Skip to main content
Top

2023 | OriginalPaper | Chapter

12. Capture-Recapture: Frequentist Methods

Authors : George A. F. Seber, Matthew R. Schofield

Published in: Estimating Presence and Abundance of Closed Populations

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Capture–recapture methods for both open and closed populations have developed extensively in recent years, especially with the development of sophisticated computer programs and packages. There are now many different methods to estimate the abundance of closed populations. These include standard maximum likelihood methods, jackknife methods, coverage models, martingale estimating equation models, log-linear models, logistic models, non-parametric models, and mixture models, which are all discussed in some detail. Because of the large amount of materials, Bayesian methods are considered in the next chapter for convenience, as those methods are being used more. Covariates such as environmental variables are being used more, and with improved monitoring devices, including DNA methods, we can expect covariate methods to increase.
The two-sample capture–recapture model has been extensively used with a focus on variable catchability, use of two observers, which can also help with detectability problems, epidemiological populations using two lists (or later more lists), and dual record systems. For three or more capture–recapture samples, the glue behind the model development has been the setting out of eight particular model categories, due to Pollock, providing for a time factor, a behavioral factor, a heterogeneity factor, and combinations of these. Several variations of these have also been developed by various researchers, including time-to-detection models. Heterogeneity has been the biggest challenge and, as well as various models, has also been considered using covariates or even stratification where possible underlying assumptions are tested. Finally, sampling one at a time and continuous models are considered in detail.
With this plethora of methods, the practitioner is left in a quandary. What methods are appropriate for what conditions and types of studies? What is needed here is a comparison of the various closed models with respect to both efficiency and robustness. Also, further research is needed on interval estimation, with intervals based on profile likelihoods becoming more popular, and on model diagnostics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agresti, A. (1994). Simple capture-recapture models permitting unequal catchability and effort. Biometrics, 50(2), 494–500.CrossRef Agresti, A. (1994). Simple capture-recapture models permitting unequal catchability and effort. Biometrics, 50(2), 494–500.CrossRef
go back to reference Alho, J. M. (1990). Logistic regression in capture-recapture models. Biometrics, 46(3) 623–635.CrossRef Alho, J. M. (1990). Logistic regression in capture-recapture models. Biometrics, 46(3) 623–635.CrossRef
go back to reference Alho, J. M., Mulry, M. H., Wurdeman, K., & Kim, J. (1993). Estimating heterogeneity in the probabilities of enumeration for dual-system estimation. Journal of the American Statistical Association, 88(423), 1130–1136.CrossRef Alho, J. M., Mulry, M. H., Wurdeman, K., & Kim, J. (1993). Estimating heterogeneity in the probabilities of enumeration for dual-system estimation. Journal of the American Statistical Association, 88(423), 1130–1136.CrossRef
go back to reference Alldredge, M. W., Pacifici, K., Simons, T. R., & Pollock, K. H. (2008). A novel field evaluation of the effectiveness of distance and independent observer sampling to estimate aural avian detection probabilities. Journal of Applied Ecology, 45(5), 1349–1356.CrossRef Alldredge, M. W., Pacifici, K., Simons, T. R., & Pollock, K. H. (2008). A novel field evaluation of the effectiveness of distance and independent observer sampling to estimate aural avian detection probabilities. Journal of Applied Ecology, 45(5), 1349–1356.CrossRef
go back to reference Alldredge, M. W., Pollock, K. H., Simons, T. R., Collazo, J. A., & Shriner, S. A. (2007b). Time-of-detection method for estimating abundance from point-count surveys. Auk, 124(2), 653–664.CrossRef Alldredge, M. W., Pollock, K. H., Simons, T. R., Collazo, J. A., & Shriner, S. A. (2007b). Time-of-detection method for estimating abundance from point-count surveys. Auk, 124(2), 653–664.CrossRef
go back to reference Alldredge, M. W., Simons, T. R., Pollock, K. H., & Pacifici. K. (2007c). A field evaluation of the time-of-detection method to estimate population size and density for aural avian point counts. Avian Conservation and Ecology, 2(2), 13.CrossRef Alldredge, M. W., Simons, T. R., Pollock, K. H., & Pacifici. K. (2007c). A field evaluation of the time-of-detection method to estimate population size and density for aural avian point counts. Avian Conservation and Ecology, 2(2), 13.CrossRef
go back to reference Alpizar-Jara, R., & Smith, C. E. (2008). A continuous time version and a generalization of a Markov-recapture model for trapping experiments. Mathematical Biosciences, 214(1), 11–19.CrossRef Alpizar-Jara, R., & Smith, C. E. (2008). A continuous time version and a generalization of a Markov-recapture model for trapping experiments. Mathematical Biosciences, 214(1), 11–19.CrossRef
go back to reference Altieri, L., Farcomeni, A., & Fegatelli, D. A. (2022). Continuous time-interaction processes for population size estimation, with an application to drug dealing in Italy. Biometrics, 79(2), 1254–1267.CrossRef Altieri, L., Farcomeni, A., & Fegatelli, D. A. (2022). Continuous time-interaction processes for population size estimation, with an application to drug dealing in Italy. Biometrics, 79(2), 1254–1267.CrossRef
go back to reference Anderson, M. J., & Fienberg, S. E. (1999). Who counts? The politics of census-taking in contemporary America (Vol. ADE 4.5). Russell Sage Foundation. Anderson, M. J., & Fienberg, S. E. (1999). Who counts? The politics of census-taking in contemporary America (Vol. ADE 4.5). Russell Sage Foundation.
go back to reference Baillargeon, S., & Rivest, L.-P. (2007). Rcapture: Loglinear models for capture-recapture in R. Journal of Statistical Software, 19(5), 1–31.CrossRef Baillargeon, S., & Rivest, L.-P. (2007). Rcapture: Loglinear models for capture-recapture in R. Journal of Statistical Software, 19(5), 1–31.CrossRef
go back to reference Barker, R. J., Forsyth, D. M., & Wood, M. (2014). Modeling sighting heterogeneity and abundance in spatially replicated multiple-observer surveys. Journal of Wildlife Management, 78(4), 701–708.CrossRef Barker, R. J., Forsyth, D. M., & Wood, M. (2014). Modeling sighting heterogeneity and abundance in spatially replicated multiple-observer surveys. Journal of Wildlife Management, 78(4), 701–708.CrossRef
go back to reference Barker, R. J., & Link, W. A. (2013). Bayesian multimodel inference by RJMCMC: A Gibbs sampling approach. American Statistician, 67(3), 150–156.CrossRef Barker, R. J., & Link, W. A. (2013). Bayesian multimodel inference by RJMCMC: A Gibbs sampling approach. American Statistician, 67(3), 150–156.CrossRef
go back to reference Barker, R. J., Schofield, M. R., Wright, J. A., Frantz, A. C., & Stevens, S. (2014). Closed-population capture–recapture modeling of samples drawn one at a time. Biometrics, 70(4), 775–782.CrossRef Barker, R. J., Schofield, M. R., Wright, J. A., Frantz, A. C., & Stevens, S. (2014). Closed-population capture–recapture modeling of samples drawn one at a time. Biometrics, 70(4), 775–782.CrossRef
go back to reference Bartolucci, F., & Lupparelli, M. (2008). Focused information criterion for capture-recapture models for closed population. Scandinavian Journal of Statistics, 35(4), 629–649.CrossRef Bartolucci, F., & Lupparelli, M. (2008). Focused information criterion for capture-recapture models for closed population. Scandinavian Journal of Statistics, 35(4), 629–649.CrossRef
go back to reference Becker, N. G. (1984). Estimating population size from capture-recapture in continuous time. Australian Journal of Statistics, 26(1), 1–7.CrossRef Becker, N. G. (1984). Estimating population size from capture-recapture in continuous time. Australian Journal of Statistics, 26(1), 1–7.CrossRef
go back to reference Bell, M. C., Eaton, D. R., Bannister, R. C. A., & Addison, J. T. (2003). A mark-recapture approach to estimating population density from continuous trapping data: Application to edible crabs, Cancer pagurus, on the east coast of England. Fisheries Research, 65(1), 361–378.CrossRef Bell, M. C., Eaton, D. R., Bannister, R. C. A., & Addison, J. T. (2003). A mark-recapture approach to estimating population density from continuous trapping data: Application to edible crabs, Cancer pagurus, on the east coast of England. Fisheries Research, 65(1), 361–378.CrossRef
go back to reference Böhning, D., van Der Heijden, P. G. M., & Bunge, J. (2018). Capture-recapture methods for the social sciences. Chapman and Hall. Böhning, D., van Der Heijden, P. G. M., & Bunge, J. (2018). Capture-recapture methods for the social sciences. Chapman and Hall.
go back to reference Bonnet, A., Martinez Herrera, M., & Sangnier, M. (2021). Statistics & Probability Letters, 179, 109214, Article 109214. Bonnet, A., Martinez Herrera, M., & Sangnier, M. (2021). Statistics & Probability Letters, 179, 109214, Article 109214.
