Skip to main content
Top
Published in: Wireless Networks 2/2011

01-02-2011

Capacity of data collection in randomly-deployed wireless sensor networks

Authors: Siyuan Chen, Yu Wang, Xiang-Yang Li, Xinghua Shi

Published in: Wireless Networks | Issue 2/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Data collection is one of the most important functions provided by wireless sensor networks. In this paper, we study theoretical limitations of data collection and data aggregation in terms of delay and capacity for a wireless sensor network where n sensors are randomly deployed. We consider different communication scenarios such as with single sink or multiple sinks, regularly-deployed or randomly-deployed sinks, with or without aggregation. For each scenario, we not only propose a data collection/aggregation method and analyze its performance in terms of delay and capacity, but also theoretically prove whether our method can achieve the optimal order (i.e., its performance is within a constant factor of the optimal). Particularly, with a single sink, the capacity of data collection is in order of \(\Uptheta(W)\) where W is the fixed data-rate on individual links. With k regularly deployed sinks, the capacity of data collection is increased to \(\Uptheta(kW)\) when \(k=O\left({\frac{n}{\log n}}\right)\) or \(\Uptheta\left({\frac{n}{\log n}}W\right)\) when \(k=\Upomega\left({\frac{n}{\log n}}\right)\). With k randomly deployed sinks, the capacity of data collection is between \(\Uptheta\left({\frac{k}{\log k}}W\right)\) and \(\Uptheta(kW)\) when \(k=O\left({\frac{n}{\log n}}\right)\) or \(\Uptheta\left({\frac{n}{\log n}}W\right)\) when \(k=\omega\left({\frac{n}{\log n}}\right)\). If each sensor can aggregate its receiving packets into a single packet to send, the capacity of data collection with a single sink is also increased to \(\Uptheta\left({\frac{n}{\log n}}W\right)\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We can also think of this as the case where each cell has a single sensor. Then the rate of receiving data at the sink is a constant dependent on R.
 
