Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

5. Carbon-Based Heterojunction Broadband Photodetectors

Author : Yanjie Su

Published in: High-Performance Carbon-Based Optoelectronic Nanodevices

Publisher: Springer Singapore

Abstract

Ultrahigh carrier mobility, unique electronic bandgaps, excellent optical and chemical properties allow carbon nanomaterials (carbon nanotubes and graphene) to show great potential for next-generation photoelectronic devices. Especially, high-performance photodetectors based on single-walled carbon nanotubes, graphene and their related heterostructures have attracted increasing attentions in the past ten years. In this chapter, we firstly introduce the basic physical mechanism and figures-of-merit of photodetectors, and then the state-of-art research progress about carbon-based broadband photodetectors has been summarized systematically. Finally, the current challenges and future perspectives of carbon-based photodetectors are discussed and given.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu L, Han J, Xu L, Zhou J, Zhao C, Ding S, Shi H, Xiao M, Ding L, Ma Z, Jin C (2020). Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science, 368(6493): 850–856. CrossRef Liu L, Han J, Xu L, Zhou J, Zhao C, Ding S, Shi H, Xiao M, Ding L, Ma Z, Jin C (2020). Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science, 368(6493): 850–856. CrossRef
2.
go back to reference Avouris P, Freitag M, Perebeinos V (2008). Carbon-nanotube photonics and optoelectronics. Nature Photonics, 2(6): 341–350. CrossRef Avouris P, Freitag M, Perebeinos V (2008). Carbon-nanotube photonics and optoelectronics. Nature Photonics, 2(6): 341–350. CrossRef
3.
go back to reference He X, Léonard F, Kono J (2015). Uncooled carbon nanotube photodetectors. Adv Optical Mater, 3(8): 989–1011. CrossRef He X, Léonard F, Kono J (2015). Uncooled carbon nanotube photodetectors. Adv Optical Mater, 3(8): 989–1011. CrossRef
4.
go back to reference Liu Y, Wang S, Peng LM (2016) Toward high-performance carbon nanotube photovoltaic devices. Adv Energy Mater 6(17): 1600522. CrossRef Liu Y, Wang S, Peng LM (2016) Toward high-performance carbon nanotube photovoltaic devices. Adv Energy Mater 6(17): 1600522. CrossRef
5.
go back to reference Peng, LM, Zhang Z, Wang S (2014). Carbon nanotube electronics: recent advances. Mater Today, 17(9): 433–442. CrossRef Peng, LM, Zhang Z, Wang S (2014). Carbon nanotube electronics: recent advances. Mater Today, 17(9): 433–442. CrossRef
6.
go back to reference Yang L, Wang S, Zeng Q, Zhang Z, Peng LM (2013). Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection. Small, 9: 1225–1236. CrossRef Yang L, Wang S, Zeng Q, Zhang Z, Peng LM (2013). Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection. Small, 9: 1225–1236. CrossRef
7.
go back to reference Itkis ME, Borondics F, Yu A, Haddon RC (2006). Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 312(5772): 413–416. CrossRef Itkis ME, Borondics F, Yu A, Haddon RC (2006). Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 312(5772): 413–416. CrossRef
8.
go back to reference Wang S, Khafizov M, Tu X, Zheng M, Krauss TD (2010). Multiple exciton generation in single-walled carbon nanotubes. Nano Lett, 10(7): 2381–2386. CrossRef Wang S, Khafizov M, Tu X, Zheng M, Krauss TD (2010). Multiple exciton generation in single-walled carbon nanotubes. Nano Lett, 10(7): 2381–2386. CrossRef
9.
go back to reference Richter M, Heumüller T, Matt GJ, Heiss W, Brabec CJ (2017). Carbon photodetectors: the versatility of carbon allotropes. Adv Energy Mater, 7(10): 1601574. CrossRef Richter M, Heumüller T, Matt GJ, Heiss W, Brabec CJ (2017). Carbon photodetectors: the versatility of carbon allotropes. Adv Energy Mater, 7(10): 1601574. CrossRef
10.
go back to reference Zeng Q, Wang S, Yang L, Wang Z, Pei T, Zhang Z, Peng LM, Zhou W, Liu J, Zhou W, Xie SS (2012). Carbon nanotube arrays based high-performance infrared photodetector. Optical Mater Express, 2(6): 839–848. CrossRef Zeng Q, Wang S, Yang L, Wang Z, Pei T, Zhang Z, Peng LM, Zhou W, Liu J, Zhou W, Xie SS (2012). Carbon nanotube arrays based high-performance infrared photodetector. Optical Mater Express, 2(6): 839–848. CrossRef
11.
go back to reference Yang L, Wang S, Zeng Q, Zhang Z, Peng LM (2013). Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection. Small, 9(8): 1225–1236. CrossRef Yang L, Wang S, Zeng Q, Zhang Z, Peng LM (2013). Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection. Small, 9(8): 1225–1236. CrossRef
12.
go back to reference Liu Y, Wei N, Zeng Q, Han J, Huang H, Zhong D, Wang F, Ding L, Xia J, Xu H, Ma Z, Qiu S, Li QW, Liang XL, Zhang ZY, Wang S, Peng LM (2016). Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv Optical Mater, 4(2): 238–245. CrossRef Liu Y, Wei N, Zeng Q, Han J, Huang H, Zhong D, Wang F, Ding L, Xia J, Xu H, Ma Z, Qiu S, Li QW, Liang XL, Zhang ZY, Wang S, Peng LM (2016). Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv Optical Mater, 4(2): 238–245. CrossRef
13.
go back to reference Bonaccorso F, Sun Z, Hasan TA, Ferrari AC (2010). Graphene photonics and optoelectronics. Nature Photonics, 4(9): 611–622. CrossRef Bonaccorso F, Sun Z, Hasan TA, Ferrari AC (2010). Graphene photonics and optoelectronics. Nature Photonics, 4(9): 611–622. CrossRef
14.
go back to reference Bao Q, Loh KP (2012). Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 6(5): 3677–3694. CrossRef Bao Q, Loh KP (2012). Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 6(5): 3677–3694. CrossRef
15.
go back to reference Zhang Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang QJ (2013). Broadband high photoresponse from pure monolayer graphene photodetector. Nature Commun, 4(1): 1–11. Zhang Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang QJ (2013). Broadband high photoresponse from pure monolayer graphene photodetector. Nature Commun, 4(1): 1–11.
16.
go back to reference Vicarelli L, Vitiello MS, Coquillat D, Lombardo A, Ferrari AC, Knap W, Polini M, Pellegrini V, Tredicucci A (2012). Graphene field-effect transistors as room-temperature terahertz detectors. Nature Mater, 11(10): 865–871. CrossRef Vicarelli L, Vitiello MS, Coquillat D, Lombardo A, Ferrari AC, Knap W, Polini M, Pellegrini V, Tredicucci A (2012). Graphene field-effect transistors as room-temperature terahertz detectors. Nature Mater, 11(10): 865–871. CrossRef
17.
go back to reference Cai X, Sushkov AB, Suess RJ, Jadidi MM, Jenkins GS, Nyakiti LO, Myers-Ward RL, Li S, Yan J, Gaskill DK, Murphy TE (2014). Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nature Nanotechnol, 9(10): 814–819. CrossRef Cai X, Sushkov AB, Suess RJ, Jadidi MM, Jenkins GS, Nyakiti LO, Myers-Ward RL, Li S, Yan J, Gaskill DK, Murphy TE (2014). Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nature Nanotechnol, 9(10): 814–819. CrossRef
18.
go back to reference Pospischil A, Humer M, Furchi MM, Bachmann D, Guider R, Fromherz T, Mueller T (2013.) CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photonics, 7(11): 892–896. CrossRef Pospischil A, Humer M, Furchi MM, Bachmann D, Guider R, Fromherz T, Mueller T (2013.) CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photonics, 7(11): 892–896. CrossRef
19.