go back to reference Borchers, D., Distiller, G., Foster, R., Harmsen, B., & Milazzo, L. (2014). Continuous-time spatially explicit capture–recapture models, with an application to a jaguar camera-trap. Methods in Ecology and Evolution, 5(7), 656–665.CrossRef Borchers, D., Distiller, G., Foster, R., Harmsen, B., & Milazzo, L. (2014). Continuous-time spatially explicit capture–recapture models, with an application to a jaguar camera-trap. Methods in Ecology and Evolution, 5(7), 656–665.CrossRef
go back to reference Boulanger, J., Kendall, K. C., Stetz, J. B., Roon, D. A., Waits, L.P., & Paetkau, D. (2008). Multiple data sources improve DNA-based mark–recapture population estimates of grizzly bears. Ecological Applications, 1(3), 577–589.CrossRef Boulanger, J., Kendall, K. C., Stetz, J. B., Roon, D. A., Waits, L.P., & Paetkau, D. (2008). Multiple data sources improve DNA-based mark–recapture population estimates of grizzly bears. Ecological Applications, 1(3), 577–589.CrossRef
go back to reference Boulinier, T., Nichols, J. D., Sauer, J. R., Hines, J. E., & Pollock, K. H. (1998). Estimating species richness: The importance of heterogeneity in species detectability. Ecology, 79(3), 1018–1028.CrossRef Boulinier, T., Nichols, J. D., Sauer, J. R., Hines, J. E., & Pollock, K. H. (1998). Estimating species richness: The importance of heterogeneity in species detectability. Ecology, 79(3), 1018–1028.CrossRef
go back to reference Brooks, S. P., Morgan, B. J. T., Ridout, M. S., & Pack, S. E. (1997). Finite mixture models for proportions. Biometrics, 53(3), 1097–1115.CrossRef Brooks, S. P., Morgan, B. J. T., Ridout, M. S., & Pack, S. E. (1997). Finite mixture models for proportions. Biometrics, 53(3), 1097–1115.CrossRef
go back to reference Burnham, K. P., & Overton, W. S. (1979). Robust estimation of population size when capture probabilities vary among animals. Ecology, 60(5), 927–936.CrossRef Burnham, K. P., & Overton, W. S. (1979). Robust estimation of population size when capture probabilities vary among animals. Ecology, 60(5), 927–936.CrossRef
go back to reference Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 43(4), 783–791.CrossRef Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 43(4), 783–791.CrossRef
go back to reference Chao, A. (1989). Estimating population size for sparse data in capture-recapture experiments. Biometrics, 45(2), 427–438.CrossRef Chao, A. (1989). Estimating population size for sparse data in capture-recapture experiments. Biometrics, 45(2), 427–438.CrossRef
go back to reference Chao, A. (2001). An overview of closed capture-recapture models. Journal of Agricultural, Biological and Environmental Statistics, 6(2), 158–175.CrossRef Chao, A. (2001). An overview of closed capture-recapture models. Journal of Agricultural, Biological and Environmental Statistics, 6(2), 158–175.CrossRef
go back to reference Chao, A., Chu, W., & Hsu, C.-H. (2000). Capture-recapture when time and behavioral response affect capture probabilities. Biometrics, 56(2), 427–433.CrossRef Chao, A., Chu, W., & Hsu, C.-H. (2000). Capture-recapture when time and behavioral response affect capture probabilities. Biometrics, 56(2), 427–433.CrossRef
go back to reference Chao, A., Lee, S. M., & Jeng, S. L. (1992). Estimating population size for capture-recapture data when capture probabilities vary by time and individual animal. Biometrics, 48(1), 201–216.CrossRef Chao, A., Lee, S. M., & Jeng, S. L. (1992). Estimating population size for capture-recapture data when capture probabilities vary by time and individual animal. Biometrics, 48(1), 201–216.CrossRef
go back to reference Chao, A., Pan, H. Y., & Chiang, S. C. (2008). The Petersen-Lincoln estimator and its extension to estimate the size of a shared population. Biometrical Journal, 50(6), 957–970.CrossRef Chao, A., Pan, H. Y., & Chiang, S. C. (2008). The Petersen-Lincoln estimator and its extension to estimate the size of a shared population. Biometrical Journal, 50(6), 957–970.CrossRef
go back to reference Chao, A., & Tsay, P. (1998). A sample coverage approach to multiple-system estimation with application to census undercounts. Journal of the American Statistical Association, 93(441), 283–293.CrossRef Chao, A., & Tsay, P. (1998). A sample coverage approach to multiple-system estimation with application to census undercounts. Journal of the American Statistical Association, 93(441), 283–293.CrossRef
go back to reference Chao, A., Yip, P., Lee, S. M., & Chu, W. (2001b). Population size estimation based on estimating functions for closed capture recapture models. Journal of Statistical Planning Inference, 92(1), 213–232.CrossRef Chao, A., Yip, P., Lee, S. M., & Chu, W. (2001b). Population size estimation based on estimating functions for closed capture recapture models. Journal of Statistical Planning Inference, 92(1), 213–232.CrossRef
go back to reference Chapman, D. G. (1952). Inverse multiple and sequential samples. Biometrics, 8(4), 286–306.CrossRef Chapman, D. G. (1952). Inverse multiple and sequential samples. Biometrics, 8(4), 286–306.CrossRef
go back to reference Chatterjee, K., & Bhuyan, P. (2020a). On the estimation of population size from a post-stratified two-sample capture–recapture data under dependence. Journal of Statistical Computation and Simulation, 90(5), 819–838.CrossRef Chatterjee, K., & Bhuyan, P. (2020a). On the estimation of population size from a post-stratified two-sample capture–recapture data under dependence. Journal of Statistical Computation and Simulation, 90(5), 819–838.CrossRef
go back to reference Chatterjee, K., & Bhuyan, P. (2020b). On the estimation of population size from a dependent triple-record system. Journal of the Royal Statistical Society, Series A, 182(4), 1487–1501.CrossRef Chatterjee, K., & Bhuyan, P. (2020b). On the estimation of population size from a dependent triple-record system. Journal of the Royal Statistical Society, Series A, 182(4), 1487–1501.CrossRef
go back to reference Chatterjee, K., & Mukherjee, D. (2016a). An improved integrated likelihood population size estimation in dual-record system. Statistics and Probability Letters, 110, 146–154.CrossRef Chatterjee, K., & Mukherjee, D. (2016a). An improved integrated likelihood population size estimation in dual-record system. Statistics and Probability Letters, 110, 146–154.CrossRef
go back to reference Chatterjee, K., & Mukherjee D. (2016b). On the estimation of homogeneous population size from a complex dual-record system. Journal of Statistical Computation and Simulation, 86(17), 3562–3581.CrossRef Chatterjee, K., & Mukherjee D. (2016b). On the estimation of homogeneous population size from a complex dual-record system. Journal of Statistical Computation and Simulation, 86(17), 3562–3581.CrossRef
go back to reference Chatterjee, K., & Mukherjee, D. (2018). A new integrated likelihood for estimating population size in dependent dual-record system. Canadian Journal of Statistics, 46(4), 577–592.CrossRef Chatterjee, K., & Mukherjee, D. (2018). A new integrated likelihood for estimating population size in dependent dual-record system. Canadian Journal of Statistics, 46(4), 577–592.CrossRef
go back to reference Chatterjee, K., & Mukherjee, D. (2021). On the estimation of population size under dependent dual-record system: An adjusted profile-likelihood approach. Journal of Statistical Computation and Simulation, 91(13), 2740–2763.CrossRef Chatterjee, K., & Mukherjee, D. (2021). On the estimation of population size under dependent dual-record system: An adjusted profile-likelihood approach. Journal of Statistical Computation and Simulation, 91(13), 2740–2763.CrossRef
go back to reference Chaudhary, V., Wisely, S. M., Hernandez, F. A., Hines, J. E., Nichols, J. D., & Oli, M. K. (2020). A multi-state occupancy modelling framework for robust estimation of disease prevalence in multi-tissue disease systems. Journal of Applied Ecology, 57(12), 2463–2474.CrossRef Chaudhary, V., Wisely, S. M., Hernandez, F. A., Hines, J. E., Nichols, J. D., & Oli, M. K. (2020). A multi-state occupancy modelling framework for robust estimation of disease prevalence in multi-tissue disease systems. Journal of Applied Ecology, 57(12), 2463–2474.CrossRef
go back to reference Chen, S. X., & Lloyd, C. J. (2000). A nonparametric approach to the analysis of two-stage mark-recapture experiments. Biometrika, 87(3), 633–649.CrossRef Chen, S. X., & Lloyd, C. J. (2000). A nonparametric approach to the analysis of two-stage mark-recapture experiments. Biometrika, 87(3), 633–649.CrossRef
go back to reference Chipperfield, J., Brown, J., & Bell, P. (2017). Estimating the count error in the Australian census. Journal of Official Statistics, 33(1), 43–59.CrossRef Chipperfield, J., Brown, J., & Bell, P. (2017). Estimating the count error in the Australian census. Journal of Official Statistics, 33(1), 43–59.CrossRef
go back to reference Cormack, R. M. (1966). A test for equal catchability. Biometrics, 22(2), 330–342.CrossRef Cormack, R. M. (1966). A test for equal catchability. Biometrics, 22(2), 330–342.CrossRef
go back to reference Cormack, R. M. (1981). Loglinear models for capture-recapture experiments on open populations. In R. W. Hiorns, & D. Cooke (Eds.), The mathematical theory of the dynamics of biological populations (pp. 197–215). London: Academic Press. Cormack, R. M. (1981). Loglinear models for capture-recapture experiments on open populations. In R. W. Hiorns, & D. Cooke (Eds.), The mathematical theory of the dynamics of biological populations (pp. 197–215). London: Academic Press.
