Skip to main content
Top
Published in: Wireless Personal Communications 3/2021

22-11-2020

Canonical Huffman Coding Based Image Compression using Wavelet

Author: Rajiv Ranjan

Published in: Wireless Personal Communications | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The explosive growth of digital imaging, especially in the fields of medicine, education, and e-commerce, has made data maintenance and transmission over networks a daunting task. Therefore, the development and use of image compression techniques have become vital for overcoming the problems of storage and transmission of digital image data. Two methods that are extensively used for data compression are Discrete Cosine Transformation and Discrete Wavelet Transform (DWT). In our present study, we have shown the benefits of a DWT-based approach by utilizing the canonical Huffman coding as an entropy encoder. DWT decomposes the image into different sub-bands. These sub bands are known as approximate image and detail images. The approximate image is normalized in the range (0, 1) for obtaining the Canonical Huffman coding bit stream. In a similar way, details coefficients are also normalized in the range (0, 1) for obtaining the canonical Huffman coding bit stream of detail images. Hard thresholding is often used to discard insignificant coefficients of detail images. Our proposed method takes less computing time and has a smaller codebook size than that of conventional Huffman coding. Moreover, the results show an improvement over Wavelet Scalar Quantization often used for image compression of fingerprints. We have applied our method to various popular images and obtained promising PSNR, CR, and BPP that highlight the advantages of our approach and the efficiency of our algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Patel R., Kumar V., Tyagi V., & Asthana V. (2016). A fast and improved image compression technique using huffman coding. In International conference on wireless communications, signal processing and networking (WiSPNET). (PP. 2283–2286), IEEE. Patel R., Kumar V., Tyagi V., & Asthana V. (2016). A fast and improved image compression technique using huffman coding. In International conference on wireless communications, signal processing and networking (WiSPNET). (PP. 2283–2286), IEEE.
5.
go back to reference Matai J., Kim J.Y., Kastner R. (2014). Energy efficient canonical Huffman encoding, In 25th International conference on application specific systems, architecture and processors, zurich, switcherland (pp.202–209), IEEE. Matai J., Kim J.Y., Kastner R. (2014). Energy efficient canonical Huffman encoding, In 25th International conference on application specific systems, architecture and processors, zurich, switcherland (pp.202–209), IEEE.
6.
go back to reference Zhang, Y., Pei, Z., Yang, J., & Liang, Y. (2008). Canonical huffman code based full-text index. Progress in Natural Science., 18, 325–330.MathSciNetCrossRef Zhang, Y., Pei, Z., Yang, J., & Liang, Y. (2008). Canonical huffman code based full-text index. Progress in Natural Science., 18, 325–330.MathSciNetCrossRef
7.
go back to reference Yuan, S., & Hu, J. (2019). Research on image compression technology based on Huffman coding. Journal of Visual Communication and Image Representation, 59, 33–38.CrossRef Yuan, S., & Hu, J. (2019). Research on image compression technology based on Huffman coding. Journal of Visual Communication and Image Representation, 59, 33–38.CrossRef
8.
go back to reference Singh, M., Kumar, S., Singh, S., et al. (2016). Various image compression techniques: lossy and Lossless. International Journal of Computers and Applications, 142(6), 23–26.CrossRef Singh, M., Kumar, S., Singh, S., et al. (2016). Various image compression techniques: lossy and Lossless. International Journal of Computers and Applications, 142(6), 23–26.CrossRef
9.
go back to reference Hu, Y. C., & Chang, C. C. (2000). A new lossless compression scheme based on Huffman coding scheme for image compression. Signal Processing: Image Communication., 16(4), 367–372. Hu, Y. C., & Chang, C. C. (2000). A new lossless compression scheme based on Huffman coding scheme for image compression. Signal Processing: Image Communication., 16(4), 367–372.
10.
go back to reference Arif, M., & Anand, R. S. (2014). Effect on speech compression by combined delta encoding and huffman coding scheme. Wireless Personal Communications, 79, 2371–2381.CrossRef Arif, M., & Anand, R. S. (2014). Effect on speech compression by combined delta encoding and huffman coding scheme. Wireless Personal Communications, 79, 2371–2381.CrossRef
11.