go back to reference Xia F, Mueller T, Lin YM, Valdes-Garcia A, Avouris P (2009). Ultrafast graphene photodetector. Nature Nanotechnol, 4(12): 839–843. CrossRef Xia F, Mueller T, Lin YM, Valdes-Garcia A, Avouris P (2009). Ultrafast graphene photodetector. Nature Nanotechnol, 4(12): 839–843. CrossRef
20.
go back to reference Mueller T, Xia F, Avouris P (2010). Graphene photodetectors for high-speed optical communications. Nature Photonics, 4(5): 297–301. CrossRef Mueller T, Xia F, Avouris P (2010). Graphene photodetectors for high-speed optical communications. Nature Photonics, 4(5): 297–301. CrossRef
21.
go back to reference An X, Liu F, Jung YJ, Kar S (2013). Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett, 13(3): 909–916. CrossRef An X, Liu F, Jung YJ, Kar S (2013). Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett, 13(3): 909–916. CrossRef
22.
go back to reference Sun Z, Liu Z, Li J, Tai GA, Lau SP, Yan F (2012). Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv Mater, 24(43): 5878–5883. CrossRef Sun Z, Liu Z, Li J, Tai GA, Lau SP, Yan F (2012). Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv Mater, 24(43): 5878–5883. CrossRef
23.
go back to reference Koppens FH, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M (2014). Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnol, 9(10): 780–793. CrossRef Koppens FH, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M (2014). Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnol, 9(10): 780–793. CrossRef
24.
go back to reference St-Antoine BC, Ménard D, Martel R (2009). Position sensitive photothermoelectric effect in suspended single-walled carbon nanotube films. Nano Lett, 9(10): 3503–3508. CrossRef St-Antoine BC, Ménard D, Martel R (2009). Position sensitive photothermoelectric effect in suspended single-walled carbon nanotube films. Nano Lett, 9(10): 3503–3508. CrossRef
25.
go back to reference He X, Fujimura N, Lloyd JM, Erickson KJ, Talin AA, Zhang Q, Gao W, Jiang Q, Kawano Y, Hauge RH, Léonard F (2014). Carbon nanotube terahertz detector. Nano Lett, 14(7): 3953–3958. CrossRef He X, Fujimura N, Lloyd JM, Erickson KJ, Talin AA, Zhang Q, Gao W, Jiang Q, Kawano Y, Hauge RH, Léonard F (2014). Carbon nanotube terahertz detector. Nano Lett, 14(7): 3953–3958. CrossRef
26.
go back to reference Erikson KJ, He X, Talin AA, Mills B, Hauge RH, Iguchi T, Fujimura N, Kawano Y, Kono J, Léonard F (2015). Figure of merit for carbon nanotube photothermoelectric detectors. ACS Nano, 9(12): 11618–11627. CrossRef Erikson KJ, He X, Talin AA, Mills B, Hauge RH, Iguchi T, Fujimura N, Kawano Y, Kono J, Léonard F (2015). Figure of merit for carbon nanotube photothermoelectric detectors. ACS Nano, 9(12): 11618–11627. CrossRef
27.
go back to reference Fujiwara A, Matsuoka Y, Suematsu H, Ogawa N, Miyano K, Kataura H, Maniwa Y, Suzuki S, Achiba Y (2001). Photoconductivity in semiconducting single-walled carbon nanotubes. Japan J Appl Phys, 40(11B): L1229. CrossRef Fujiwara A, Matsuoka Y, Suematsu H, Ogawa N, Miyano K, Kataura H, Maniwa Y, Suzuki S, Achiba Y (2001). Photoconductivity in semiconducting single-walled carbon nanotubes. Japan J Appl Phys, 40(11B): L1229. CrossRef
28.
go back to reference Lauret JS, Voisin C, Cassabois G, Delalande C, Roussignol P, Jost O, Capes L (2003). Ultrafast carrier dynamics in single-wall carbon nanotubes. Phys Rev Lett, 90(5): 057404. Lauret JS, Voisin C, Cassabois G, Delalande C, Roussignol P, Jost O, Capes L (2003). Ultrafast carrier dynamics in single-wall carbon nanotubes. Phys Rev Lett, 90(5): 057404.
29.
go back to reference Qiu X, Freitag M, Perebeinos V, Avouris P (2005). Photoconductivity spectra of single-carbon nanotubes: Implications on the nature of their excited states. Nano Lett, 5(4): 749–752. CrossRef Qiu X, Freitag M, Perebeinos V, Avouris P (2005). Photoconductivity spectra of single-carbon nanotubes: Implications on the nature of their excited states. Nano Lett, 5(4): 749–752. CrossRef
30.
go back to reference Freitag M, Martin Y, Misewich JA, Martel R, Avouris P (2003). Photoconductivity of single carbon nanotubes. Nano Lett, 3(8): 1067–1071. CrossRef Freitag M, Martin Y, Misewich JA, Martel R, Avouris P (2003). Photoconductivity of single carbon nanotubes. Nano Lett, 3(8): 1067–1071. CrossRef
31.
go back to reference Kumamoto Y, Yoshida M, Ishii A, Yokoyama A, Shimada T, Kato YK (2014). Spontaneous exciton dissociation in carbon nanotubes. Phys Rev Lett, 112(11): 117401. Kumamoto Y, Yoshida M, Ishii A, Yokoyama A, Shimada T, Kato YK (2014). Spontaneous exciton dissociation in carbon nanotubes. Phys Rev Lett, 112(11): 117401.
32.
go back to reference Ding L, Wang S, Zhang Z, Zeng Q, Wang Z, Pei T, Yang L, Liang X, Shen J, Chen Q, Cui R (2009). Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. Nano Lett, 9(12): 4209–4214. CrossRef Ding L, Wang S, Zhang Z, Zeng Q, Wang Z, Pei T, Yang L, Liang X, Shen J, Chen Q, Cui R (2009). Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. Nano Lett, 9(12): 4209–4214. CrossRef
33.
go back to reference Wang S, Zhang L, Zhang Z, Ding L, Zeng Q, Wang Z, Liang X, Gao M, Shen J, Xu H, Chen Q (2009). Photovoltaic effects in asymmetrically contacted CNT barrier-free bipolar diode. J Phys Chem C, 113(17): 6891–6893. CrossRef Wang S, Zhang L, Zhang Z, Ding L, Zeng Q, Wang Z, Liang X, Gao M, Shen J, Xu H, Chen Q (2009). Photovoltaic effects in asymmetrically contacted CNT barrier-free bipolar diode. J Phys Chem C, 113(17): 6891–6893. CrossRef
34.
go back to reference Zhou C, Wang S, Sun J, Wei N, Yang L, Zhang Z, Liao J, Peng LM (2013). Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles. Appl Phys Lett, 102(10): 103102. Zhou C, Wang S, Sun J, Wei N, Yang L, Zhang Z, Liao J, Peng LM (2013). Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles. Appl Phys Lett, 102(10): 103102.