go back to reference Cormack, R. M. (1985). Examples of the use of GLIM to analyse capture-recapture studies. In B. J. T. Morgan, & P. M. North (Eds.), Statistics in Ornithology (pp. 243–273). New York: Springer-Verlag.CrossRef Cormack, R. M. (1985). Examples of the use of GLIM to analyse capture-recapture studies. In B. J. T. Morgan, & P. M. North (Eds.), Statistics in Ornithology (pp. 243–273). New York: Springer-Verlag.CrossRef
go back to reference Cormack, R. M. (1989). Log-Linear models for capture-recapture. Biometrics, 45(2), 395–413.CrossRef Cormack, R. M. (1989). Log-Linear models for capture-recapture. Biometrics, 45(2), 395–413.CrossRef
go back to reference Cormack, R. M. (1993). The flexibility of GLIM analyses of multiple recapture or resighting data. In J.-D. Lebreton, & P. North (Eds.), Marked Individuals in the study of bird population (pp. 39–49). Basel, Switzerland: Birkhauser Verlag. Cormack, R. M. (1993). The flexibility of GLIM analyses of multiple recapture or resighting data. In J.-D. Lebreton, & P. North (Eds.), Marked Individuals in the study of bird population (pp. 39–49). Basel, Switzerland: Birkhauser Verlag.
go back to reference Cormack, R. M. (1994). Unification of mark-recapture analyses by loglinear modelling. In D. J. Fletcher & B. F. J. Manly (Eds.), Statistics in Ecology and Environmental Monitoring (pp. 19–32). Dunedin, New Zealand: University of Otago Press. Cormack, R. M. (1994). Unification of mark-recapture analyses by loglinear modelling. In D. J. Fletcher & B. F. J. Manly (Eds.), Statistics in Ecology and Environmental Monitoring (pp. 19–32). Dunedin, New Zealand: University of Otago Press.
go back to reference Cormack, R. M., & Jupp, P. E. (1991). Inference for Poisson and multinomial models for capture-recapture experiments. Biometrika, 78(4), 911–916.CrossRef Cormack, R. M., & Jupp, P. E. (1991). Inference for Poisson and multinomial models for capture-recapture experiments. Biometrika, 78(4), 911–916.CrossRef
go back to reference Coull, B. A., & Agresti, A. (1999). The use of mixed logit models to reflect heterogeneity in capture-recapture studies. Biometrics, 55(1), 294–301.CrossRef Coull, B. A., & Agresti, A. (1999). The use of mixed logit models to reflect heterogeneity in capture-recapture studies. Biometrics, 55(1), 294–301.CrossRef
go back to reference Cox, D. R., & Hinkley, D. V. (1974). Theoretical statistics. Boca Raton, FL: Chapman and Hall/CRC.CrossRef Cox, D. R., & Hinkley, D. V. (1974). Theoretical statistics. Boca Raton, FL: Chapman and Hall/CRC.CrossRef
go back to reference Craig, C.C. (1953). On the utilization of marked specimens in estimating populations of flying insects. Biometrika, 40(1–2), 170–176.CrossRef Craig, C.C. (1953). On the utilization of marked specimens in estimating populations of flying insects. Biometrika, 40(1–2), 170–176.CrossRef
go back to reference Darroch, J. N. (1958). The multiple recapture census. I: Estimation of a closed population. Biometrika, 45(3–4), 343–359. Darroch, J. N. (1958). The multiple recapture census. I: Estimation of a closed population. Biometrika, 45(3–4), 343–359.
go back to reference Darroch J. N., Fienberg, S. E., Glonek G. F. V., & Junker B. W. (1993). A three-sample multiple-recapture approach to census population estimation with heterogeneous catchability. Journal of the American Statistical Association, 88(423), 1137–1148.CrossRef Darroch J. N., Fienberg, S. E., Glonek G. F. V., & Junker B. W. (1993). A three-sample multiple-recapture approach to census population estimation with heterogeneous catchability. Journal of the American Statistical Association, 88(423), 1137–1148.CrossRef
go back to reference Distiller, G., & Borchers, D. L. (2015). A spatially explicit capture–recapture estimator for single-catch traps. Ecology and Evolution, 5(21), 5075–5087.CrossRef Distiller, G., & Borchers, D. L. (2015). A spatially explicit capture–recapture estimator for single-catch traps. Ecology and Evolution, 5(21), 5075–5087.CrossRef
go back to reference Dorazio, R. M., & Karanth, K. U. (2017). A hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recorders. PLoS One, 12(5), e0176966.CrossRef Dorazio, R. M., & Karanth, K. U. (2017). A hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recorders. PLoS One, 12(5), e0176966.CrossRef
go back to reference Dorazio, R. M., & Royle, J. A. (2003). Mixture models for estimating the size of a closed population when capture rates vary among Individuals. Biometrics, 59(2), 351–364.CrossRef Dorazio, R. M., & Royle, J. A. (2003). Mixture models for estimating the size of a closed population when capture rates vary among Individuals. Biometrics, 59(2), 351–364.CrossRef
go back to reference Dorazio, R. M., & Royle, J. A. (2005b). Rejoinder to ‘The performance of mixture models in heterogeneous closed population capture–recapture.’ Biometrics, 61(3), 874–876.CrossRef Dorazio, R. M., & Royle, J. A. (2005b). Rejoinder to ‘The performance of mixture models in heterogeneous closed population capture–recapture.’ Biometrics, 61(3), 874–876.CrossRef
go back to reference Duan, X., Liu, L., & Zhao, P. (2009). Estimation of covariate distribution with capture-recapture data. Communications in Statistics, Theory and Methods, 38(20), 3705–3712.CrossRef Duan, X., Liu, L., & Zhao, P. (2009). Estimation of covariate distribution with capture-recapture data. Communications in Statistics, Theory and Methods, 38(20), 3705–3712.CrossRef
go back to reference Evans, M. A., & Bonett, D. G. (1994). Bias reduction for multiple-recapture estimators of closed population size. Biometrics, 50(2), 388–395.CrossRef Evans, M. A., & Bonett, D. G. (1994). Bias reduction for multiple-recapture estimators of closed population size. Biometrics, 50(2), 388–395.CrossRef
go back to reference Farcomeni, A. (2011). Recapture models under equality constraints for the conditional capture probabilities. Biometrika, 98(1), 237–242.CrossRef Farcomeni, A. (2011). Recapture models under equality constraints for the conditional capture probabilities. Biometrika, 98(1), 237–242.CrossRef
go back to reference Farcomeni, A. (2015). Latent class recapture models with flexible behavioural response. Statistica, 75(1), 5–17. Farcomeni, A. (2015). Latent class recapture models with flexible behavioural response. Statistica, 75(1), 5–17.
go back to reference Farcomeni, A. (2016). A general class of recapture models based on the conditional capture probabilities. Biometrics, 72(1), 116–124.CrossRef Farcomeni, A. (2016). A general class of recapture models based on the conditional capture probabilities. Biometrics, 72(1), 116–124.CrossRef
go back to reference Farcomeni, A., & Scacciatelli, D. (2013). Heterogeneity and behavioral response in continuous time capture-recapture, with application to street cannabis use in Italy. Annals of Applied Statistics, 7(4), 2293–2314.CrossRef Farcomeni, A., & Scacciatelli, D. (2013). Heterogeneity and behavioral response in continuous time capture-recapture, with application to street cannabis use in Italy. Annals of Applied Statistics, 7(4), 2293–2314.CrossRef
go back to reference Farnsworth, G. L., Pollock, K. H., & et al. (2002). A removal model for estimating detection probabilities from point-count surveys. Auk, 119(2), 414–425. Farnsworth, G. L., Pollock, K. H., & et al. (2002). A removal model for estimating detection probabilities from point-count surveys. Auk, 119(2), 414–425.
go back to reference Farzana, A., Parry, M., & Fletcher, D. (2020). Estimating overdispersion in sparse multinomial data. Biometrics, 76(3), 834–842.CrossRef Farzana, A., Parry, M., & Fletcher, D. (2020). Estimating overdispersion in sparse multinomial data. Biometrics, 76(3), 834–842.CrossRef
go back to reference Fegatelli, D. A., & Farcomeni, A. (2016). On the design of closed recapture experiments. Biometrical Journal, 58(6), 1273–1294.CrossRef Fegatelli, D. A., & Farcomeni, A. (2016). On the design of closed recapture experiments. Biometrical Journal, 58(6), 1273–1294.CrossRef
go back to reference Fegatelli, D. A., & Tardella, L. (2012). Improved inference on capture recapture models with behavioural effects. Statistical Methods and Applications, 22(1), 45–66.CrossRef Fegatelli, D. A., & Tardella, L. (2012). Improved inference on capture recapture models with behavioural effects. Statistical Methods and Applications, 22(1), 45–66.CrossRef
go back to reference Fienberg, S. E. (1972). The multiple recapture census for closed populations and incomplete \(2^k\) contingency tables. Biometrika, 59(3), 591–603. Fienberg, S. E. (1972). The multiple recapture census for closed populations and incomplete \(2^k\) contingency tables. Biometrika, 59(3), 591–603.
go back to reference Fienberg, S. E. (1992). Bibliography on capture-recapture modelling with application to census undercount adjustment. Survey Methodology, 18(1), 143–154. Fienberg, S. E. (1992). Bibliography on capture-recapture modelling with application to census undercount adjustment. Survey Methodology, 18(1), 143–154.
