3D: a plug-and-play motion-aware model for semantic segmentation on multi-scan 3D point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9372–9381 (2023)
37.
go back to reference Liu, W., Wang, X., Owens, J., Li, Y.: Energy-based out-of-distribution detection. In: Advances in Neural Information Processing Systems 33, pp. 21464–21475 (2020) Liu, W., Wang, X., Owens, J., Li, Y.: Energy-based out-of-distribution detection. In: Advances in Neural Information Processing Systems 33, pp. 21464–21475 (2020)
38.
go back to reference Liu, X., Yang, H., Ravichandran, A., Bhotika, R., Soatto, S.: Continual universal object detection. arXiv preprint arXiv:2002.05347 (2020) Liu, X., Yang, H., Ravichandran, A., Bhotika, R., Soatto, S.: Continual universal object detection. arXiv preprint arXiv:​2002.​05347 (2020)
39.
go back to reference Miller, D., Dayoub, F., Milford, M., Sünderhauf, N.: Evaluating merging strategies for sampling-based uncertainty techniques in object detection. In: International Conference on Robotics and Automation (ICRA), pp. 2348–2354 (2019) Miller, D., Dayoub, F., Milford, M., Sünderhauf, N.: Evaluating merging strategies for sampling-based uncertainty techniques in object detection. In: International Conference on Robotics and Automation (ICRA), pp. 2348–2354 (2019)
40.
go back to reference Miller, D., Nicholson, L., Dayoub, F., Sünderhauf, N.: Dropout sampling for robust object detection in open-set conditions. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3243–3249 (2018) Miller, D., Nicholson, L., Dayoub, F., Sünderhauf, N.: Dropout sampling for robust object detection in open-set conditions. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3243–3249 (2018)
41.
go back to reference Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2015) Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2015)
42.
go back to reference Perez-Rua, J.M., Zhu, X., Hospedales, T.M., Xiang, T.: Incremental few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13846–13855 (2020) Perez-Rua, J.M., Zhu, X., Hospedales, T.M., Xiang, T.: Incremental few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13846–13855 (2020)
43.
go back to reference Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021) Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
44.
go back to reference Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019) Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)
45.
go back to reference Rahman, S., Khan, S.H., Porikli, F.: Zero-shot object detection: joint recognition and localization of novel concepts. Int. J. Comput. Vis. 128, 2979–2999 (2020)CrossRef Rahman, S., Khan, S.H., Porikli, F.: Zero-shot object detection: joint recognition and localization of novel concepts. Int. J. Comput. Vis. 128, 2979–2999 (2020)CrossRef
46.
go back to reference Ren, J., Fort, S., Liu, J., Roy, A.G., Padhy, S., Lakshminarayanan, B.: A simple fix to Mahalanobis distance for improving near-OOD detection. arXiv preprint arXiv:2106.09022 (2021) Ren, J., Fort, S., Liu, J., Roy, A.G., Padhy, S., Lakshminarayanan, B.: A simple fix to Mahalanobis distance for improving near-OOD detection. arXiv preprint arXiv:​2106.​09022 (2021)
47.
go back to reference Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems 28 (2015) Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems 28 (2015)
48.
go back to reference Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022) Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)
49.
go back to reference Sastry, C.S., Oore, S.: Detecting out-of-distribution examples with gram matrices. In: International Conference on Machine Learning, pp. 8491–8501. PMLR (2020) Sastry, C.S., Oore, S.: Detecting out-of-distribution examples with gram matrices. In: International Conference on Machine Learning, pp. 8491–8501. PMLR (2020)
50.
go back to reference Sun, Y., Ming, Y., Zhu, X., Li, Y.: Out-of-distribution detection with deep nearest neighbors. In: International Conference on Machine Learning, pp. 20827–20840. PMLR (2022) Sun, Y., Ming, Y., Zhu, X., Li, Y.: Out-of-distribution detection with deep nearest neighbors. In: International Conference on Machine Learning, pp. 20827–20840. PMLR (2022)
51.
go back to reference Tack, J., Mo, S., Jeong, J., Shin, J.: CSI: novelty detection via contrastive learning on distributionally shifted instances. In: Advances in Neural Information Processing Systems 33, pp. 11839–11852 (2020) Tack, J., Mo, S., Jeong, J., Shin, J.: CSI: novelty detection via contrastive learning on distributionally shifted instances. In: Advances in Neural Information Processing Systems 33, pp. 11839–11852 (2020)
52.
go back to reference Tan, H., et al.: Data pruning via moving-one-sample-out. In: Advances in Neural Information Processing Systems (2023) Tan, H., et al.: Data pruning via moving-one-sample-out. In: Advances in Neural Information Processing Systems (2023)
54.