35.
go back to reference Huang H, Zhang D, Wei N, Wang S, Peng LM (2017). Plasmon-induced enhancement of infrared detection using a carbon nanotube diode. Adv Optical Mater, 5(6): 1600865. CrossRef Huang H, Zhang D, Wei N, Wang S, Peng LM (2017). Plasmon-induced enhancement of infrared detection using a carbon nanotube diode. Adv Optical Mater, 5(6): 1600865. CrossRef
36.
go back to reference Liang S, Ma Z, Wu G, Wei N, Huang L, Huang H, Liu H, Wang S, Peng LM (2016). Microcavity-integrated carbon nanotube photodetectors. ACS Nano, 10(7): 6963–6971. CrossRef Liang S, Ma Z, Wu G, Wei N, Huang L, Huang H, Liu H, Wang S, Peng LM (2016). Microcavity-integrated carbon nanotube photodetectors. ACS Nano, 10(7): 6963–6971. CrossRef
37.
go back to reference Abdula D, Shim M (2008). Performance and photovoltaic response of polymer-doped carbon nanotube p–n diodes. ACS Nano, 2(10): 2154–2159. CrossRef Abdula D, Shim M (2008). Performance and photovoltaic response of polymer-doped carbon nanotube p–n diodes. ACS Nano, 2(10): 2154–2159. CrossRef
38.
go back to reference Chen C, Song C, Yang J, Chen D, Zhu W, Liao C, Dong X, Liu X, Wei L, Hu N, He R (2017). Intramolecular pin junction photovoltaic device based on selectively doped carbon nanotubes. Nano Energy, 32: 280–286. CrossRef Chen C, Song C, Yang J, Chen D, Zhu W, Liao C, Dong X, Liu X, Wei L, Hu N, He R (2017). Intramolecular pin junction photovoltaic device based on selectively doped carbon nanotubes. Nano Energy, 32: 280–286. CrossRef
39.
go back to reference Chen C, Lu Y, Kong ES, Zhang YF, Lee ST (2008). Nanowelded carbon-nanotube-based solar microcells. Small, 4(9): 1313–1318. CrossRef Chen C, Lu Y, Kong ES, Zhang YF, Lee ST (2008). Nanowelded carbon-nanotube-based solar microcells. Small, 4(9): 1313–1318. CrossRef
40.
go back to reference Huang H, Wang F, Liu Y, Wang S, Peng LM (2017). Plasmonic enhanced performance of an infrared detector based on carbon nanotube films. ACS Appl Mater Interfaces, 9(14): 12743–12749. CrossRef Huang H, Wang F, Liu Y, Wang S, Peng LM (2017). Plasmonic enhanced performance of an infrared detector based on carbon nanotube films. ACS Appl Mater Interfaces, 9(14): 12743–12749. CrossRef
41.
go back to reference Zhou H, Wang J, Ji C, Liu X, Han J, Yang M, Gou J, Xu J, Jiang Y (2019). Polarimetric vis-NIR photodetector based on self-aligned single-walled carbon nanotubes. Carbon, 143: 844–850. CrossRef Zhou H, Wang J, Ji C, Liu X, Han J, Yang M, Gou J, Xu J, Jiang Y (2019). Polarimetric vis-NIR photodetector based on self-aligned single-walled carbon nanotubes. Carbon, 143: 844–850. CrossRef
42.
go back to reference Lu R, Li Z, Xu G, Wu JZ (2009). Suspending single-wall carbon nanotube thin film infrared bolometers on microchannels. Appl Phys Lett ,94(16): 163110. Lu R, Li Z, Xu G, Wu JZ (2009). Suspending single-wall carbon nanotube thin film infrared bolometers on microchannels. Appl Phys Lett ,94(16): 163110.
43.
go back to reference Fernandes GE, Ho Kim J, Chin M, Dhar N, Xu J (2014). Carbon nanotube microbolometers on suspended silicon nitride via vertical fabrication procedure. Appl Phys Lett, 104(20): 201115. Fernandes GE, Ho Kim J, Chin M, Dhar N, Xu J (2014). Carbon nanotube microbolometers on suspended silicon nitride via vertical fabrication procedure. Appl Phys Lett, 104(20): 201115.
44.
go back to reference Liu Y, Yin J, Wang P, Hu Q, Wang Y, Xie Y, Zhao Z, Dong Z, Zhu JL, Chu W, Yang N, Wei J, Ma W, Sun JL (2018). High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films. ACS Appl Mater Interfaces, 10(42): 36304–36311. CrossRef Liu Y, Yin J, Wang P, Hu Q, Wang Y, Xie Y, Zhao Z, Dong Z, Zhu JL, Chu W, Yang N, Wei J, Ma W, Sun JL (2018). High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films. ACS Appl Mater Interfaces, 10(42): 36304–36311. CrossRef
45.
go back to reference Nanot S, Cummings AW, Pint CL, Ikeuchi A, Akiho T, Sueoka K, Hauge RH, Léonard F, Kono J (2013). Broadband, polarization-sensitive photodetector based on optically-thick films of macroscopically long, dense and aligned carbon nanotubes. Sci Rep, 3(1): 1–7. CrossRef Nanot S, Cummings AW, Pint CL, Ikeuchi A, Akiho T, Sueoka K, Hauge RH, Léonard F, Kono J (2013). Broadband, polarization-sensitive photodetector based on optically-thick films of macroscopically long, dense and aligned carbon nanotubes. Sci Rep, 3(1): 1–7. CrossRef
46.
go back to reference He X, Wang X, Nanot S, Cong K, Jiang Q, Kane AA, Goldsmith JE, Hauge RH, Léonard F, Kono J (2013) Photothermoelectric p–n junction photodetector with intrinsic broadband polarimetry based on macroscopic carbon nanotube films. ACS Nano 7(8): 7271–7277. CrossRef He X, Wang X, Nanot S, Cong K, Jiang Q, Kane AA, Goldsmith JE, Hauge RH, Léonard F, Kono J (2013) Photothermoelectric p–n junction photodetector with intrinsic broadband polarimetry based on macroscopic carbon nanotube films. ACS Nano 7(8): 7271–7277. CrossRef
47.
go back to reference Straus DA, Tzolov M, Kuo TF, Yin A, Cardimona DA, Xu JM (2006). The carbon nanotube-silicon heterojunction as infrared detector. Photonics for Space Environments XI. International Society for Optics and Photonics, 6308: 63080Q. Straus DA, Tzolov M, Kuo TF, Yin A, Cardimona DA, Xu JM (2006). The carbon nanotube-silicon heterojunction as infrared detector. Photonics for Space Environments XI. International Society for Optics and Photonics, 6308: 63080Q.
48.
go back to reference Jia Y, Wei J, Wang K, Cao A, Shu Q, Gui X, Zhu Y, Zhuang D, Zhang G, Ma B, Wang L(2008). Nanotube-silicon heterojunction solar cells. Adv Mater, 20(23): 4594–4598. Jia Y, Wei J, Wang K, Cao A, Shu Q, Gui X, Zhu Y, Zhuang D, Zhang G, Ma B, Wang L(2008). Nanotube-silicon heterojunction solar cells. Adv Mater, 20(23): 4594–4598.
49.
go back to reference Tune DD, Flavel BS (2018). Advances in carbon nanotube–silicon heterojunction solar cells. Adv Energy Mater, 8(15): 1703241. CrossRef Tune DD, Flavel BS (2018). Advances in carbon nanotube–silicon heterojunction solar cells. Adv Energy Mater, 8(15): 1703241. CrossRef
50.
go back to reference An Y, Rao H, Bosman G, Ural A (2012). Characterization of carbon nanotube film-silicon Schottky barrier photodetectors. J Vacuum Sci Tech B, 30(2): 021805. An Y, Rao H, Bosman G, Ural A (2012). Characterization of carbon nanotube film-silicon Schottky barrier photodetectors. J Vacuum Sci Tech B, 30(2): 021805.