Literature
1.
go back to reference Duarte-Melo E. J., & Liu, M. (2003). Data-gathering wireless sensor networks: Organization and capacity. Computer Networks, 43, 519–537.MATHCrossRef Duarte-Melo E. J., & Liu, M. (2003). Data-gathering wireless sensor networks: Organization and capacity. Computer Networks, 43, 519–537.MATHCrossRef
2.
go back to reference Liu, M., Neuhoff, D. L., Marco, D., & Duarte-Melo, E. J. (2003). On the many-to-one transport capacity of a dense wireless sensor network and the compressibility of its data. In Proceedings of international workshop on information processing in sensor networks. Liu, M., Neuhoff, D. L., Marco, D., & Duarte-Melo, E. J. (2003). On the many-to-one transport capacity of a dense wireless sensor network and the compressibility of its data. In Proceedings of international workshop on information processing in sensor networks.
3.
go back to reference El Gamal, H. (2005). On the scaling laws of dense wireless sensor networks: The data gathering channel. IEEE Transactions on Information Theory, 51(3), 1229–1234.CrossRefMathSciNet El Gamal, H. (2005). On the scaling laws of dense wireless sensor networks: The data gathering channel. IEEE Transactions on Information Theory, 51(3), 1229–1234.CrossRefMathSciNet
4.
go back to reference Zheng, R., & Barton, R. J. (2007). Toward optimal data aggregation in random wireless sensor networks. In Proceedings of IEEE conference on computer communications (Infocom). Zheng, R., & Barton, R. J. (2007). Toward optimal data aggregation in random wireless sensor networks. In Proceedings of IEEE conference on computer communications (Infocom).
5.
go back to reference Barton, R. J., & Zheng, R. (2006). Order-optimal data aggregation in wireless sensor networks using cooperative time-reversal communication. In Proceedings of 40th annual conference on information sciences and systems. Barton, R. J., & Zheng, R. (2006). Order-optimal data aggregation in wireless sensor networks using cooperative time-reversal communication. In Proceedings of 40th annual conference on information sciences and systems.
6.
go back to reference Liu, B., Towsley, D., & Swami, A. (2008). Data gathering capacity of large scale multihop wireless networks. In Proceedings of 5th IEEE international conference on mobile ad-hoc and sensor systems (MASS). Liu, B., Towsley, D., & Swami, A. (2008). Data gathering capacity of large scale multihop wireless networks. In Proceedings of 5th IEEE international conference on mobile ad-hoc and sensor systems (MASS).
7.
go back to reference Giridhar, A., & Kumar, P. R. (2005). Computing and communicating functions over sensor networks. IEEE Journal on Selected Areas in Communications, 23(4), 755–764.CrossRef Giridhar, A., & Kumar, P. R. (2005). Computing and communicating functions over sensor networks. IEEE Journal on Selected Areas in Communications, 23(4), 755–764.CrossRef
8.
go back to reference Moscibroda, T. (2007). The worst-case capacity of wireless sensor networks. In IPSN ’07: Proceedings of the 6th international conference on Information processing in sensor networks. Moscibroda, T. (2007). The worst-case capacity of wireless sensor networks. In IPSN ’07: Proceedings of the 6th international conference on Information processing in sensor networks.
9.
go back to reference Kulkarni S. R., & Viswanath, P. (2004). A deterministic approach to throughput scaling in wireless networks. IEEE Transactions on Information Theory, 50(6), 1041–1049.MATHCrossRefMathSciNet Kulkarni S. R., & Viswanath, P. (2004). A deterministic approach to throughput scaling in wireless networks. IEEE Transactions on Information Theory, 50(6), 1041–1049.MATHCrossRefMathSciNet
10.
go back to reference Rao, S. (2003). The m balls and n bins problem. Lecture Note for Lecture 11, CS270 Combinatiorial Algorithms and Data Structures, University of Berkeley. Rao, S. (2003). The m balls and n bins problem. Lecture Note for Lecture 11, CS270 Combinatiorial Algorithms and Data Structures, University of Berkeley.
11.
go back to reference Raab, M., & Steger, A. (1998). Balls into bins—a simple and tight analysis. In RANDOM ’98: Proceedings of the 2nd international workshop on randomization and approximation techniques in computer science (pp. 159–170). Raab, M., & Steger, A. (1998). Balls into bins—a simple and tight analysis. In RANDOM ’98: Proceedings of the 2nd international workshop on randomization and approximation techniques in computer science (pp. 159–170).
12.
13.
go back to reference Grossglauser, M., & Tse, D. (2001). Mobility increases the capacity of ad-hoc wireless networks. In Proceedings of IEEE conference on computer communications (Infocom). Grossglauser, M., & Tse, D. (2001). Mobility increases the capacity of ad-hoc wireless networks. In Proceedings of IEEE conference on computer communications (Infocom).
14.
go back to reference Liu, B., Thiran, P., & Towsley, D. (2007). Capacity of a wireless ad hoc network with infrastructure. In Proceedings of ACM international symposium on mobile ad hoc networking and computing (MobiHoc). Liu, B., Thiran, P., & Towsley, D. (2007). Capacity of a wireless ad hoc network with infrastructure. In Proceedings of ACM international symposium on mobile ad hoc networking and computing (MobiHoc).
15.
go back to reference Agarwal, A., Kumar, P. R. (2004). Capacity bounds for ad hoc and hybrid wireless networks. ACM SIGCOMM Computer Communication Review, 34(3), 71–81.CrossRef Agarwal, A., Kumar, P. R. (2004). Capacity bounds for ad hoc and hybrid wireless networks. ACM SIGCOMM Computer Communication Review, 34(3), 71–81.CrossRef
16.
go back to reference Li, X.-Y., Tang, S.-J., & Frieder, O. (2007). Multicast capacity for large scale wireless ad hoc networks. In Proceedings of ACM international conference on mobile computing and networking (MobiCom). Li, X.-Y., Tang, S.-J., & Frieder, O. (2007). Multicast capacity for large scale wireless ad hoc networks. In Proceedings of ACM international conference on mobile computing and networking (MobiCom).