go back to reference Givens, G. H., Edmondson, S. L., George, J. C., Tudor, B., DeLong, R. A., & Suydam, R. (2015). Weighted likelihood recapture estimation of detection probabilities from an ice-based survey of bowhead whales. Environmetrics, 26(1), 1–16.CrossRef Givens, G. H., Edmondson, S. L., George, J. C., Tudor, B., DeLong, R. A., & Suydam, R. (2015). Weighted likelihood recapture estimation of detection probabilities from an ice-based survey of bowhead whales. Environmetrics, 26(1), 1–16.CrossRef
go back to reference Gold, S. J., Wibert, W. N., Bondartsova, V., Biroscak, B. J., & Post, L. A. (2015). A capture-recapture approach to estimation of refugee populations. International Migration, 53(5), 3–25.CrossRef Gold, S. J., Wibert, W. N., Bondartsova, V., Biroscak, B. J., & Post, L. A. (2015). A capture-recapture approach to estimation of refugee populations. International Migration, 53(5), 3–25.CrossRef
go back to reference Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40(3–4), 237–264.CrossRef Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40(3–4), 237–264.CrossRef
go back to reference Goudie, I. B. J., & Gormley, R. (2013). Maximum likelihood estimates for the Schnabel census with plants. Communications in Statistics. Theory and Methods, 42(20), 3704–3715.CrossRef Goudie, I. B. J., & Gormley, R. (2013). Maximum likelihood estimates for the Schnabel census with plants. Communications in Statistics. Theory and Methods, 42(20), 3704–3715.CrossRef
go back to reference Goudie, I. B. J., Jupp, P. E., & Ashbridge, J. (2007). Plant-capture estimation of the size of a homogeneous population. Biometrika, 94(1), 243–248.CrossRef Goudie, I. B. J., Jupp, P. E., & Ashbridge, J. (2007). Plant-capture estimation of the size of a homogeneous population. Biometrika, 94(1), 243–248.CrossRef
go back to reference Gray, H. L., & Schucany, W. R. (1972). The generalized jackknife statistic. New York, N.Y: Marcel Dekker. Gray, H. L., & Schucany, W. R. (1972). The generalized jackknife statistic. New York, N.Y: Marcel Dekker.
go back to reference Hawkes A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58(1), 83–90.CrossRef Hawkes A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58(1), 83–90.CrossRef
go back to reference Hay, G., & Richardson, C. (2016). Estimating the prevalence of drug use using mark-recapture methods. Statistical Science, 31(2), 191–204.CrossRef Hay, G., & Richardson, C. (2016). Estimating the prevalence of drug use using mark-recapture methods. Statistical Science, 31(2), 191–204.CrossRef
go back to reference Hjort, N. L., & Claeskens, G. (2003). Frequentist model average estimators. Journal of the American Statistical Association, 98(464), 879–899.CrossRef Hjort, N. L., & Claeskens, G. (2003). Frequentist model average estimators. Journal of the American Statistical Association, 98(464), 879–899.CrossRef
go back to reference Hogan, H. (2003). The accuracy and coverage evaluation: Theory and design. Survey Methodology, 29, 129–138. Hogan, H. (2003). The accuracy and coverage evaluation: Theory and design. Survey Methodology, 29, 129–138.
go back to reference Holzmann, H., Munk, A., & Zucchini, W. (2006). On identifiability in capture–recapture models. Biometrics, 62(3), 934–939.CrossRef Holzmann, H., Munk, A., & Zucchini, W. (2006). On identifiability in capture–recapture models. Biometrics, 62(3), 934–939.CrossRef
go back to reference Hopper, K., Shinn, M., Laska, E., Meisner, M., & Wanderling, J. (2008). Estimating numbers of unsheltered homeless people through plant-capture and postcount survey methods. American Journal of Public Health, 98, 1438–1442.CrossRef Hopper, K., Shinn, M., Laska, E., Meisner, M., & Wanderling, J. (2008). Estimating numbers of unsheltered homeless people through plant-capture and postcount survey methods. American Journal of Public Health, 98, 1438–1442.CrossRef
go back to reference Howe, G. H. (1985). Use of computerized record linkage in follow-up studies of cancer epidemiology in Canada. National Cancer Institute Monograph, 67, 117–121. Howe, G. H. (1985). Use of computerized record linkage in follow-up studies of cancer epidemiology in Canada. National Cancer Institute Monograph, 67, 117–121.
go back to reference Huggins, R. M. (1989). On the statistical analysis of capture experiments. Biometrika, 76(1), 133–140.CrossRef Huggins, R. M. (1989). On the statistical analysis of capture experiments. Biometrika, 76(1), 133–140.CrossRef
go back to reference Huggins, R. (1991). Some practical aspects of a conditional likelihood approach to capture experiments. Biometrics, 47(2), 725–732.CrossRef Huggins, R. (1991). Some practical aspects of a conditional likelihood approach to capture experiments. Biometrics, 47(2), 725–732.CrossRef
go back to reference Huggins, R. (2001). A note on the difficulties associated with the analysis of capture–recapture experiments with heterogeneous capture probabilities. Statistics and Probability Letters, 54(2), 147–152CrossRef Huggins, R. (2001). A note on the difficulties associated with the analysis of capture–recapture experiments with heterogeneous capture probabilities. Statistics and Probability Letters, 54(2), 147–152CrossRef
go back to reference Huggins, R. (2004). Capture-recapture experiments with time heterogeneous capture probabilities in continuous time: A counting process approach. Communications in Statistics. Theory and Methods, 33(5), 1221—238.CrossRef Huggins, R. (2004). Capture-recapture experiments with time heterogeneous capture probabilities in continuous time: A counting process approach. Communications in Statistics. Theory and Methods, 33(5), 1221—238.CrossRef
go back to reference Huggins, R., & Chao, A. (2002). Asymptotic properties of an optimal estimating function approach to the analysis of mark recapture data. Communications in Statistics—Theory and Methods, 31(4), 575–595.CrossRef Huggins, R., & Chao, A. (2002). Asymptotic properties of an optimal estimating function approach to the analysis of mark recapture data. Communications in Statistics—Theory and Methods, 31(4), 575–595.CrossRef
go back to reference Huggins, R. M., & Hwang, W. H. (2007). Non-parametric estimation of population size from capture-recapture data when capture probability depends on a covariate. Journal of the Royal Statistical Society, Series C, 56(4), 429–443.CrossRef Huggins, R. M., & Hwang, W. H. (2007). Non-parametric estimation of population size from capture-recapture data when capture probability depends on a covariate. Journal of the Royal Statistical Society, Series C, 56(4), 429–443.CrossRef
go back to reference Huggins, R., & Hwang, W.-H. (2011). A review of the use of conditional likelihood in capture-recapture experiments. International Statistical Review, 79(3), 385–400.CrossRef Huggins, R., & Hwang, W.-H. (2011). A review of the use of conditional likelihood in capture-recapture experiments. International Statistical Review, 79(3), 385–400.CrossRef
go back to reference Hwang, W.-H., & Chao, A. (2002). Continuous-time capture-recapture models with covariates. Statistica Sinica, 12(4), 1115–1131. Hwang, W.-H., & Chao, A. (2002). Continuous-time capture-recapture models with covariates. Statistica Sinica, 12(4), 1115–1131.
go back to reference Hwang, W.-H., Chao, A., & Yip. P. S. F. (2002). Continuous-time capture–recapture models with time variation and behavioural response. Australia and New Zealand Journal of Statistics, 44(1), 41–45.CrossRef Hwang, W.-H., Chao, A., & Yip. P. S. F. (2002). Continuous-time capture–recapture models with time variation and behavioural response. Australia and New Zealand Journal of Statistics, 44(1), 41–45.CrossRef
go back to reference Hwang, W.-H., & Huang, S. Y. H. (2003). Estimation in capture-recapture when covariates are subject to measurement errors. Biometrics, 59(4), 1113–1122.CrossRef Hwang, W.-H., & Huang, S. Y. H. (2003). Estimation in capture-recapture when covariates are subject to measurement errors. Biometrics, 59(4), 1113–1122.CrossRef
go back to reference Hwang, W.-H., & Huggins, R. M. (2007). Application of semiparametric regression models in the analysis of capture-recapture experiments. Australian and New Zealand Journal of Statistics, 49(2), 191–202.CrossRef Hwang, W.-H., & Huggins, R. M. (2007). Application of semiparametric regression models in the analysis of capture-recapture experiments. Australian and New Zealand Journal of Statistics, 49(2), 191–202.CrossRef
go back to reference Hwang, W.-H., & Huggins, R. (2011). A semiparametric model for a functional behavioural response to capture in capture-recapture experiments. Australian and New Zealand Journal of Statistics, 53(4), 403—421.CrossRef Hwang, W.-H., & Huggins, R. (2011). A semiparametric model for a functional behavioural response to capture in capture-recapture experiments. Australian and New Zealand Journal of Statistics, 53(4), 403—421.CrossRef
go back to reference IWGDMF (International Working Group for Disease Monitoring and Forecasting). (1995a). Capture-recapture and multiple-record systems estimation: I. History and theoretical development. American Journal of Epidemiology, 142(10), 1047–1058. IWGDMF (International Working Group for Disease Monitoring and Forecasting). (1995a). Capture-recapture and multiple-record systems estimation: I. History and theoretical development. American Journal of Epidemiology, 142(10), 1047–1058.
go back to reference IWGDMF (International Working Group for Disease Monitoring and Forecasting). (1995b). Capture-recapture and multiple-record systems estimation: II. Applications in human diseases. American Journal of Epidemiology, 142(10), 1059–1068. IWGDMF (International Working Group for Disease Monitoring and Forecasting). (1995b). Capture-recapture and multiple-record systems estimation: II. Applications in human diseases. American Journal of Epidemiology, 142(10), 1059–1068.