51.
go back to reference Scagliotti M, Salvato M, De Crescenzi M, Boscardin M, Castrucci P (2018). Influence of the contact geometry on single-walled carbon nanotube/Si photodetector response. Appl Nanosci, 8(5): 1053–1058. CrossRef Scagliotti M, Salvato M, De Crescenzi M, Boscardin M, Castrucci P (2018). Influence of the contact geometry on single-walled carbon nanotube/Si photodetector response. Appl Nanosci, 8(5): 1053–1058. CrossRef
52.
go back to reference Salvato M, Scagliotti M, De Crescenzi M, Boscardin M, Attanasio C, Avallone G, Cirillo C, Prosposito P, De Matteis F, Messi R, Castrucci P (2019). Time response in carbon nanotube/Si based photodetectors. Sens Actuator A, 292: 71–76. CrossRef Salvato M, Scagliotti M, De Crescenzi M, Boscardin M, Attanasio C, Avallone G, Cirillo C, Prosposito P, De Matteis F, Messi R, Castrucci P (2019). Time response in carbon nanotube/Si based photodetectors. Sens Actuator A, 292: 71–76. CrossRef
53.
go back to reference Salvato M, Scagliotti M, De Crescenzi M, Crivellari M, Prosposito P, Cacciotti I, Castrucci P (2017). Single walled carbon nanotube/Si heterojunctions for high responsivity photodetectors. Nanotechnology, 28(43): 435201. Salvato M, Scagliotti M, De Crescenzi M, Crivellari M, Prosposito P, Cacciotti I, Castrucci P (2017). Single walled carbon nanotube/Si heterojunctions for high responsivity photodetectors. Nanotechnology, 28(43): 435201.
54.
go back to reference Riaz A, Alam A, Selvasundaram PB, Dehm S, Hennrich F, Kappes MM, Krupke R (2019). Near-infrared photoresponse of waveguide-integrated carbon nanotube-silicon junctions. Adv Electron Mater, 5(1): 1800265. CrossRef Riaz A, Alam A, Selvasundaram PB, Dehm S, Hennrich F, Kappes MM, Krupke R (2019). Near-infrared photoresponse of waveguide-integrated carbon nanotube-silicon junctions. Adv Electron Mater, 5(1): 1800265. CrossRef
55.
go back to reference Kim YL, Jung HY, Park S, Li B, Liu F, Hao J, Kwon YK, Jung YJ, Kar S (2014). Voltage-switchable photocurrents in single-walled carbon nanotube–silicon junctions for analog and digital optoelectronics. Nature Photonics, 8: 239–243. CrossRef Kim YL, Jung HY, Park S, Li B, Liu F, Hao J, Kwon YK, Jung YJ, Kar S (2014). Voltage-switchable photocurrents in single-walled carbon nanotube–silicon junctions for analog and digital optoelectronics. Nature Photonics, 8: 239–243. CrossRef
56.
go back to reference Chen HL, Cattoni A, De Lépinau R, Walker AW, Höhn O, Lackner D, Siefer G, Faustini M, Vandamme N, Goffard J, Behaghel B, Dupuis C, Bardou N, Dimroth F, Collin S (2019). A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror. Nature Energy, 4: 761–767. CrossRef Chen HL, Cattoni A, De Lépinau R, Walker AW, Höhn O, Lackner D, Siefer G, Faustini M, Vandamme N, Goffard J, Behaghel B, Dupuis C, Bardou N, Dimroth F, Collin S (2019). A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror. Nature Energy, 4: 761–767. CrossRef
57.
go back to reference Liang C W, Roth S (2008). Electrical and optical transport of GaAs/carbon nanotube heterojunctions. Nano Lett, 8(7): 1809–1812. CrossRef Liang C W, Roth S (2008). Electrical and optical transport of GaAs/carbon nanotube heterojunctions. Nano Lett, 8(7): 1809–1812. CrossRef
58.
go back to reference Li H, Loke WK, Zhang Q, Yoon SF (2010). Physical device modeling of carbon nanotube/GaAs photovoltaic cells. Appl Phys Lett, 96: 043501. Li H, Loke WK, Zhang Q, Yoon SF (2010). Physical device modeling of carbon nanotube/GaAs photovoltaic cells. Appl Phys Lett, 96: 043501.
59.
go back to reference Huo TT, Yin H, Zhou DY, Sun LJ, Tian T, Wei H, Hu NT, Yang Z, Zhang YF, Su YJ (2020). A self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions. ACS Sustainable Chem Eng, 8(41): 15532–15539. CrossRef Huo TT, Yin H, Zhou DY, Sun LJ, Tian T, Wei H, Hu NT, Yang Z, Zhang YF, Su YJ (2020). A self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions. ACS Sustainable Chem Eng, 8(41): 15532–15539. CrossRef
60.
go back to reference Li G, Suja M, Chen M, Bekyarova E, Haddon RC, Liu J, Itkis ME (2017). Visible blind UV photodetector based on single-walled carbon nanotube thin film-ZnO vertical heterostructure. ACS Appl Mater Interfaces, 9: 37094–37104. CrossRef Li G, Suja M, Chen M, Bekyarova E, Haddon RC, Liu J, Itkis ME (2017). Visible blind UV photodetector based on single-walled carbon nanotube thin film-ZnO vertical heterostructure. ACS Appl Mater Interfaces, 9: 37094–37104. CrossRef
61.
go back to reference Yang M, Zhu JL, Liu W, Sun JL (2011). Novel photodetectors based on double-walled carbon nanotube film/TiO 2 nanotube array heterodimensional contacts. Nano Res, 4(9): 901–907. CrossRef Yang M, Zhu JL, Liu W, Sun JL (2011). Novel photodetectors based on double-walled carbon nanotube film/TiO 2 nanotube array heterodimensional contacts. Nano Res, 4(9): 901–907. CrossRef
62.
go back to reference Chuang CHM, Brown PR, Bulović V, Bawendi MG (2014). Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature Mater, 13: 796–801. CrossRef Chuang CHM, Brown PR, Bulović V, Bawendi MG (2014). Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature Mater, 13: 796–801. CrossRef
63.
go back to reference Yang ZY, Fan JZ, Proppe AH, de Arquer FPG, Rossouw D, Voznyy O, Lan XZ, Liu M, Walters G, Quintero-Bermudez R, Sun B, Hoogland S, Botton GA, Kelley SO, Sargent EH (2017). Mixed-quantum-dot solar cells. Nature Commun, 8: 1325. Yang ZY, Fan JZ, Proppe AH, de Arquer FPG, Rossouw D, Voznyy O, Lan XZ, Liu M, Walters G, Quintero-Bermudez R, Sun B, Hoogland S, Botton GA, Kelley SO, Sargent EH (2017). Mixed-quantum-dot solar cells. Nature Commun, 8: 1325.
64.
go back to reference Yang XK, Yang J, Khan J, Deng H, Yuan SJ, Zhang J, Xia Y, Deng F, Zhou X, Umar F, Jin ZX, Song HS, Cheng C, Sabry M, Tang J (2020). Hydroiodic acid additive enhanced the performance and stability of PbS-QDs solar cells via suppressing hydroxyl ligand. Nano-Micro Lett, 12: 37. CrossRef Yang XK, Yang J, Khan J, Deng H, Yuan SJ, Zhang J, Xia Y, Deng F, Zhou X, Umar F, Jin ZX, Song HS, Cheng C, Sabry M, Tang J (2020). Hydroiodic acid additive enhanced the performance and stability of PbS-QDs solar cells via suppressing hydroxyl ligand. Nano-Micro Lett, 12: 37. CrossRef
65.
go back to reference Biswas C, Jeong H, Jeong MS, Yu WJ, Pribat D, Lee YH (2013). Quantum dot–carbon nanotube hybrid phototransistor with an enhanced optical stark effect. Adv Funct Mater, 23(29): 3653–3660. CrossRef Biswas C, Jeong H, Jeong MS, Yu WJ, Pribat D, Lee YH (2013). Quantum dot–carbon nanotube hybrid phototransistor with an enhanced optical stark effect. Adv Funct Mater, 23(29): 3653–3660. CrossRef
66.
go back to reference Gao L, Dong D, He J, Qiao K, Cao F, Li M, Liu H, Cheng YB, Tang J, Song HS (2014). Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film. Appl Phys Lett, 105(15): 153702. Gao L, Dong D, He J, Qiao K, Cao F, Li M, Liu H, Cheng YB, Tang J, Song HS (2014). Wearable and sensitive heart-rate detectors based on PbS quantum dot and multiwalled carbon nanotube blend film. Appl Phys Lett, 105(15): 153702.