go back to reference Kasmeera, K. S., James, S. P., & Sreekumar, K. (2016). Efficient compression of secured images using subservient data and huffman coding. Procedia Technology., 25, 60–67.CrossRef Kasmeera, K. S., James, S. P., & Sreekumar, K. (2016). Efficient compression of secured images using subservient data and huffman coding. Procedia Technology., 25, 60–67.CrossRef
12.
go back to reference Kasapbasi, M. C. (2019). A new chaotic image steganography technique based on huffman compression of turkishtexts and fractal encryption with post-quantum security. IEEE Access., 7, 148495–148510.CrossRef Kasapbasi, M. C. (2019). A new chaotic image steganography technique based on huffman compression of turkishtexts and fractal encryption with post-quantum security. IEEE Access., 7, 148495–148510.CrossRef
13.
go back to reference Yin, Z., Xiang, Y., & Zhang, X. (2019). Reversible data hiding in encrypted images based on multi-MSB prediction and huffman coding. IEEE Transactions on Multimedia., 22(4), 874–884.CrossRef Yin, Z., Xiang, Y., & Zhang, X. (2019). Reversible data hiding in encrypted images based on multi-MSB prediction and huffman coding. IEEE Transactions on Multimedia., 22(4), 874–884.CrossRef
14.
go back to reference Bradley JN, Brislawn CM, & Hopper T. (1993). The FBI wavelet/scalar quantization standard for gray-Scale Fingerprint Image Compression. Optical Engineering and Photonics in Aerospace Sensing, 1993, Orlando, FL, United States. https://doi.org/https://doi.org/10.1117/12.150973. Bradley JN, Brislawn CM, & Hopper T. (1993). The FBI wavelet/scalar quantization standard for gray-Scale Fingerprint Image Compression. Optical Engineering and Photonics in Aerospace Sensing, 1993, Orlando, FL, United States. https://​doi.​org/​https://​doi.​org/​10.​1117/​12.​150973.
15.
go back to reference Hopper T. & Preston F. (1992). compression of gray-scale fingerprint images. In Proceedings Snowbird, Utah, (pp.309–318). Hopper T. & Preston F. (1992). compression of gray-scale fingerprint images. In Proceedings Snowbird, Utah, (pp.309–318).
16.
go back to reference Khalifa, O. (2005). Wavelet coding design for image data compression. The International Arab Journal of Information Technology (IAJIT), 2(2), 118–128.MathSciNet Khalifa, O. (2005). Wavelet coding design for image data compression. The International Arab Journal of Information Technology (IAJIT), 2(2), 118–128.MathSciNet
17.
go back to reference Bairagi, V. K., Sapkal, A. M., & Gaikwad, M. S. (2013). The role of transforms in image compression. Journal of the Institution of Engineers (India) Series B, 94(2), 135–140.CrossRef Bairagi, V. K., Sapkal, A. M., & Gaikwad, M. S. (2013). The role of transforms in image compression. Journal of the Institution of Engineers (India) Series B, 94(2), 135–140.CrossRef
19.
go back to reference Ammah, P. N. T., & Owusu, E. (2019). Robust medical image compression based on wavelet transform and vector quantization. Informatics in Medicine Unlocked., 15(100183), 1–11. Ammah, P. N. T., & Owusu, E. (2019). Robust medical image compression based on wavelet transform and vector quantization. Informatics in Medicine Unlocked., 15(100183), 1–11.
23.
go back to reference Benchikh S., & Corinthios M. (2011). A Hybrid Image Compression Technique Based on DWT and DCT Transforms. Advanced Infocom Technology (ICAIT 2011), (pp. 1–8), IEEE. Benchikh S., & Corinthios M. (2011). A Hybrid Image Compression Technique Based on DWT and DCT Transforms. Advanced Infocom Technology (ICAIT 2011), (pp. 1–8), IEEE.
24.
go back to reference Braylants, T., Munteanu, A., & Schelkens, P. (2015). Wavelet based volumetric medical image compression. Signal Processing: Image Communication., 31, 112–133. Braylants, T., Munteanu, A., & Schelkens, P. (2015). Wavelet based volumetric medical image compression. Signal Processing: Image Communication., 31, 112–133.
25.
go back to reference Cosman, P. C., Gray, R. M., & Olshen, R. A. (1994). Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy. Proceedings of the IEEE, 30, 857–865. Cosman, P. C., Gray, R. M., & Olshen, R. A. (1994). Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy. Proceedings of the IEEE, 30, 857–865.
26.
go back to reference Yildirim, O., Tan, R. S., & Acharya, U. R. (2018). An efficient compression of ECG signals using deep convolutional autoencoders. Cognitive Systems Research, 52, 198–211.CrossRef Yildirim, O., Tan, R. S., & Acharya, U. R. (2018). An efficient compression of ECG signals using deep convolutional autoencoders. Cognitive Systems Research, 52, 198–211.CrossRef
Metadata
Title
Canonical Huffman Coding Based Image Compression using Wavelet
Author
Rajiv Ranjan
Publication date
22-11-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07967-y

Other articles of this Issue 3/2021

Wireless Personal Communications 3/2021 Go to the issue