go back to reference Jaro, M. A. (1989). Advances in record-linkage methodology as applied to matching the 1985 census of Tampa, Florida. Journal of the American Statistical Association, 84(406), 414–420.CrossRef Jaro, M. A. (1989). Advances in record-linkage methodology as applied to matching the 1985 census of Tampa, Florida. Journal of the American Statistical Association, 84(406), 414–420.CrossRef
go back to reference Jaro, M. A. (1995). Probabilistic linkage of large public health data files. Statistics in Medicine, 14(5–7), 491–498.CrossRef Jaro, M. A. (1995). Probabilistic linkage of large public health data files. Statistics in Medicine, 14(5–7), 491–498.CrossRef
go back to reference Jeyam, A., McCrea, R. S., Bregnballe, T., Frederiksen, M., & Pradel, R. (2017). A test of positive association for detecting heterogeneity in capture for capture–recapture data. Journal of Agricultural, Biological and Environmental Statistics, 23(1), 1–19.CrossRef Jeyam, A., McCrea, R. S., Bregnballe, T., Frederiksen, M., & Pradel, R. (2017). A test of positive association for detecting heterogeneity in capture for capture–recapture data. Journal of Agricultural, Biological and Environmental Statistics, 23(1), 1–19.CrossRef
go back to reference Jones, H. E., Hickman, M., Welton, N. J., De Angelis, D., Harris, R. J., & Ades, A. E. (2014). Recapture or precapture? Fallibility of standard capture-recapture methods in the presence of referrals between sources. American Journal of Epidemiology, 179(11), 1383–1393.CrossRef Jones, H. E., Hickman, M., Welton, N. J., De Angelis, D., Harris, R. J., & Ades, A. E. (2014). Recapture or precapture? Fallibility of standard capture-recapture methods in the presence of referrals between sources. American Journal of Epidemiology, 179(11), 1383–1393.CrossRef
go back to reference Junge, C. O. (1963). A quantitative evaluation of the bias in population estimates based on selective samples. In North Atlantic Fish Marking Symposium, I. C. N. A. F., Special publication No. 4 (pp. 26–28). Junge, C. O. (1963). A quantitative evaluation of the bias in population estimates based on selective samples. In North Atlantic Fish Marking Symposium, I. C. N. A. F., Special publication No. 4 (pp. 26–28).
go back to reference Kendall, W. L. (1999). Robustness of closed capture-recapture models to violations of the closure assumption. Ecology, 80(8), 2517–2525. Kendall, W. L. (1999). Robustness of closed capture-recapture models to violations of the closure assumption. Ecology, 80(8), 2517–2525.
go back to reference Kéry, M., & Royle, J. A. (2008a). Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys. Journal of Applied Ecology, 45(2), 589–598.CrossRef Kéry, M., & Royle, J. A. (2008a). Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys. Journal of Applied Ecology, 45(2), 589–598.CrossRef
go back to reference Keŕy, M., & Schaub, M. (2012). Bayesian population analysis using WinBUGS: A hierarchical perspective. New York: Academic press, Elsevier. Keŕy, M., & Schaub, M. (2012). Bayesian population analysis using WinBUGS: A hierarchical perspective. New York: Academic press, Elsevier.
go back to reference King, R., Bird, S. M., Overstall, A. M., Hay, G., & Hutchinson, S. J. (2014). Estimating prevalence of injecting drug users and associated heroin-related death rates in England by using regional data and incorporating prior information. Journal of the Royal Statistical Society Series A, 177(1), 209–236.CrossRef King, R., Bird, S. M., Overstall, A. M., Hay, G., & Hutchinson, S. J. (2014). Estimating prevalence of injecting drug users and associated heroin-related death rates in England by using regional data and incorporating prior information. Journal of the Royal Statistical Society Series A, 177(1), 209–236.CrossRef
go back to reference King, R., McClintock, B. T., Kidney, D., & Borchers, D. (2016). Capture-recapture abundance estimation using a semi-complete data likelihood approach. Annals of Applied Statistics, 10(1), 264–285.CrossRef King, R., McClintock, B. T., Kidney, D., & Borchers, D. (2016). Capture-recapture abundance estimation using a semi-complete data likelihood approach. Annals of Applied Statistics, 10(1), 264–285.CrossRef
go back to reference King, R., & McCrea, R. S. (2019). Capture-recapture methods and models: Estimating population size. In Handbook of Statistics (Vol. 40, pp. 33–83). Elsevier. King, R., & McCrea, R. S. (2019). Capture-recapture methods and models: Estimating population size. In Handbook of Statistics (Vol. 40, pp. 33–83). Elsevier.
go back to reference Kohn, M. H., York, E., Kamradt, D. A., Haught, G., Sauvajot, R., & Wayne, R. K. (1999). Estimating population size by genotyping faeces. Proceedings of the Royal Society of London, Series B, 266, 657–663. Kohn, M. H., York, E., Kamradt, D. A., Haught, G., Sauvajot, R., & Wayne, R. K. (1999). Estimating population size by genotyping faeces. Proceedings of the Royal Society of London, Series B, 266, 657–663.
go back to reference Köse, T., Orman, M., Ikiz, F., Baksh, M. F., Gallagher, J., & Böhning, D. (2014). Statistics in Medicine, 33(24), 4237-4249. Correction: Statistics in Medicine, 36(9), 1519–1520. Köse, T., Orman, M., Ikiz, F., Baksh, M. F., Gallagher, J., & Böhning, D. (2014). Statistics in Medicine, 33(24), 4237-4249. Correction: Statistics in Medicine, 36(9), 1519–1520.
go back to reference Lee, A. J. (2002). Effect of list errors on the estimation of population size. Biometrics, 58, 185–191.CrossRef Lee, A. J. (2002). Effect of list errors on the estimation of population size. Biometrics, 58, 185–191.CrossRef
go back to reference Lee, A. J., & Seber, G. A. F. (2001). Residuals. Encyclopedia of Environmetrics, 1770–1775. In A. El-Shaarawi (Ed.). Wiley. Lee, A. J., & Seber, G. A. F. (2001). Residuals. Encyclopedia of Environmetrics, 1770–1775. In A. El-Shaarawi (Ed.). Wiley.
go back to reference Lee, A. J., Seber, G. A. F., Holden, J. K., & Huakau, J. T. (2001). Capture-recapture, epidemiology, and list mismatches: Several Lists. Biometrics, 7(3) 707–713.CrossRef Lee, A. J., Seber, G. A. F., Holden, J. K., & Huakau, J. T. (2001). Capture-recapture, epidemiology, and list mismatches: Several Lists. Biometrics, 7(3) 707–713.CrossRef
go back to reference Lee, S.-M. (1996). Estimating population size for capture-recapture data when capture probabilities vary by time, behavior and individual animal. Communications in Statistics—Simulation and Computation, 25, 431–457.CrossRef Lee, S.-M. (1996). Estimating population size for capture-recapture data when capture probabilities vary by time, behavior and individual animal. Communications in Statistics—Simulation and Computation, 25, 431–457.CrossRef
go back to reference Lee., S.-M., & Chao, A. (1994). Estimating population size via sample coverage for closed capture-recapture models. Biometrics, 50(1), 88–97.CrossRef Lee., S.-M., & Chao, A. (1994). Estimating population size via sample coverage for closed capture-recapture models. Biometrics, 50(1), 88–97.CrossRef
go back to reference Lee, S.-M., Hwang, W.-H., & de Dieu Tapsoba, J. (2016). Estimation in closed capture-recapture models when covariates are missing at random. Biometrics, 72(4), 1294–1304.CrossRef Lee, S.-M., Hwang, W.-H., & de Dieu Tapsoba, J. (2016). Estimation in closed capture-recapture models when covariates are missing at random. Biometrics, 72(4), 1294–1304.CrossRef
go back to reference Liang, K.-Y., & Zeger, S. L. (1995). Inference based on estimating functions in the presence of nuisance parameters (with discussion). Statistical Science, 10(2), 158–199. Liang, K.-Y., & Zeger, S. L. (1995). Inference based on estimating functions in the presence of nuisance parameters (with discussion). Statistical Science, 10(2), 158–199.
go back to reference Lin, D. Y., & Yip, S. F. P. (1999). Parametric regression models for continuous time removal and recapture studies. Journal of the Royal Statistical Society, Series B, 61(2), 401–411.CrossRef Lin, D. Y., & Yip, S. F. P. (1999). Parametric regression models for continuous time removal and recapture studies. Journal of the Royal Statistical Society, Series B, 61(2), 401–411.CrossRef
go back to reference Link, W. A. (2003). Nonidentifiability of population size from capture-recapture data with heterogeneous detection probabilities. Biometrics, 59(4), 1123–1130.CrossRef Link, W. A. (2003). Nonidentifiability of population size from capture-recapture data with heterogeneous detection probabilities. Biometrics, 59(4), 1123–1130.CrossRef
go back to reference Link, W. A., Yoshizaki, J., Bailey, L. L., & Pollock, K. H. (2010). Uncovering a latent multinomial: Analysis of mark-recapture data with misidentification. Biometrics, 66(1), 178–185.CrossRef Link, W. A., Yoshizaki, J., Bailey, L. L., & Pollock, K. H. (2010). Uncovering a latent multinomial: Analysis of mark-recapture data with misidentification. Biometrics, 66(1), 178–185.CrossRef
go back to reference Liu, L., Guo, Z., & Duan, X. (2016). Population size estimation with missing nonignorable. Acta Mathematicae Applicatae Sinica, English Series, 32(3), 659–668.CrossRef Liu, L., Guo, Z., & Duan, X. (2016). Population size estimation with missing nonignorable. Acta Mathematicae Applicatae Sinica, English Series, 32(3), 659–668.CrossRef
go back to reference Liu, L., Liu, Y., Li, P., & Qin, J. (2018). Full likelihood inference for abundance from continuous time capture–recapture data. Journal of the Royal Statistical Society, Series B, 80(5), 995–1014.CrossRef Liu, L., Liu, Y., Li, P., & Qin, J. (2018). Full likelihood inference for abundance from continuous time capture–recapture data. Journal of the Royal Statistical Society, Series B, 80(5), 995–1014.CrossRef
go back to reference Liu, Y., Li, P., & Qin, J. (2017b). Maximum empirical likelihood estimation for abundance in a closed population from capture–recapture data. Biometrika, 104(3), 527–543. Liu, Y., Li, P., & Qin, J. (2017b). Maximum empirical likelihood estimation for abundance in a closed population from capture–recapture data. Biometrika, 104(3), 527–543.