17.
go back to reference Mao, X., Li, X.-Y., & Tang, S. (2008). Multicast capacity for hybrid wireless networks. In Proceedings of ACM international symposium on mobile ad hoc networking and computing (MobiHoc). Mao, X., Li, X.-Y., & Tang, S. (2008). Multicast capacity for hybrid wireless networks. In Proceedings of ACM international symposium on mobile ad hoc networking and computing (MobiHoc).
18.
go back to reference Shakkottai, S., Liu, X., & Srikant, R. (2007). The multicast capacity of large multihop wireless networks. In Proceedings of ACM international symposium on mobile ad hoc networking and computing (MobiHoc). Shakkottai, S., Liu, X., & Srikant, R. (2007). The multicast capacity of large multihop wireless networks. In Proceedings of ACM international symposium on mobile ad hoc networking and computing (MobiHoc).
19.
go back to reference Keshavarz-Haddad, A., Ribeiro, V., & Riedi, R. (2006). Broadcast capacity in multihop wireless networks. In Proceedings of ACM international conference on mobile computing and networking (MobiCom). Keshavarz-Haddad, A., Ribeiro, V., & Riedi, R. (2006). Broadcast capacity in multihop wireless networks. In Proceedings of ACM international conference on mobile computing and networking (MobiCom).
20.
go back to reference Tavli, B. (2006). Broadcast capacity of wireless networks. Communications Letters, IEEE, 10, 68–69.CrossRef Tavli, B. (2006). Broadcast capacity of wireless networks. Communications Letters, IEEE, 10, 68–69.CrossRef
21.
go back to reference Gandhi, R., Parthasarathy, S., & Mishra, A. (2003). Minimizing broadcast latency and redundancy in ad hoc networks. In Proceedings of ACM international symposium on mobile ad hoc networking and computing (MobiHoc). Gandhi, R., Parthasarathy, S., & Mishra, A. (2003). Minimizing broadcast latency and redundancy in ad hoc networks. In Proceedings of ACM international symposium on mobile ad hoc networking and computing (MobiHoc).
22.
go back to reference Wu, Y.-W., Zhao, J., Li, X.-Y., Tang, S.-J., Xu, X.-H., & Mao, X.-F. (2008). Broadcast capacity for wireless ad hoc networks. In Proceedings of 5th IEEE international conference on mobile ad-hoc and sensor systems (MASS). Wu, Y.-W., Zhao, J., Li, X.-Y., Tang, S.-J., Xu, X.-H., & Mao, X.-F. (2008). Broadcast capacity for wireless ad hoc networks. In Proceedings of 5th IEEE international conference on mobile ad-hoc and sensor systems (MASS).
23.
go back to reference Hu, C., Wang, X., & Wu, F. (2009). MotionCast: On the capacity and delay tradeoffs. In Proceedings of ACM international symposium on mobile ad hoc networking and computing (MobiHoc). Hu, C., Wang, X., & Wu, F. (2009). MotionCast: On the capacity and delay tradeoffs. In Proceedings of ACM international symposium on mobile ad hoc networking and computing (MobiHoc).
24.
go back to reference Zhu, X., Tang, B., & Gupta, H. (2005). Delay efficient data grathering in sensor networks. In Proceedings of IEEE 1st international conference on mobile ad-hoc and sensor networks (MSN). Zhu, X., Tang, B., & Gupta, H. (2005). Delay efficient data grathering in sensor networks. In Proceedings of IEEE 1st international conference on mobile ad-hoc and sensor networks (MSN).
25.
go back to reference Chen, X., Hu, X., & Zhu, J. (2005). Minimum data aggregation time problem in wireless sensor networks. In Proceedings of IEEE 1st international conference on mobile ad-hoc and sensor networks (MSN). Chen, X., Hu, X., & Zhu, J. (2005). Minimum data aggregation time problem in wireless sensor networks. In Proceedings of IEEE 1st international conference on mobile ad-hoc and sensor networks (MSN).
26.
go back to reference Huang, S. C.-H., Wan, P.-J., Vu, C. T., Li, Y., & Yao, F. (2007). Nearly constant approximation for data aggregation scheduling in wireless sensor networks. In Proceedings of IEEE conference on computer communications (Infocom). Huang, S. C.-H., Wan, P.-J., Vu, C. T., Li, Y., & Yao, F. (2007). Nearly constant approximation for data aggregation scheduling in wireless sensor networks. In Proceedings of IEEE conference on computer communications (Infocom).
27.
go back to reference Zhu, J., & Hu, X. (2008). Improved algorithm for minimum data aggregation time problem in wireless sensor networks. Journal of System Science and Complexity, 21, 626–636.MATHCrossRefMathSciNet Zhu, J., & Hu, X. (2008). Improved algorithm for minimum data aggregation time problem in wireless sensor networks. Journal of System Science and Complexity, 21, 626–636.MATHCrossRefMathSciNet
28.
go back to reference Chen, S., Wang, Y., Li, X.-Y., & Shi, X. (2009). Data collection capacity of random-deployed wireless sensor networks. In Proceedings of the IEEE global telecommunications conference (Globecom). Chen, S., Wang, Y., Li, X.-Y., & Shi, X. (2009). Data collection capacity of random-deployed wireless sensor networks. In Proceedings of the IEEE global telecommunications conference (Globecom).
29.
go back to reference Li, X.-Y., Wang, Y., & Wang, Y. (2010). Complexity of data collection, aggregation, and selection for wireless sensor networks. IEEE Transctions on Computer (to appear). Li, X.-Y., Wang, Y., & Wang, Y. (2010). Complexity of data collection, aggregation, and selection for wireless sensor networks. IEEE Transctions on Computer (to appear).
Metadata
Title
Capacity of data collection in randomly-deployed wireless sensor networks
Authors
Siyuan Chen
Yu Wang
Xiang-Yang Li
Xinghua Shi
Publication date
01-02-2011
Publisher
Springer US
Published in
Wireless Networks / Issue 2/2011
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-010-0281-z

Other articles of this Issue 2/2011

Wireless Networks 2/2011 Go to the issue