Skip to main content
Top

2019 | OriginalPaper | Chapter

7. Carbohydrate-Based Nanofibers: Applications and Potentials

Authors : Sajad Bahrami, Moein Adel, Fariba Esmaeili, Seyed Mahdi Rezayat, Bita Mehravi, Masoumeh Zahmatkeshan

Published in: Handbook of Nanofibers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbohydrate polymers have recently attracted great interest from academia and industry as one of the most abundant polymers in the world. Homopolymers or copolymers of monosaccharides, known as polysaccharides, are important part of carbohydrates and polymer materials with different sources from plants, microbes, and animals. Various structures and sources provide different chemical and mechanical properties and in result different applications. Carbohydrates are inexpensive materials, easily available, and renewable resources which present important characteristics including hydrophilicity and biocompatibility into polymeric systems. In this chapter potentials and applications of carbohydrate materials such as chitosan, chitin, cellulose, and alginate or their combinations in nanofiber form will be reviewed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhao W et al (2015) Preparation of animal polysaccharides nanofibers by electrospinning and their potential biomedical applications. J Biomed Mater Res A 103(2):807–818CrossRef Zhao W et al (2015) Preparation of animal polysaccharides nanofibers by electrospinning and their potential biomedical applications. J Biomed Mater Res A 103(2):807–818CrossRef
2.
go back to reference Bhattarai N, Zhang M (2007) Controlled synthesis and structural stability of alginate-based nanofibers. Nanotechnology 18(45):455601CrossRef Bhattarai N, Zhang M (2007) Controlled synthesis and structural stability of alginate-based nanofibers. Nanotechnology 18(45):455601CrossRef
3.
go back to reference Lee KY et al (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61(12):1020–1032CrossRef Lee KY et al (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61(12):1020–1032CrossRef
4.
go back to reference Nie H et al (2008) Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules 9(5):1362–1365CrossRef Nie H et al (2008) Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules 9(5):1362–1365CrossRef
5.
go back to reference Lee YJ et al (2007) Preparation of atactic poly (vinyl alcohol)/sodium alginate blend nanowebs by electrospinning. J Appl Polym Sci 106(2):1337–1342CrossRef Lee YJ et al (2007) Preparation of atactic poly (vinyl alcohol)/sodium alginate blend nanowebs by electrospinning. J Appl Polym Sci 106(2):1337–1342CrossRef
6.
go back to reference De Vrieze S et al (2007) Electrospinning of chitosan nanofibrous structures: feasibility study. J Mater Sci 42(19):8029–8034CrossRef De Vrieze S et al (2007) Electrospinning of chitosan nanofibrous structures: feasibility study. J Mater Sci 42(19):8029–8034CrossRef
7.
go back to reference Ojha SS et al (2008) Fabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide. Biomacromolecules 9(9):2523–2529CrossRef Ojha SS et al (2008) Fabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide. Biomacromolecules 9(9):2523–2529CrossRef
8.
go back to reference Chen J-P, Chang G-Y, Chen J-K (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A Physicochem Eng Asp 313:183–188CrossRef Chen J-P, Chang G-Y, Chen J-K (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A Physicochem Eng Asp 313:183–188CrossRef
9.
go back to reference Liu H, Hsieh YL (2003) Surface methacrylation and graft copolymerization of ultrafine cellulose fibers. J Polym Sci B Polym Phys 41(9):953–964CrossRef Liu H, Hsieh YL (2003) Surface methacrylation and graft copolymerization of ultrafine cellulose fibers. J Polym Sci B Polym Phys 41(9):953–964CrossRef
10.
go back to reference Wu X et al (2005) Effect of solvent on morphology of electrospinning ethyl cellulose fibers. J Appl Polym Sci 97(3):1292–1297CrossRef Wu X et al (2005) Effect of solvent on morphology of electrospinning ethyl cellulose fibers. J Appl Polym Sci 97(3):1292–1297CrossRef
11.
go back to reference Frenot A, Henriksson MW, Walkenström P (2007) Electrospinning of cellulose-based nanofibers. J Appl Polym Sci 103(3):1473–1482CrossRef Frenot A, Henriksson MW, Walkenström P (2007) Electrospinning of cellulose-based nanofibers. J Appl Polym Sci 103(3):1473–1482CrossRef
12.
go back to reference Nasri-Nasrabadi B et al (2014) Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering. Carbohydr Polym 108:232–238CrossRef Nasri-Nasrabadi B et al (2014) Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering. Carbohydr Polym 108:232–238CrossRef
13.
go back to reference Toskas G et al (2013) Chitosan (PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydr Polym 94(2):713–722CrossRef Toskas G et al (2013) Chitosan (PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydr Polym 94(2):713–722CrossRef
14.