go back to reference Liu, Y., Zhu, L., Liu, G., & Li, H. (2020). Abundance estimation with a categorical covariate subject to missing in continuous-time capture-recapture studies. Communications in Statistics. Theory and Methods, 49(20), 4919–4928.CrossRef Liu, Y., Zhu, L., Liu, G., & Li, H. (2020). Abundance estimation with a categorical covariate subject to missing in continuous-time capture-recapture studies. Communications in Statistics. Theory and Methods, 49(20), 4919–4928.CrossRef
go back to reference Mao, X. C., & You, N. (2009). On comparison of mixture models for closed population capture-recapture studies. Biometrics, 65(2), 547–553.CrossRef Mao, X. C., & You, N. (2009). On comparison of mixture models for closed population capture-recapture studies. Biometrics, 65(2), 547–553.CrossRef
go back to reference Marten, G. G. (1970). A regression method for mark-recapture estimates with unequal catchability. Ecology, 51(2), 150–152.CrossRef Marten, G. G. (1970). A regression method for mark-recapture estimates with unequal catchability. Ecology, 51(2), 150–152.CrossRef
go back to reference Miller, C., Joyce, P., & Waits, L. (2005). A new method for estimating the size of small populations from genetic mark-recapture data. Molecular Ecology, 14(7), 1991–2005.CrossRef Miller, C., Joyce, P., & Waits, L. (2005). A new method for estimating the size of small populations from genetic mark-recapture data. Molecular Ecology, 14(7), 1991–2005.CrossRef
go back to reference Norris, J. L., & Pollock, K. H. (1995). A capture- recapture model with heterogeneity and behavioural response. Environmental and Ecological Statistics, 2(4), 305–313.CrossRef Norris, J. L., & Pollock, K. H. (1995). A capture- recapture model with heterogeneity and behavioural response. Environmental and Ecological Statistics, 2(4), 305–313.CrossRef
go back to reference Norris, J. L., & Pollock, K. H. (1996a). Nonparametric MLE under two closed capture-recapture models with heterogeneity. Biometrics, 52(2), 639–649.CrossRef Norris, J. L., & Pollock, K. H. (1996a). Nonparametric MLE under two closed capture-recapture models with heterogeneity. Biometrics, 52(2), 639–649.CrossRef
go back to reference Norris, J. L., & Pollock, K. H. (1996b). Including model uncertainty in estimating variances in multiple capture studies. Journal of Ecological and Environmental Statistics, 3(3), 235–244.CrossRef Norris, J. L., & Pollock, K. H. (1996b). Including model uncertainty in estimating variances in multiple capture studies. Journal of Ecological and Environmental Statistics, 3(3), 235–244.CrossRef
go back to reference Norris, J. L., & Pollock, K. H. (2001). Nonparametric MLE incorporation of heterogeneity and model testing into premarked cohort studies. Journal of Ecological and Environmental Statistics, 8(1), 21–32.CrossRef Norris, J. L., & Pollock, K. H. (2001). Nonparametric MLE incorporation of heterogeneity and model testing into premarked cohort studies. Journal of Ecological and Environmental Statistics, 8(1), 21–32.CrossRef
go back to reference Otis, D. L., Burnham, K. P., White, G. C., & Anderson, D. R. (1978). Statistical inference from capture data on closed animal populations. Wildlife Monographs, 62, 1–135. Otis, D. L., Burnham, K. P., White, G. C., & Anderson, D. R. (1978). Statistical inference from capture data on closed animal populations. Wildlife Monographs, 62, 1–135.
go back to reference Overton, W. S. (1969). Estimating the numbers of animals in wildlife populations. In R. H. Giles (Ed.), Wildlife management techniques (pp. 403–456). Washington, D.C.: The Wildlife Society. Overton, W. S. (1969). Estimating the numbers of animals in wildlife populations. In R. H. Giles (Ed.), Wildlife management techniques (pp. 403–456). Washington, D.C.: The Wildlife Society.
go back to reference Patil, G. P., & Rao, C.R. (1978). Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics, 34(2), 179–189.CrossRef Patil, G. P., & Rao, C.R. (1978). Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics, 34(2), 179–189.CrossRef
go back to reference Petit, E., & Valiere, N. (2006). Estimating population size with noninvasive capture-mark-recapture data. Conservation Biology, 20(4), 1062–1073.CrossRef Petit, E., & Valiere, N. (2006). Estimating population size with noninvasive capture-mark-recapture data. Conservation Biology, 20(4), 1062–1073.CrossRef
go back to reference Pledger, S. (2000). Unified maximum likelihood estimates for closed capture–recapture models using mixtures. Biometrics, 56(2), 434–442.CrossRef Pledger, S. (2000). Unified maximum likelihood estimates for closed capture–recapture models using mixtures. Biometrics, 56(2), 434–442.CrossRef
go back to reference Pledger, S. (2005). The performance of mixture models in heterogeneous closed population capture–recapture. Biometrics, 61(3), 868–873.CrossRef Pledger, S. (2005). The performance of mixture models in heterogeneous closed population capture–recapture. Biometrics, 61(3), 868–873.CrossRef
go back to reference Pollock, K. H., & Otto, M. C. (1983). Robust estimation of population size in a closed animal populations from capture-recapture experiments. Biometrics, 39(4), 1035–1049.CrossRef Pollock, K. H., & Otto, M. C. (1983). Robust estimation of population size in a closed animal populations from capture-recapture experiments. Biometrics, 39(4), 1035–1049.CrossRef
go back to reference Premarathna, W. A. L., Schwarz, C. J., & Jones, T. S. (2018). Partial stratification in two-sample capture–recapture experiments. Environmetrics, 29(4), e2498.CrossRef Premarathna, W. A. L., Schwarz, C. J., & Jones, T. S. (2018). Partial stratification in two-sample capture–recapture experiments. Environmetrics, 29(4), e2498.CrossRef
go back to reference Ramos, P. L., Sousa, I., & et al. (2020). A review of capture-recapture methods and its possibilities in ophthalmology and vision sciences. Ophthalmic Epidemiology, 27(4), 310–324. Ramos, P. L., Sousa, I., & et al. (2020). A review of capture-recapture methods and its possibilities in ophthalmology and vision sciences. Ophthalmic Epidemiology, 27(4), 310–324.
go back to reference Rasch, G. (1961). On general laws and the meaning of measurement in psychology. In J. Neyman (Ed.), Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability (pp. 321–333). Berkeley, CA: University of California Press. Rasch, G. (1961). On general laws and the meaning of measurement in psychology. In J. Neyman (Ed.), Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability (pp. 321–333). Berkeley, CA: University of California Press.
go back to reference Rehman, Z., Toms, C. N., & Finch, C. (2016). Estimating abundance: A non parametric mark recapture approach for open and closed systems. Environmental and Ecological Statistics, 23(4), 623–638.CrossRef Rehman, Z., Toms, C. N., & Finch, C. (2016). Estimating abundance: A non parametric mark recapture approach for open and closed systems. Environmental and Ecological Statistics, 23(4), 623–638.CrossRef
go back to reference Riddle, J. D., Mordecai, R. S., Pollock, K. H., & Simons, T. R. (2010). Effects of prior detections on estimates of detection probability, abundance, and occupancy. Auk, 127(1), 94–99.CrossRef Riddle, J. D., Mordecai, R. S., Pollock, K. H., & Simons, T. R. (2010). Effects of prior detections on estimates of detection probability, abundance, and occupancy. Auk, 127(1), 94–99.CrossRef
go back to reference Rivest, L. P., & Lévesque, T. (2001). Improved log-linear model estimators of abundance in capture-recapture experiments. Canadian Journal of Statistics, 29(4), 555–572.CrossRef Rivest, L. P., & Lévesque, T. (2001). Improved log-linear model estimators of abundance in capture-recapture experiments. Canadian Journal of Statistics, 29(4), 555–572.CrossRef
go back to reference Robinson, J. G., Ahmed, B., Das Gupta, P., & Woodrow, K. A. (1993). Estimation of population coverage in the 1990 United States Census based on demographic analysis. Journal of the American Statistical Association, 88(423), 1061–1079.CrossRef Robinson, J. G., Ahmed, B., Das Gupta, P., & Woodrow, K. A. (1993). Estimation of population coverage in the 1990 United States Census based on demographic analysis. Journal of the American Statistical Association, 88(423), 1061–1079.CrossRef
go back to reference Ross, S. M. (2010). Introduction to probability models (10th ed.). Burlington, MA: Academic Press. Ross, S. M. (2010). Introduction to probability models (10th ed.). Burlington, MA: Academic Press.