67.
go back to reference Ka I, Le Borgne V, Ma D, El Khakani MA (2012). Pulsed laser ablation based direct synthesis of single-wall carbon nanotube/PbS quantum dot nanohybrids exhibiting strong, spectrally wide and fast photoresponse. Adv Mater, 24: 6289–6294. CrossRef Ka I, Le Borgne V, Ma D, El Khakani MA (2012). Pulsed laser ablation based direct synthesis of single-wall carbon nanotube/PbS quantum dot nanohybrids exhibiting strong, spectrally wide and fast photoresponse. Adv Mater, 24: 6289–6294. CrossRef
68.
go back to reference Ka I, Le Borgne V, Fujisawa K, Hayashi T, Kim YA, Endo M, DL Ma, El Khakani MA (2016). Multiple exciton generation induced enhancement of the photoresponse of pulsed-laser-ablation synthesized single-wall-carbon-nanotube/PbS-quantum-dots nanohybrids. Sci Rep, 6(1): 1–11. CrossRef Ka I, Le Borgne V, Fujisawa K, Hayashi T, Kim YA, Endo M, DL Ma, El Khakani MA (2016). Multiple exciton generation induced enhancement of the photoresponse of pulsed-laser-ablation synthesized single-wall-carbon-nanotube/PbS-quantum-dots nanohybrids. Sci Rep, 6(1): 1–11. CrossRef
69.
go back to reference Tang Y, Fang H, Long M, Chen G (2018). Significant enhancement of single-walled carbon nanotube based infrared photodetector using PbS quantum dots. IEEE J Sel Top Quant, 24: 1–8. CrossRef Tang Y, Fang H, Long M, Chen G (2018). Significant enhancement of single-walled carbon nanotube based infrared photodetector using PbS quantum dots. IEEE J Sel Top Quant, 24: 1–8. CrossRef
70.
go back to reference Fujisawa K, Ka I, Le Borgne V, Kang CS, El Khakani MA (2016). Elucidating the local interfacial structure of highly photoresponsive carbon nanotubes/PbS-QDs based hanohybrids grown by pulsed laser deposition. Carbon, 96: 145–152. CrossRef Fujisawa K, Ka I, Le Borgne V, Kang CS, El Khakani MA (2016). Elucidating the local interfacial structure of highly photoresponsive carbon nanotubes/PbS-QDs based hanohybrids grown by pulsed laser deposition. Carbon, 96: 145–152. CrossRef
71.
go back to reference Ka I, Le Borgne V, Fujisawa K, Hayashi T, Kim YA, Endo M, Ma DL. El Khakania MA (2020). PbS-quantum-dots/double-wall-carbon-nanotubes nanohybrid based photodetectors with extremely fast response and high responsivity. Mater Today Energy, 16: 100378. Ka I, Le Borgne V, Fujisawa K, Hayashi T, Kim YA, Endo M, Ma DL. El Khakania MA (2020). PbS-quantum-dots/double-wall-carbon-nanotubes nanohybrid based photodetectors with extremely fast response and high responsivity. Mater Today Energy, 16: 100378.
72.
go back to reference Zheng J, Luo C, Shabbir B, Wang C, Mao W, Zhang Y, Huang Y, Dong Y, Jasieniak JJ, Pan C, Bao Q (2019). Flexible photodetectors based on reticulated SWNT/perovskite quantum dot heterostructures with ultrahigh durability. Nanoscale, 11(16): 8020–8026. CrossRef Zheng J, Luo C, Shabbir B, Wang C, Mao W, Zhang Y, Huang Y, Dong Y, Jasieniak JJ, Pan C, Bao Q (2019). Flexible photodetectors based on reticulated SWNT/perovskite quantum dot heterostructures with ultrahigh durability. Nanoscale, 11(16): 8020–8026. CrossRef
73.
go back to reference Spina M, Nafradi B, Tóháti H M, Kamarás K, Bonvin E, Gaal R, Forró L, Horvátha E (2016). Ultrasensitive 1D field-effect phototransistors: CH 3NH 3PbI 3 nanowire sensitized individual carbon nanotubes. Nanoscale, 8(9): 4888–4893. CrossRef Spina M, Nafradi B, Tóháti H M, Kamarás K, Bonvin E, Gaal R, Forró L, Horvátha E (2016). Ultrasensitive 1D field-effect phototransistors: CH 3NH 3PbI 3 nanowire sensitized individual carbon nanotubes. Nanoscale, 8(9): 4888–4893. CrossRef
74.
go back to reference Sundaram RS, Engel M, Lombardo A, Krupke R, Ferrari AC, Avouris Ph, Steiner M (2013). Electroluminescence in single layer MoS 2. Nano Lett, 13(4): 1416–1421. CrossRef Sundaram RS, Engel M, Lombardo A, Krupke R, Ferrari AC, Avouris Ph, Steiner M (2013). Electroluminescence in single layer MoS 2. Nano Lett, 13(4): 1416–1421. CrossRef
75.
go back to reference Yang Z, Hong H, Liu F, Liu Y, Su M, Huang H, Liu K, Liang X, Yu WJ, Q. Vu A, Liu X, Liao L (2019). High-performance photoinduced memory with ultrafast charge transfer based on MoS 2/SWCNTs network van der Waals heterostructure, Small, 15: 1804661. Yang Z, Hong H, Liu F, Liu Y, Su M, Huang H, Liu K, Liang X, Yu WJ, Q. Vu A, Liu X, Liao L (2019). High-performance photoinduced memory with ultrafast charge transfer based on MoS 2/SWCNTs network van der Waals heterostructure, Small, 15: 1804661.
76.
go back to reference Zhang Z, Huang W, Xie Z, Hu W, Peng P, Huang G. (2017). Noncovalent functionalization of monolayer MoS 2 with carbon nanotubes: tuning electronic structure and photocatalytic activity. J Phys Chem C, 121: 21921–21929. CrossRef Zhang Z, Huang W, Xie Z, Hu W, Peng P, Huang G. (2017). Noncovalent functionalization of monolayer MoS 2 with carbon nanotubes: tuning electronic structure and photocatalytic activity. J Phys Chem C, 121: 21921–21929. CrossRef
77.
go back to reference Jariwala D, Sangwan VK, Wu CC, Prabhumirashi PL, Geier ML, Marks TJ, Lauhon LJ, Hersam MC (2013). Gate-tunable carbon nanotube–MoS 2 heterojunction pn diode. Proc Nat Acad Sci, 110: 18076–18080. CrossRef Jariwala D, Sangwan VK, Wu CC, Prabhumirashi PL, Geier ML, Marks TJ, Lauhon LJ, Hersam MC (2013). Gate-tunable carbon nanotube–MoS 2 heterojunction pn diode. Proc Nat Acad Sci, 110: 18076–18080. CrossRef
78.
go back to reference Nguyen VT, Yim W, Park SJ, Son BH, Kim YC, Cao TT, Sim Y, Moon YJ, Nguyen VC, Seong MJ, Kim SK, Ahn YH, Lee S, Park JY (2018). Phototransistors with negative or ambipolar photoresponse based on as-grown heterostructures of single-walled carbon nanotube and MoS 2. Adv Funct Mater, 28: 1802572. CrossRef Nguyen VT, Yim W, Park SJ, Son BH, Kim YC, Cao TT, Sim Y, Moon YJ, Nguyen VC, Seong MJ, Kim SK, Ahn YH, Lee S, Park JY (2018). Phototransistors with negative or ambipolar photoresponse based on as-grown heterostructures of single-walled carbon nanotube and MoS 2. Adv Funct Mater, 28: 1802572. CrossRef
79.
go back to reference Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews AM, Schrenk W, Strasser G, Mueller T (2012). Microcavity-integrated graphene photodetector. Nano Lett, 12: 2773–2777. CrossRef Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews AM, Schrenk W, Strasser G, Mueller T (2012). Microcavity-integrated graphene photodetector. Nano Lett, 12: 2773–2777. CrossRef
80.