go back to reference Tang J et al (2017) Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent. Appl Surf Sci 393:299–308CrossRef Tang J et al (2017) Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent. Appl Surf Sci 393:299–308CrossRef
15.
go back to reference Luo Y et al (2013) Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydr Polym 91(1):419–427CrossRef Luo Y et al (2013) Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydr Polym 91(1):419–427CrossRef
16.
go back to reference Nie H et al (2011) Electrospinning and characterization of konjac glucomannan/chitosan nanofibrous scaffolds favoring the growth of bone mesenchymal stem cells. Carbohydr Polym 85(3):681–686CrossRef Nie H et al (2011) Electrospinning and characterization of konjac glucomannan/chitosan nanofibrous scaffolds favoring the growth of bone mesenchymal stem cells. Carbohydr Polym 85(3):681–686CrossRef
17.
go back to reference Du J et al (2014) Comparative evaluation of chitosan, cellulose acetate, and polyethersulfone nanofiber scaffolds for neural differentiation. Carbohydr Polym 99:483–490CrossRef Du J et al (2014) Comparative evaluation of chitosan, cellulose acetate, and polyethersulfone nanofiber scaffolds for neural differentiation. Carbohydr Polym 99:483–490CrossRef
18.
go back to reference Deng H et al (2010) Layer-by-layer structured polysaccharides film-coated cellulose nanofibrous mats for cell culture. Carbohydr Polym 80(2):474–479CrossRef Deng H et al (2010) Layer-by-layer structured polysaccharides film-coated cellulose nanofibrous mats for cell culture. Carbohydr Polym 80(2):474–479CrossRef
19.
go back to reference Majd SA et al (2016) Application of Chitosan/PVA Nano fiber as a potential wound dressing for streptozotocin-induced diabetic rats. Int J Biol Macromol 92:1162–1168CrossRef Majd SA et al (2016) Application of Chitosan/PVA Nano fiber as a potential wound dressing for streptozotocin-induced diabetic rats. Int J Biol Macromol 92:1162–1168CrossRef
20.
go back to reference Entekhabi E et al (2016) Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity. Mater Sci Eng C 69:380–387CrossRef Entekhabi E et al (2016) Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity. Mater Sci Eng C 69:380–387CrossRef
21.
go back to reference Jeong SI et al (2010) Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering. Macromol Biosci 10(8):934–943CrossRef Jeong SI et al (2010) Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering. Macromol Biosci 10(8):934–943CrossRef
22.
go back to reference Jeong SI et al (2012) Biodegradable photo-crosslinked alginate nanofibre scaffolds with tuneable physical properties, cell adhesivity and growth factor release. Eur Cell Mater 24:331CrossRef Jeong SI et al (2012) Biodegradable photo-crosslinked alginate nanofibre scaffolds with tuneable physical properties, cell adhesivity and growth factor release. Eur Cell Mater 24:331CrossRef
23.
go back to reference Kaya M et al (2016) Porous and nanofiber α-chitosan obtained from blue crab (Callinectes sapidus) tested for antimicrobial and antioxidant activities. LWT-Food Sci Technol 65:1109–1117CrossRef Kaya M et al (2016) Porous and nanofiber α-chitosan obtained from blue crab (Callinectes sapidus) tested for antimicrobial and antioxidant activities. LWT-Food Sci Technol 65:1109–1117CrossRef
24.
go back to reference Abdelgawad AM et al (2017) Fabrication and characterization of bactericidal thiol-chitosan and chitosan iodoacetamide nanofibres. Int J Biol Macromol 94:96–105CrossRef Abdelgawad AM et al (2017) Fabrication and characterization of bactericidal thiol-chitosan and chitosan iodoacetamide nanofibres. Int J Biol Macromol 94:96–105CrossRef
25.
go back to reference Bienek DR, Hoffman KM, Tutak W (2016) Blow-spun chitosan/PEG/PLGA nanofibers as a novel tissue engineering scaffold with antibacterial properties. J Mater Sci Mater Med 27(9):146CrossRef Bienek DR, Hoffman KM, Tutak W (2016) Blow-spun chitosan/PEG/PLGA nanofibers as a novel tissue engineering scaffold with antibacterial properties. J Mater Sci Mater Med 27(9):146CrossRef
26.
go back to reference Lee SJ et al (2014) Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr Polym 111:530–537CrossRef Lee SJ et al (2014) Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr Polym 111:530–537CrossRef
27.