go back to reference Ruell, E. W., Riley, S. P. D., Douglas, M. R., Pollinger, J. P., & Crooks, K. R. (2009). Estimating bobcat population sizes and densities in a fragmented urban landscape using noninvasive capture–recapture sampling. Journal of Mammalogy, 90(1), 129–135.CrossRef Ruell, E. W., Riley, S. P. D., Douglas, M. R., Pollinger, J. P., & Crooks, K. R. (2009). Estimating bobcat population sizes and densities in a fragmented urban landscape using noninvasive capture–recapture sampling. Journal of Mammalogy, 90(1), 129–135.CrossRef
go back to reference Salasar, L. E. B., Leite, J. G., & Louzada, F. (2015). On the integrated maximum likelihood estimators for a closed population capture–recapture model with unequal capture probabilities. Journal of Theoretical and Applied Statistics, 49(6), 1204–1220. Salasar, L. E. B., Leite, J. G., & Louzada, F. (2015). On the integrated maximum likelihood estimators for a closed population capture–recapture model with unequal capture probabilities. Journal of Theoretical and Applied Statistics, 49(6), 1204–1220.
go back to reference Sanathanan, L. (1972a). Estimating the size of a multinomial population. Annals of Mathematical Statistics, 43(1), 142–152.CrossRef Sanathanan, L. (1972a). Estimating the size of a multinomial population. Annals of Mathematical Statistics, 43(1), 142–152.CrossRef
go back to reference Sanathanan, L. (1972b). Models and estimation methods in visual scanning experiments. Techometrics, 14(4), 813–829.CrossRef Sanathanan, L. (1972b). Models and estimation methods in visual scanning experiments. Techometrics, 14(4), 813–829.CrossRef
go back to reference Schnabel, Z. E. (1938). The estimation of the total fish population of a lake. American Mathematical Monthly, 45(6), 348–352. Schnabel, Z. E. (1938). The estimation of the total fish population of a lake. American Mathematical Monthly, 45(6), 348–352.
go back to reference Schofield, M. R. (2017). Comment: Estimating abundance: A non parametric mark recapture approach for open and closed systems. Environmental and Ecological Statistics, 24(4), 587–594.CrossRef Schofield, M. R. (2017). Comment: Estimating abundance: A non parametric mark recapture approach for open and closed systems. Environmental and Ecological Statistics, 24(4), 587–594.CrossRef
go back to reference Schofield, M. R., & Barker, R. J. (2014). Hierarchical modeling of abundance in closed population capture-recapture models under heterogeneity. Environmental and Ecological Statistics, 21(3), 435–451.CrossRef Schofield, M. R., & Barker, R. J. (2014). Hierarchical modeling of abundance in closed population capture-recapture models under heterogeneity. Environmental and Ecological Statistics, 21(3), 435–451.CrossRef
go back to reference Schofield, M. R., & Barker, R. J. (2020). Rejoinder to “On continuous-time capture-recapture in closed populations”. Biometrics, 76(3), 1034–1035.CrossRef Schofield, M. R., & Barker, R. J. (2020). Rejoinder to “On continuous-time capture-recapture in closed populations”. Biometrics, 76(3), 1034–1035.CrossRef
go back to reference Schofield, M. R., Barker, R. J., & Gelling, N. (2018). Continuous-time capture-recapture in closed populations. Biometrics, 74(2), 626–635.CrossRef Schofield, M. R., Barker, R. J., & Gelling, N. (2018). Continuous-time capture-recapture in closed populations. Biometrics, 74(2), 626–635.CrossRef
go back to reference Seber, G. A. F. (1970). The effects of trap response on tag recapture estimates. Biometrics, 26(1), 13–22.CrossRef Seber, G. A. F. (1970). The effects of trap response on tag recapture estimates. Biometrics, 26(1), 13–22.CrossRef
go back to reference Seber, G. A. F. (1982). The estimation of animal abundance (2nd ed.). London: Griffin. Reprinted in paperback by the Blackburn press, Caldwell, N. J. (2002). Seber, G. A. F. (1982). The estimation of animal abundance (2nd ed.). London: Griffin. Reprinted in paperback by the Blackburn press, Caldwell, N. J. (2002).
go back to reference Seber, G. A. F., & Felton, R. (1981). Tag loss and the Petersen mark-recapture experiment. Biometrika, 68(1), 211–219.CrossRef Seber, G. A. F., & Felton, R. (1981). Tag loss and the Petersen mark-recapture experiment. Biometrika, 68(1), 211–219.CrossRef
go back to reference Seber, G. A. F., Huakau, J. T, & Simmons, D. (2000). Capture-recapture, epidemiology, and list mismatches: Two lists. Biometrics, 56(4), 1227–1232.CrossRef Seber, G. A. F., Huakau, J. T, & Simmons, D. (2000). Capture-recapture, epidemiology, and list mismatches: Two lists. Biometrics, 56(4), 1227–1232.CrossRef
go back to reference Seber, G. A. F., & Schofield, M. R. (2019). Capture-recapture: Parameter estimation for open animal populations. Switzerland: Springer Nature.CrossRef Seber, G. A. F., & Schofield, M. R. (2019). Capture-recapture: Parameter estimation for open animal populations. Switzerland: Springer Nature.CrossRef
go back to reference Seber, G. A. F., & Wild, C. J. (1989). Nonlinear regression. New York: Wiley. (Also in paperback, 2003). Seber, G. A. F., & Wild, C. J. (1989). Nonlinear regression. New York: Wiley. (Also in paperback, 2003).
go back to reference Stanislav, S. J., Pollock, K. H., Simons, T. R., & Alldredge, M. W. (2010). Separation of availability and perception processes for aural detection in avian point counts: A combined multiple-observer and time-of-detection approach. Avian Conservation and Ecology, 5(1), article 3. Stanislav, S. J., Pollock, K. H., Simons, T. R., & Alldredge, M. W. (2010). Separation of availability and perception processes for aural detection in avian point counts: A combined multiple-observer and time-of-detection approach. Avian Conservation and Ecology, 5(1), article 3.
go back to reference Stanley, T. R., & Burnham, K. P. (1999). A closure test for time-specific capture-recapture data. Environmental and Ecological Statistics, 6(2), 197–209.CrossRef Stanley, T. R., & Burnham, K. P. (1999). A closure test for time-specific capture-recapture data. Environmental and Ecological Statistics, 6(2), 197–209.CrossRef
go back to reference Stanley, T. R., & Richards, J. D. (2005). A program for testing capture-recapture data for closure. Wildlife Society Bulletin, 33(2), 782–785.CrossRef Stanley, T. R., & Richards, J. D. (2005). A program for testing capture-recapture data for closure. Wildlife Society Bulletin, 33(2), 782–785.CrossRef
go back to reference Stoklosa, J., & Huggins, R. M. (2012). A robust P-spline approach to closed population capture–recapture models with time dependence and heterogeneity. Computational Statistics and Data Analysis, 56(2), 408–417.CrossRef Stoklosa, J., & Huggins, R. M. (2012). A robust P-spline approach to closed population capture–recapture models with time dependence and heterogeneity. Computational Statistics and Data Analysis, 56(2), 408–417.CrossRef
go back to reference Stoklosa, J. Hwang, W.-H., Wu, S.-H., & Huggins, R. (2011). Heterogeneous capture-recapture models with covariates: A partial likelihood approach for closed populations. Biometrics, 67(4), 1659–1665.CrossRef Stoklosa, J. Hwang, W.-H., Wu, S.-H., & Huggins, R. (2011). Heterogeneous capture-recapture models with covariates: A partial likelihood approach for closed populations. Biometrics, 67(4), 1659–1665.CrossRef
go back to reference Sutherland, J., & Schwarz, C. (2005). Multi-list methods using incomplete lists in closed populations. Biometrics, 61(1), 134–140.CrossRef Sutherland, J., & Schwarz, C. (2005). Multi-list methods using incomplete lists in closed populations. Biometrics, 61(1), 134–140.CrossRef
go back to reference Tancredi, A., Auger-Méthé, M., Marcoux, M., & Liseo, B. (2013). Accounting for matching uncertainty in two stage capture-recapture experiments using photographic measurements of natural marks. Environmental and Ecological Statistics, 20(4), 647–665.CrossRef Tancredi, A., Auger-Méthé, M., Marcoux, M., & Liseo, B. (2013). Accounting for matching uncertainty in two stage capture-recapture experiments using photographic measurements of natural marks. Environmental and Ecological Statistics, 20(4), 647–665.CrossRef
go back to reference Tounkara, F., & Rivest, L.-P. (2015). Mixture regression models for closed population capture–recapture data. Biometrics, 71(3), 721–730.CrossRef Tounkara, F., & Rivest, L.-P. (2015). Mixture regression models for closed population capture–recapture data. Biometrics, 71(3), 721–730.CrossRef
go back to reference Tsay, P. K., & Chao, A. (2001). Population size estimation for capture-recapture models with applications to epidemiological data. Journal of Applied Statistics, 28(1), 25–36.CrossRef Tsay, P. K., & Chao, A. (2001). Population size estimation for capture-recapture models with applications to epidemiological data. Journal of Applied Statistics, 28(1), 25–36.CrossRef
go back to reference Vale, R. T. R., Fewster, R. M., Carroll, E. L., & Patenaude, N. J. (2014). Maximum likelihood estimation for model \(M_{t,\alpha }\) for capture–recapture data with misidentification. Biometrics, 70(4), 962–971. Vale, R. T. R., Fewster, R. M., Carroll, E. L., & Patenaude, N. J. (2014). Maximum likelihood estimation for model \(M_{t,\alpha }\) for capture–recapture data with misidentification. Biometrics, 70(4), 962–971.