go back to reference Liu Y, Cheng R, Liao L, Zhou HL, Bai JW, Liu G, Liu LX, Huang Y, Duan XF (2011). Plasmon resonance enhanced multicolour photodetection by graphene. Nature Commun, 2: 579. CrossRef Liu Y, Cheng R, Liao L, Zhou HL, Bai JW, Liu G, Liu LX, Huang Y, Duan XF (2011). Plasmon resonance enhanced multicolour photodetection by graphene. Nature Commun, 2: 579. CrossRef
81.
go back to reference Gan XT, Shiue RJ, Gao YD, Meric I, Heinz TF, Shepard K, Hone J, Assefa S, Englund D (2013). Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photonics, 7: 883–887. CrossRef Gan XT, Shiue RJ, Gao YD, Meric I, Heinz TF, Shepard K, Hone J, Assefa S, Englund D (2013). Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photonics, 7: 883–887. CrossRef
82.
go back to reference Wang XM, Cheng ZZ, Xu K, Tsang HK, Xu JB (2013). High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photonics, 7: 888–891. CrossRef Wang XM, Cheng ZZ, Xu K, Tsang HK, Xu JB (2013). High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photonics, 7: 888–891. CrossRef
83.
go back to reference Kim CO, Kim S, Shin DH, Kang SS, Kim JM, Jang CW, Joo SS, Lee JS, Kim JH, Choi SH, Hwang E (2014). High photoresponsivity in an all-graphene p–n vertical junction photodetector. Nature Commun, 5: 3249. CrossRef Kim CO, Kim S, Shin DH, Kang SS, Kim JM, Jang CW, Joo SS, Lee JS, Kim JH, Choi SH, Hwang E (2014). High photoresponsivity in an all-graphene p–n vertical junction photodetector. Nature Commun, 5: 3249. CrossRef
84.
go back to reference Liu CH, Chang YC, Norris TB, Zhong ZH (2014). Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nature Nanotechnol, 9: 273–278. CrossRef Liu CH, Chang YC, Norris TB, Zhong ZH (2014). Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nature Nanotechnol, 9: 273–278. CrossRef
85.
go back to reference Zhang YZ, Liu T, Meng B, Li XH, Liang GZ, Hu XN, Wang QJ (2013). Broadband high photoresponse from pure monolayer graphene photodetector. Nature Commun, 4: 1811. CrossRef Zhang YZ, Liu T, Meng B, Li XH, Liang GZ, Hu XN, Wang QJ (2013). Broadband high photoresponse from pure monolayer graphene photodetector. Nature Commun, 4: 1811. CrossRef
86.
go back to reference Chen ZF, Cheng ZZ, Wang JQ, Wan X, Shu C, Tsang HK, Ho HP, Xu JB (2015). High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode. Adv Optical Mater, 3: 1207–1214. CrossRef Chen ZF, Cheng ZZ, Wang JQ, Wan X, Shu C, Tsang HK, Ho HP, Xu JB (2015). High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode. Adv Optical Mater, 3: 1207–1214. CrossRef
87.
go back to reference Yu T, Wang F, Xu Y, Ma LL, Pi XD, Yang DR (2016). Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors. Adv Mater, 28(24): 4912–4919. CrossRef Yu T, Wang F, Xu Y, Ma LL, Pi XD, Yang DR (2016). Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors. Adv Mater, 28(24): 4912–4919. CrossRef
88.
go back to reference Wu Y, Yan X, Zhang X, Ren X (2016). A monolayer graphene/GaAs nanowire array Schottky junction self-powered photodetector. Appl Phys Lett, 109: 183101. Wu Y, Yan X, Zhang X, Ren X (2016). A monolayer graphene/GaAs nanowire array Schottky junction self-powered photodetector. Appl Phys Lett, 109: 183101.
89.
go back to reference Luo LB, Chen JJ, Wang MZ, Hu H, Wu CY, Li Q, Wang L, Huang JA, Liang FX (2014). Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene Schottky junction, Adv Funct Mater, 24: 2790–2800. Luo LB, Chen JJ, Wang MZ, Hu H, Wu CY, Li Q, Wang L, Huang JA, Liang FX (2014). Near-infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene Schottky junction, Adv Funct Mater, 24: 2790–2800.
90.
go back to reference Tao ZJ, Zhou DY, Yin H, Cai BF, Huo TT, Ma J, Di ZF, Hu NT, Yang Z, Su YJ (2020). Graphene/GaAs heterojunction for highly sensitive, self-powered visible/NIR photodetectors. Mater Sci Semiconductor Proc, 111: 104989. Tao ZJ, Zhou DY, Yin H, Cai BF, Huo TT, Ma J, Di ZF, Hu NT, Yang Z, Su YJ (2020). Graphene/GaAs heterojunction for highly sensitive, self-powered visible/NIR photodetectors. Mater Sci Semiconductor Proc, 111: 104989.
91.
go back to reference Zeng LH, Wang MZ, Hu H, Nie B, Yu YQ, Wu CY, Wang L, Hu JG, Xie C, Liang FX, Luo LB (2013). Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl Mater Interfaces, 5(19): 9362–9366. CrossRef Zeng LH, Wang MZ, Hu H, Nie B, Yu YQ, Wu CY, Wang L, Hu JG, Xie C, Liang FX, Luo LB (2013). Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl Mater Interfaces, 5(19): 9362–9366. CrossRef
92.
go back to reference Kong WY, Wu GA, Wang KY, Zhang TF, Zou YF, Wang DD, Luo LB (2016). Graphene-β-Ga 2O 3 heterojunction for highly sensitive deep UV photodetector application. Adv Mater, 28(48): 10725–10731. CrossRef Kong WY, Wu GA, Wang KY, Zhang TF, Zou YF, Wang DD, Luo LB (2016). Graphene-β-Ga 2O 3 heterojunction for highly sensitive deep UV photodetector application. Adv Mater, 28(48): 10725–10731. CrossRef
93.
go back to reference Dang VQ, Trung TQ, Kim DI, Duy LT, Hwang BU, Lee DW, Kim BY, Toan LD, Lee NE (2015). Ultrahigh responsivity in graphene-ZnO nanorod hybrid UV photodetector. Small, 11(25): 3054–3065. CrossRef Dang VQ, Trung TQ, Kim DI, Duy LT, Hwang BU, Lee DW, Kim BY, Toan LD, Lee NE (2015). Ultrahigh responsivity in graphene-ZnO nanorod hybrid UV photodetector. Small, 11(25): 3054–3065. CrossRef
94.
go back to reference Nie B, Hu JG, Luo LB, Xie C, Zeng LH, Lv P, Li FZ, Jie JS, Feng M, Wu CY, Yu YQ, Yu SH (2013). Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small, 9(17): 2872–2879. CrossRef Nie B, Hu JG, Luo LB, Xie C, Zeng LH, Lv P, Li FZ, Jie JS, Feng M, Wu CY, Yu YQ, Yu SH (2013). Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small, 9(17): 2872–2879. CrossRef
95.
go back to reference Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent EH (2006). Ultrasensitive solution-cast quantum dot photodetectors. Nature, 442(7099): 180–183. CrossRef Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent EH (2006). Ultrasensitive solution-cast quantum dot photodetectors. Nature, 442(7099): 180–183. CrossRef
96.
go back to reference Sukhovatkin V, Hinds S, Brzozowski Lu, Sargent EH (2009). Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science, 324(5934): 1542–1544. CrossRef Sukhovatkin V, Hinds S, Brzozowski Lu, Sargent EH (2009). Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science, 324(5934): 1542–1544. CrossRef
97.