go back to reference Song J et al (2016) Antibacterial effects of electrospun chitosan/poly (ethylene oxide) nanofibrous membranes loaded with chlorhexidine and silver. Nanomedicine 12(5):1357–1364CrossRef Song J et al (2016) Antibacterial effects of electrospun chitosan/poly (ethylene oxide) nanofibrous membranes loaded with chlorhexidine and silver. Nanomedicine 12(5):1357–1364CrossRef
28.
go back to reference Cai N et al (2016) Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe 3 O 4 nanoparticles for potential wound dressing application. Appl Surf Sci 369:492–500CrossRef Cai N et al (2016) Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe 3 O 4 nanoparticles for potential wound dressing application. Appl Surf Sci 369:492–500CrossRef
29.
go back to reference Kaassis AY et al (2014) Pulsatile drug release from electrospun poly (ethylene oxide)–sodium alginate blend nanofibres. J Mater Chem B 2(10):1400–1407CrossRef Kaassis AY et al (2014) Pulsatile drug release from electrospun poly (ethylene oxide)–sodium alginate blend nanofibres. J Mater Chem B 2(10):1400–1407CrossRef
30.
go back to reference Shi X et al (2014) pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Adv 4(87):47056–47065CrossRef Shi X et al (2014) pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Adv 4(87):47056–47065CrossRef
31.
go back to reference Yu D-G et al (2012) Modified coaxial electrospinning for the preparation of high-quality ketoprofen-loaded cellulose acetate nanofibers. Carbohydr Polym 90(2):1016–1023CrossRef Yu D-G et al (2012) Modified coaxial electrospinning for the preparation of high-quality ketoprofen-loaded cellulose acetate nanofibers. Carbohydr Polym 90(2):1016–1023CrossRef
32.
go back to reference Ma H et al (2011) Ultrafine polysaccharide nanofibrous membranes for water purification. Biomacromolecules 12(4):970–976CrossRef Ma H et al (2011) Ultrafine polysaccharide nanofibrous membranes for water purification. Biomacromolecules 12(4):970–976CrossRef
33.
go back to reference Ma H, Hsiao BS, Chu B (2011) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in water. ACS Macro Lett 1(1):213–216CrossRef Ma H, Hsiao BS, Chu B (2011) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in water. ACS Macro Lett 1(1):213–216CrossRef
34.
go back to reference Li Y et al (2016) Crosslinked chitosan nanofiber mats fabricated by one-step electrospinning and ion-imprinting methods for metal ions adsorption. Sci China Chem 59(1):95–105CrossRef Li Y et al (2016) Crosslinked chitosan nanofiber mats fabricated by one-step electrospinning and ion-imprinting methods for metal ions adsorption. Sci China Chem 59(1):95–105CrossRef
35.
go back to reference Li L, Li Y, Yang C (2016) Chemical filtration of Cr (VI) with electrospun chitosan nanofiber membranes. Carbohydr Polym 140:299–307CrossRef Li L, Li Y, Yang C (2016) Chemical filtration of Cr (VI) with electrospun chitosan nanofiber membranes. Carbohydr Polym 140:299–307CrossRef
36.
go back to reference Li Z et al (2016) Preparation of chitosan/polycaprolactam nanofibrous filter paper and its greatly enhanced chromium (VI) adsorption. Colloids Surf A Physicochem Eng Asp 494:65–73CrossRef Li Z et al (2016) Preparation of chitosan/polycaprolactam nanofibrous filter paper and its greatly enhanced chromium (VI) adsorption. Colloids Surf A Physicochem Eng Asp 494:65–73CrossRef
37.
go back to reference Wang L et al (2016) Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration. RSC Adv 6(107):105988–105995CrossRef Wang L et al (2016) Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration. RSC Adv 6(107):105988–105995CrossRef
38.
go back to reference Min L-L et al (2016) Functionalized chitosan electrospun nanofiber for effective removal of trace arsenate from water. Sci Rep 6:32480CrossRef Min L-L et al (2016) Functionalized chitosan electrospun nanofiber for effective removal of trace arsenate from water. Sci Rep 6:32480CrossRef
39.
go back to reference Cui G et al (2016) Synthesis of a ferric hydroxide-coated cellulose nanofiber hybrid for effective removal of phosphate from wastewater. Carbohydr Polym 154:40–47CrossRef Cui G et al (2016) Synthesis of a ferric hydroxide-coated cellulose nanofiber hybrid for effective removal of phosphate from wastewater. Carbohydr Polym 154:40–47CrossRef
40.
go back to reference Chitpong N, Husson SM (2017) Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. J Membr Sci 523:418–429CrossRef Chitpong N, Husson SM (2017) Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. J Membr Sci 523:418–429CrossRef
41.