go back to reference Wang, Y., & Yip, P. S. F. (2002). Estimation of population size for additive–multiplicative models based on continuous-time recapture experiments. Environmetrics, 13(8), 847–857.CrossRef Wang, Y., & Yip, P. S. F. (2002). Estimation of population size for additive–multiplicative models based on continuous-time recapture experiments. Environmetrics, 13(8), 847–857.CrossRef
go back to reference White, G. C., & Burnham, K. P. (1999). Program MARK: Survival estimation from populations of marked animals. Bird Study, 46(sup1), S120–S139. White, G. C., & Burnham, K. P. (1999). Program MARK: Survival estimation from populations of marked animals. Bird Study, 46(sup1), S120–S139.
go back to reference White, G. C., & Cooch, E. G. (2017). Population abundance estimation with heterogeneous encounter probabilities using numerical integration. Journal of Wildlife Management, 81(2), 368–377. White, G. C., & Cooch, E. G. (2017). Population abundance estimation with heterogeneous encounter probabilities using numerical integration. Journal of Wildlife Management, 81(2), 368–377.
go back to reference Wileyto, E. P., Ewens, W. J., & Mullen, M. A. (1994). Markov-recapture population estimates: A tool for improving interpretation of trapping experiments. Ecology, 75(4), 1109–1117.CrossRef Wileyto, E. P., Ewens, W. J., & Mullen, M. A. (1994). Markov-recapture population estimates: A tool for improving interpretation of trapping experiments. Ecology, 75(4), 1109–1117.CrossRef
go back to reference Wileyto, E. P., Norris, J. L., Weaver, D. K., & Arbogast, T. (2000). Self-marking recapture models for estimating closed insect populations. Journal of Agricultural, Biological, and Environmental Statistics, 5(4), 456–474.CrossRef Wileyto, E. P., Norris, J. L., Weaver, D. K., & Arbogast, T. (2000). Self-marking recapture models for estimating closed insect populations. Journal of Agricultural, Biological, and Environmental Statistics, 5(4), 456–474.CrossRef
go back to reference Wilson, K. R., & Anderson, D. R. (1995). Continuous-time capture-recapture population estimation when capture probabilities vary over time. Environmental and Ecological Statistics, 2(1), 55–69.CrossRef Wilson, K. R., & Anderson, D. R. (1995). Continuous-time capture-recapture population estimation when capture probabilities vary over time. Environmental and Ecological Statistics, 2(1), 55–69.CrossRef
go back to reference Wright, J. A., Barker, R. J., Schofield, M. R., Frantz, A. C., Byrom, A. E., & Gleeson, D. M. (2009). Incorporating genotype uncertainty into mark-recapture-type model for estimating animal abundance. Biometrics, 65(3), 833–840.CrossRef Wright, J. A., Barker, R. J., Schofield, M. R., Frantz, A. C., Byrom, A. E., & Gleeson, D. M. (2009). Incorporating genotype uncertainty into mark-recapture-type model for estimating animal abundance. Biometrics, 65(3), 833–840.CrossRef
go back to reference Xi, L., Watson, R., Wang, J.-P., & Yip, P. S. F. (2009). Estimation in capture-recapture models when covariates are subject to measurement errors and missing data. Canadian Journal of Statistics, 37(4), 645–658.CrossRef Xi, L., Watson, R., Wang, J.-P., & Yip, P. S. F. (2009). Estimation in capture-recapture models when covariates are subject to measurement errors and missing data. Canadian Journal of Statistics, 37(4), 645–658.CrossRef
go back to reference Xi, L., Watson, R., & Yip, P. S. F. (2008). The minimum capture proportion for reliable estimation in capture-recapture models. Biometrics, 64(1), 242–249.CrossRef Xi, L., Watson, R., & Yip, P. S. F. (2008). The minimum capture proportion for reliable estimation in capture-recapture models. Biometrics, 64(1), 242–249.CrossRef
go back to reference Xi, L., Yip, P. S. F., & Watson, R. (2007). A unified likelihood-based approach for estimating population size in continuous-time capture–recapture experiments with frailty. Biometrics, 63(1), 228–236.CrossRef Xi, L., Yip, P. S. F., & Watson, R. (2007). A unified likelihood-based approach for estimating population size in continuous-time capture–recapture experiments with frailty. Biometrics, 63(1), 228–236.CrossRef
go back to reference Xu, Y., Liu, L., You, N., Pan, H., & Yip, P. (2007). Estimating population size for a continuous time frailty model with covariates in a capture-recapture study. Biometrics, 63(3), 917–921.CrossRef Xu, Y., Liu, L., You, N., Pan, H., & Yip, P. (2007). Estimating population size for a continuous time frailty model with covariates in a capture-recapture study. Biometrics, 63(3), 917–921.CrossRef
go back to reference Yang, H.-C.,& Chao, A. (2005). Modeling animals’ behavioral response by Markov chain models for capture-recapture experiments. Biometrics, 61(4), 1010–1017.CrossRef Yang, H.-C.,& Chao, A. (2005). Modeling animals’ behavioral response by Markov chain models for capture-recapture experiments. Biometrics, 61(4), 1010–1017.CrossRef
go back to reference Yee, T., Stoklosa, J., & Huggins, M. (2015). The VGAM package for capture-recapture data using the conditional likelihood. Journal of Statistical Sortware, 65(5), 1–33. Yee, T., Stoklosa, J., & Huggins, M. (2015). The VGAM package for capture-recapture data using the conditional likelihood. Journal of Statistical Sortware, 65(5), 1–33.
go back to reference Yip, P. (1989). An inference procedure for a capture and recapture experiment with time-dependent capture probabilities. Biometrics, 45(2), 471–479.CrossRef Yip, P. (1989). An inference procedure for a capture and recapture experiment with time-dependent capture probabilities. Biometrics, 45(2), 471–479.CrossRef
go back to reference Yip, P. (1991). A martingale estimating equation for a capture-recapture experiment in discrete time. Biometrics, 47(3), 1081–1088.CrossRef Yip, P. (1991). A martingale estimating equation for a capture-recapture experiment in discrete time. Biometrics, 47(3), 1081–1088.CrossRef
go back to reference Yip, P. S. F., & Chao, A. (1996). Estimating population size from capture-recapture studies via sample coverage and estimating functions. Communications in Statistics, Stochastic Models, 12, 17–35.CrossRef Yip, P. S. F., & Chao, A. (1996). Estimating population size from capture-recapture studies via sample coverage and estimating functions. Communications in Statistics, Stochastic Models, 12, 17–35.CrossRef
go back to reference Yip, P. S. F., Lin, H.-Z., & Xi, L. (2005). A semiparametric method for estimating population size for capture-recapture experiments with random covariates in continuous time. Biometrics, 61(4), 1085–1092.CrossRef Yip, P. S. F., Lin, H.-Z., & Xi, L. (2005). A semiparametric method for estimating population size for capture-recapture experiments with random covariates in continuous time. Biometrics, 61(4), 1085–1092.CrossRef
go back to reference Yip, P. S. F., & Wang, Y. (2002). A unified parametric regression model for recapture studies with random removals in continuous time. Biometrics, 58(1), 192–199.CrossRef Yip, P. S. F., & Wang, Y. (2002). A unified parametric regression model for recapture studies with random removals in continuous time. Biometrics, 58(1), 192–199.CrossRef
go back to reference Yoshizaki, J., Brownie, C., & et al. (2011). Modeling misidentification errors that result from use of genetic tags in capture–recapture studies. Environmental and Ecological Statistics, 18 (1), 27–55. Yoshizaki, J., Brownie, C., & et al. (2011). Modeling misidentification errors that result from use of genetic tags in capture–recapture studies. Environmental and Ecological Statistics, 18 (1), 27–55.
go back to reference Yoshizaki, J., Pollock, K. H., Brownie, C., & Webster, R. A. (2009). Modeling misidentification errors in capture-recapture studies using photographic identification of evolving marks. Ecology, 90(1), 3–9.CrossRef Yoshizaki, J., Pollock, K. H., Brownie, C., & Webster, R. A. (2009). Modeling misidentification errors in capture-recapture studies using photographic identification of evolving marks. Ecology, 90(1), 3–9.CrossRef
go back to reference Zaslavsky, A. M., & Wolfgang, G. (1993). Triple-system modeling of census, postenumeration survey, and administrative-list data. Journal of Business and Economic Statistics, 11(3), 279–288. Zaslavsky, A. M., & Wolfgang, G. (1993). Triple-system modeling of census, postenumeration survey, and administrative-list data. Journal of Business and Economic Statistics, 11(3), 279–288.
go back to reference Zhang, W., & Bonner, S. J. (2020). On continuous-time capture-recapture in closed populations. Biometrics, 76(3), 1028–1033.CrossRef Zhang, W., & Bonner, S. J. (2020). On continuous-time capture-recapture in closed populations. Biometrics, 76(3), 1028–1033.CrossRef
Metadata
Title
Capture-Recapture: Frequentist Methods
Authors
George A. F. Seber
Matthew R. Schofield
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-39834-6_12

Premium Partner