go back to reference Clifford JP, Konstantatos G, Johnston K W, Hoogland S, Levina L, Sargent EH (2009). Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nature Nanotechnol, 4(1): 40–44. CrossRef Clifford JP, Konstantatos G, Johnston K W, Hoogland S, Levina L, Sargent EH (2009). Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nature Nanotechnol, 4(1): 40–44. CrossRef
98.
go back to reference Su Y, Lu X, Xie M, Geng HJ, Wei H, Yang Z, Zhang YF (2013). A one-pot synthesis of reduced graphene oxide-Cu 2S quantum dot hybrids for optoelectronic devices. Nanoscale, 5: 8889–8893. CrossRef Su Y, Lu X, Xie M, Geng HJ, Wei H, Yang Z, Zhang YF (2013). A one-pot synthesis of reduced graphene oxide-Cu 2S quantum dot hybrids for optoelectronic devices. Nanoscale, 5: 8889–8893. CrossRef
99.
go back to reference Jiang G, Su YJ, Li M, Hu J, Zhao B, Yang Z, Wei H (2016). Synthesis and optoelectronic properties of reduced graphene oxide/InP quantum dot hybrids. RSC Adv, 6: 97861–97864. CrossRef Jiang G, Su YJ, Li M, Hu J, Zhao B, Yang Z, Wei H (2016). Synthesis and optoelectronic properties of reduced graphene oxide/InP quantum dot hybrids. RSC Adv, 6: 97861–97864. CrossRef
100.
go back to reference Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer FPG, Gatti F, Koppens FHL (2012). Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotechol, 7: 363–368. CrossRef Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer FPG, Gatti F, Koppens FHL (2012). Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotechol, 7: 363–368. CrossRef
101.
go back to reference Zhang DY, Gan L, Cao Y, Wang Q, Qi LM, Guo XF (2012). Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor. Adv Mater, 24: 2715–2720. CrossRef Zhang DY, Gan L, Cao Y, Wang Q, Qi LM, Guo XF (2012). Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor. Adv Mater, 24: 2715–2720. CrossRef
102.
go back to reference Che Y, Zhang Y, Cao X, Zhang H, Song X, Cao M, Yu Y, Dai H, Yang J, Zhang G, Yao J (2017). Ambipolar graphene–quantum dot hybrid vertical photodetector with a graphene electrode. ACS Appl Mater Interfaces, 9(37): 32001–32007. CrossRef Che Y, Zhang Y, Cao X, Zhang H, Song X, Cao M, Yu Y, Dai H, Yang J, Zhang G, Yao J (2017). Ambipolar graphene–quantum dot hybrid vertical photodetector with a graphene electrode. ACS Appl Mater Interfaces, 9(37): 32001–32007. CrossRef
103.
go back to reference Nian Q, Gao L, Hu YW, Deng BW, Tang J, Cheng GJ (2017). Graphene/PbS-quantum dots/graphene sandwich structures enabled by laser shock imprinting for high performance photodetectors. ACS Appl Mater Interfaces, 9(51): 44715–44723. CrossRef Nian Q, Gao L, Hu YW, Deng BW, Tang J, Cheng GJ (2017). Graphene/PbS-quantum dots/graphene sandwich structures enabled by laser shock imprinting for high performance photodetectors. ACS Appl Mater Interfaces, 9(51): 44715–44723. CrossRef
104.
go back to reference Kramer NJ, Schramke KS, Kortshagen UR (2015). Plasmonic properties of silicon nanocrystals doped with boron and phosphorus. Nano Lett, 15: 5597–5603. CrossRef Kramer NJ, Schramke KS, Kortshagen UR (2015). Plasmonic properties of silicon nanocrystals doped with boron and phosphorus. Nano Lett, 15: 5597–5603. CrossRef
105.
go back to reference Zhou S, Pi XD; Ni ZY, D Y, Jiang YY, Jin CH, Delerue C, Yang DR, Nozaki T (2015). Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals. ACS Nano, 9(1): 378–386. CrossRef Zhou S, Pi XD; Ni ZY, D Y, Jiang YY, Jin CH, Delerue C, Yang DR, Nozaki T (2015). Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals. ACS Nano, 9(1): 378–386. CrossRef
106.
go back to reference Ni Z, Ma L, Du S, Xu Y, Yuan M, Fang H, Wang Z, Xu M, Li D, Yang J, Hu W, Pi X, Yang D (2017). Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano, 11(10): 9854–9862. CrossRef Ni Z, Ma L, Du S, Xu Y, Yuan M, Fang H, Wang Z, Xu M, Li D, Yang J, Hu W, Pi X, Yang D (2017). Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano, 11(10): 9854–9862. CrossRef
107.
go back to reference Hu AQ, Tian HJ, Liu QL, Wang L, Wang L, He XY, Luo Y, Guo X (2019). Graphene on self-assembled InGaN quantum dots enabling ultrahighly sensitive photodetectors. Adv Optical Mater, 7(8): 1801792. CrossRef Hu AQ, Tian HJ, Liu QL, Wang L, Wang L, He XY, Luo Y, Guo X (2019). Graphene on self-assembled InGaN quantum dots enabling ultrahighly sensitive photodetectors. Adv Optical Mater, 7(8): 1801792. CrossRef
108.
go back to reference Sun T, Wang Y, Yu W, Wang Y, Dai Z, Liu Z, Shivananju B, Zhang Y, Fu K, Shabbir B, Ma W, Li S, Bao Q (2017). Flexible broadband graphene photodetectors enhanced by plasmonic Cu 3-xP colloidal nanocrystals. Small, 13(42): 1701881. CrossRef Sun T, Wang Y, Yu W, Wang Y, Dai Z, Liu Z, Shivananju B, Zhang Y, Fu K, Shabbir B, Ma W, Li S, Bao Q (2017). Flexible broadband graphene photodetectors enhanced by plasmonic Cu 3-xP colloidal nanocrystals. Small, 13(42): 1701881. CrossRef
109.
go back to reference Gong MG, Sakidja R, Liu QF, Goul R, Ewing D, Casper M, Stramel A, Elliot A, Wu JZ (2018). Broadband photodetectors enabled by localized surface plasmonic resonance in doped iron pyrite nanocrystals. Adv Optical Mater, 6(8): 1701241. CrossRef Gong MG, Sakidja R, Liu QF, Goul R, Ewing D, Casper M, Stramel A, Elliot A, Wu JZ (2018). Broadband photodetectors enabled by localized surface plasmonic resonance in doped iron pyrite nanocrystals. Adv Optical Mater, 6(8): 1701241. CrossRef
110.
go back to reference Pan R, Li HY, Wang J, Jin X, Li QH, Wu ZM, Gou J, Jiang YD, Song YL (2018). High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid. Part Part Syst Charact, 35(4): 1700304. CrossRef Pan R, Li HY, Wang J, Jin X, Li QH, Wu ZM, Gou J, Jiang YD, Song YL (2018). High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid. Part Part Syst Charact, 35(4): 1700304. CrossRef
111.
go back to reference Kwak DH, Lim DH, Ra HS, Ramasamy P, Lee JS (2016). High performance hybrid graphene-CsPbBr 3-xI x perovskite nanocrystal photodetector. RSC Adv, 6: 65252–65256. CrossRef Kwak DH, Lim DH, Ra HS, Ramasamy P, Lee JS (2016). High performance hybrid graphene-CsPbBr 3-xI x perovskite nanocrystal photodetector. RSC Adv, 6: 65252–65256. CrossRef
112.
go back to reference Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010). Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnol, 5: 722–726. CrossRef Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010). Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnol, 5: 722–726. CrossRef
113.
go back to reference Zhang W, Chuu CP, Huang JK, Chen CH, Tsai ML, Chang YH, Liang CT, Chen YZ, Chueh YL, He JH, Chou MY, Li LJ (2014). Ultrahigh-gain photodetectors based on atomically thin graphene-MoS 2 heterostructures. Sci Rep, 4: 3826. CrossRef Zhang W, Chuu CP, Huang JK, Chen CH, Tsai ML, Chang YH, Liang CT, Chen YZ, Chueh YL, He JH, Chou MY, Li LJ (2014). Ultrahigh-gain photodetectors based on atomically thin graphene-MoS 2 heterostructures. Sci Rep, 4: 3826. CrossRef
114.