go back to reference Tian, Y., Fan, L., Chen, K., Katabi, D., Krishnan, D., Isola, P.: Learning vision from models rivals learning vision from data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15887–15898 (2024) Tian, Y., Fan, L., Chen, K., Katabi, D., Krishnan, D., Isola, P.: Learning vision from models rivals learning vision from data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15887–15898 (2024)
55.
go back to reference Wang, H., Liu, W., Bocchieri, A., Li, Y.: Can multi-label classification networks know what they don’t know? In: Advances in Neural Information Processing Systems 34, pp. 29074–29087 (2021) Wang, H., Liu, W., Bocchieri, A., Li, Y.: Can multi-label classification networks know what they don’t know? In: Advances in Neural Information Processing Systems 34, pp. 29074–29087 (2021)
56.
go back to reference Wang, X., et al.: Robust object detection via instance-level temporal cycle confusion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9143–9152 (2021) Wang, X., et al.: Robust object detection via instance-level temporal cycle confusion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9143–9152 (2021)
57.
go back to reference Wen, X., Zhao, B., Chen, Y., Pang, J., Qi, X.: Generalization beyond data imbalance: a controlled study on CLIP for transferable insights. arXiv preprint arXiv:2405.21070 (2024) Wen, X., Zhao, B., Chen, Y., Pang, J., Qi, X.: Generalization beyond data imbalance: a controlled study on CLIP for transferable insights. arXiv preprint arXiv:​2405.​21070 (2024)
58.
go back to reference Wilson, S., Fischer, T., Dayoub, F., Miller, D., Sünderhauf, N.: SAFE: sensitivity-aware features for out-of-distribution object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 23565–23576 (2023) Wilson, S., Fischer, T., Dayoub, F., Miller, D., Sünderhauf, N.: SAFE: sensitivity-aware features for out-of-distribution object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 23565–23576 (2023)
59.
go back to reference Wu, A., Chen, D., Deng, C.: Deep feature deblurring diffusion for detecting out-of-distribution objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13381–13391 (2023) Wu, A., Chen, D., Deng, C.: Deep feature deblurring diffusion for detecting out-of-distribution objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13381–13391 (2023)
60.
go back to reference Wu, A., Deng, C.: Discriminating known from unknown objects via structure-enhanced recurrent variational autoencoder. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23956–23965 (2023) Wu, A., Deng, C.: Discriminating known from unknown objects via structure-enhanced recurrent variational autoencoder. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23956–23965 (2023)
61.
go back to reference Wu, Q., Chen, Y., Yang, C., Yan, J.: Energy-based out-of-distribution detection for graph neural networks. arXiv preprint arXiv:2302.02914 (2023) Wu, Q., Chen, Y., Yang, C., Yan, J.: Energy-based out-of-distribution detection for graph neural networks. arXiv preprint arXiv:​2302.​02914 (2023)
62.
go back to reference Wu, S., Tan, H., Tian, Z., Chen, Y., Qi, X., Jia, J.: Saco loss: sample-wise affinity consistency for vision-language pre-training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 27358–27369 (2024) Wu, S., Tan, H., Tian, Z., Chen, Y., Qi, X., Jia, J.: Saco loss: sample-wise affinity consistency for vision-language pre-training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 27358–27369 (2024)
63.
go back to reference Wu, X., et al.: CL-NeRF: continual learning of neural radiance fields for evolving scene representation. In: Advances in Neural Information Processing Systems 36 (2024) Wu, X., et al.: CL-NeRF: continual learning of neural radiance fields for evolving scene representation. In: Advances in Neural Information Processing Systems 36 (2024)
64.
go back to reference Yu, F., et al.: BDD100K: a diverse driving dataset for heterogeneous multitask learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2636–2645 (2020) Yu, F., et al.: BDD100K: a diverse driving dataset for heterogeneous multitask learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2636–2645 (2020)
65.
go back to reference Zheng, H., et al.: Out-of-distribution detection learning with unreliable out-of-distribution sources. In: Advances in Neural Information Processing Systems 36, pp. 72110–72123 (2023) Zheng, H., et al.: Out-of-distribution detection learning with unreliable out-of-distribution sources. In: Advances in Neural Information Processing Systems 36, pp. 72110–72123 (2023)
Metadata
Title
Can OOD Object Detectors Learn from Foundation Models?
Authors
Jiahui Liu
Xin Wen
Shizhen Zhao
Yingxian Chen
Xiaojuan Qi
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-73254-6_13

Premium Partner