go back to reference Gomathi P et al (2011) Fabrication of novel chitosan nanofiber/gold nanoparticles composite towards improved performance for a cholesterol sensor. Sensors Actuators B Chem 153(1):44–49CrossRef Gomathi P et al (2011) Fabrication of novel chitosan nanofiber/gold nanoparticles composite towards improved performance for a cholesterol sensor. Sensors Actuators B Chem 153(1):44–49CrossRef
42.
go back to reference El-Moghazy A et al (2016) Biosensor based on electrospun blended chitosan-poly (vinyl alcohol) nanofibrous enzymatically sensitized membranes for pirimiphos-methyl detection in olive oil. Talanta 155:258–264CrossRef El-Moghazy A et al (2016) Biosensor based on electrospun blended chitosan-poly (vinyl alcohol) nanofibrous enzymatically sensitized membranes for pirimiphos-methyl detection in olive oil. Talanta 155:258–264CrossRef
43.
go back to reference Pourjavaher S et al (2017) Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleracea) extract. Carbohydr Polym 156:193–201CrossRef Pourjavaher S et al (2017) Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleracea) extract. Carbohydr Polym 156:193–201CrossRef
44.
go back to reference Liou P et al (2017) Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr Polym 157:643–650CrossRef Liou P et al (2017) Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr Polym 157:643–650CrossRef
45.
go back to reference Srbová J et al (2016) Covalent biofunctionalization of chitosan nanofibers with trypsin for high enzyme stability. React Funct Polym 104:38–44CrossRef Srbová J et al (2016) Covalent biofunctionalization of chitosan nanofibers with trypsin for high enzyme stability. React Funct Polym 104:38–44CrossRef
46.
go back to reference Park J-M et al (2013) Immobilization of lysozyme-CLEA onto electrospun chitosan nanofiber for effective antibacterial applications. Int J Biol Macromol 54:37–43CrossRef Park J-M et al (2013) Immobilization of lysozyme-CLEA onto electrospun chitosan nanofiber for effective antibacterial applications. Int J Biol Macromol 54:37–43CrossRef
47.
go back to reference Doğaç Yİ et al (2017) A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability. Int J Biol Macromol 96:302–311CrossRef Doğaç Yİ et al (2017) A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability. Int J Biol Macromol 96:302–311CrossRef
48.
go back to reference Huang X-J, Ge D, Xu Z-K (2007) Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Eur Polym J 43(9):3710–3718CrossRef Huang X-J, Ge D, Xu Z-K (2007) Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Eur Polym J 43(9):3710–3718CrossRef
49.
go back to reference Xu W et al (2017) Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion electrospinning. J Mech Behav Biomed Mater 65:428–438CrossRef Xu W et al (2017) Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion electrospinning. J Mech Behav Biomed Mater 65:428–438CrossRef
50.
go back to reference Chae T et al (2013) Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration. J Mater Sci Mater Med 24(8):1885–1894CrossRef Chae T et al (2013) Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration. J Mater Sci Mater Med 24(8):1885–1894CrossRef
51.
go back to reference Sarhan WA, Azzazy HM, El-Sherbiny IM (2016) Honey/chitosan nanofiber wound dressing enriched with Allium Sativum and cleome droserifolia: enhanced antimicrobial and wound healing activity. ACS Appl Mater Interfaces 8(10):6379–6390CrossRef Sarhan WA, Azzazy HM, El-Sherbiny IM (2016) Honey/chitosan nanofiber wound dressing enriched with Allium Sativum and cleome droserifolia: enhanced antimicrobial and wound healing activity. ACS Appl Mater Interfaces 8(10):6379–6390CrossRef
52.
go back to reference Pillay V et al (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater 2013:789289CrossRef Pillay V et al (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater 2013:789289CrossRef
53.
go back to reference Karimi M et al (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45(5):1457–1501CrossRef Karimi M et al (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45(5):1457–1501CrossRef
54.
go back to reference Reddy SM (2017) Membrane technologies for sensing and biosensing. In: Materials for chemical sensing, . pp 75–103. Springer, Hindawi Reddy SM (2017) Membrane technologies for sensing and biosensing. In: Materials for chemical sensing, . pp 75–103. Springer, Hindawi
55.
go back to reference Sulaiman S et al (2015) A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl Biochem Biotechnol 175(4):1817–1842CrossRef Sulaiman S et al (2015) A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl Biochem Biotechnol 175(4):1817–1842CrossRef
56.
go back to reference Brinchi L et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169CrossRef Brinchi L et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169CrossRef
Metadata
Title
Carbohydrate-Based Nanofibers: Applications and Potentials
Authors
Sajad Bahrami
Moein Adel
Fariba Esmaeili
Seyed Mahdi Rezayat
Bita Mehravi
Masoumeh Zahmatkeshan
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-53655-2_28

Premium Partners