go back to reference Li X, Lin S, Lin X, Xu Z, Wang P, Zhang S, Zhong H, Xu W, Wu Z, Fang W (2016). Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector. Opt Express, 24(1): 134–145. CrossRef Li X, Lin S, Lin X, Xu Z, Wang P, Zhang S, Zhong H, Xu W, Wu Z, Fang W (2016). Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector. Opt Express, 24(1): 134–145. CrossRef
115.
go back to reference Li H, Li X, Park JH, Tao L, Kim KK, Lee YH, Xu JB (2019). Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self-powered high-detectivity photodetectors. Nano Energy, 57: 214–221. CrossRef Li H, Li X, Park JH, Tao L, Kim KK, Lee YH, Xu JB (2019). Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self-powered high-detectivity photodetectors. Nano Energy, 57: 214–221. CrossRef
116.
go back to reference Kang B, Kim Y, Yoo WJ, Lee C (2018). Ultrahigh photoresponsive device based on ReS 2/graphene heterostructure. Small, 14(45): 1802593. CrossRef Kang B, Kim Y, Yoo WJ, Lee C (2018). Ultrahigh photoresponsive device based on ReS 2/graphene heterostructure. Small, 14(45): 1802593. CrossRef
117.
go back to reference Yu WJ, Liu Y, Zhou H, Yin A, Li Z, Huang Y, Duan XF (2013). Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotechnol, 8(12): 952–958. CrossRef Yu WJ, Liu Y, Zhou H, Yin A, Li Z, Huang Y, Duan XF (2013). Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotechnol, 8(12): 952–958. CrossRef
118.
go back to reference Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD, Mishchenko A, Kim YJ, Gorbachev RV, Georgiou T, Morozov SV, Grigorenko AN (2013). Strong light-matter interactions in heterostructures of atomically thin films. Science, 340: 1311–1314. CrossRef Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD, Mishchenko A, Kim YJ, Gorbachev RV, Georgiou T, Morozov SV, Grigorenko AN (2013). Strong light-matter interactions in heterostructures of atomically thin films. Science, 340: 1311–1314. CrossRef
119.
go back to reference Massicotte M, Schmidt P, Vialla F, Schädler KG, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij KJ, Koppens FH (2016). Picosecond photoresponse in van der Waals heterostructures. Nature Nanotechnol ,11: 42–46. CrossRef Massicotte M, Schmidt P, Vialla F, Schädler KG, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij KJ, Koppens FH (2016). Picosecond photoresponse in van der Waals heterostructures. Nature Nanotechnol ,11: 42–46. CrossRef
120.
go back to reference Long M, Liu E, Wang P, Gao A, Xia H, Luo W, Wang B, Zeng J, Fu Y, Xu K, Zhou W (2016). Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett, 16: 2254–2259. CrossRef Long M, Liu E, Wang P, Gao A, Xia H, Luo W, Wang B, Zeng J, Fu Y, Xu K, Zhou W (2016). Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett, 16: 2254–2259. CrossRef
121.
go back to reference Li A, Chen Q, Wang P, Gan Y, Qi T, Wang P, Tang F, Wu JZ, Chen R, Zhang L, Gong Y (2019). Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe/graphene/SnS p-g-n junctions. Adv Mater, 31(6): 1805656–1805664. CrossRef Li A, Chen Q, Wang P, Gan Y, Qi T, Wang P, Tang F, Wu JZ, Chen R, Zhang L, Gong Y (2019). Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe/graphene/SnS p-g-n junctions. Adv Mater, 31(6): 1805656–1805664. CrossRef
122.
go back to reference Lu R, Liu J, Luo H, Chikan V, Wu JZ (2016). Graphene/GaSe-nanosheet hybrid: towards high gain and fast photoresponse. Sci Rep, 6: 19161. CrossRef Lu R, Liu J, Luo H, Chikan V, Wu JZ (2016). Graphene/GaSe-nanosheet hybrid: towards high gain and fast photoresponse. Sci Rep, 6: 19161. CrossRef
123.
go back to reference Chen Z, Biscaras J, Shukla A (2015). A high performance graphene/few-layer InSe photodetector. Nanoscale, 7: 5981–5986. CrossRef Chen Z, Biscaras J, Shukla A (2015). A high performance graphene/few-layer InSe photodetector. Nanoscale, 7: 5981–5986. CrossRef
124.
go back to reference Luo W, Cao Y, Hu P, Cai K, Feng Q, Yan F, Yan T, Zhang X, Wang K (2015). Gate tuning of high-performance InSe-based photodetectors using graphene electrodes. Adv Optical Mater, 3: 1418–1423. CrossRef Luo W, Cao Y, Hu P, Cai K, Feng Q, Yan F, Yan T, Zhang X, Wang K (2015). Gate tuning of high-performance InSe-based photodetectors using graphene electrodes. Adv Optical Mater, 3: 1418–1423. CrossRef
125.
go back to reference Mudd GW, Svatek SA, Hague L, Makarovsky O, Kudrynskyi ZR, Mellor CJ, Beton PH, Eaves L, Novoselov KS, Kovalyuk ZD, Vdovin EE (2015). High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures. Adv Mater, 27(25): 3760–3766. CrossRef Mudd GW, Svatek SA, Hague L, Makarovsky O, Kudrynskyi ZR, Mellor CJ, Beton PH, Eaves L, Novoselov KS, Kovalyuk ZD, Vdovin EE (2015). High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures. Adv Mater, 27(25): 3760–3766. CrossRef
126.
go back to reference Kim J, Park S, Jang H, Koirala N, Lee JB, Kim UJ, Lee HS, Roh YG, Lee H, Sim S, Cha S (2017). Highly Sensitive, gate-tunable, room-temperature mid-infrared photodetection based on graphene-Bi 2Se 3 heterostructure. ACS Photonics, 4: 482–488. CrossRef Kim J, Park S, Jang H, Koirala N, Lee JB, Kim UJ, Lee HS, Roh YG, Lee H, Sim S, Cha S (2017). Highly Sensitive, gate-tunable, room-temperature mid-infrared photodetection based on graphene-Bi 2Se 3 heterostructure. ACS Photonics, 4: 482–488. CrossRef
127.
go back to reference Qiao H, Yuan J, Xu Z, Chen C, Lin S, Wang Y, Song J, Liu Y, Khan Q, Hoh HY, Pan CX (2015), Broadband photodetectors based on graphene-Bi 2T e3 heterostructure. ACS Nano. 9(2): 1886–1894. CrossRef Qiao H, Yuan J, Xu Z, Chen C, Lin S, Wang Y, Song J, Liu Y, Khan Q, Hoh HY, Pan CX (2015), Broadband photodetectors based on graphene-Bi 2T e3 heterostructure. ACS Nano. 9(2): 1886–1894. CrossRef
128.
go back to reference Li L, Kim J, Jin C, Ye GJ, Qiu DY, Felipe H, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K (2017). Direct observation of the layer-dependent electronic structure in phosphorene. Nature Nanotechnol, 12(1): 21–25. CrossRef Li L, Kim J, Jin C, Ye GJ, Qiu DY, Felipe H, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K (2017). Direct observation of the layer-dependent electronic structure in phosphorene. Nature Nanotechnol, 12(1): 21–25. CrossRef
129.
go back to reference Cai Y, Zhang G, Zhang YW (2014). Layer-dependent band alignment and work function of few-layer phosphorene. Sci Rep, 4: 6677. CrossRef Cai Y, Zhang G, Zhang YW (2014). Layer-dependent band alignment and work function of few-layer phosphorene. Sci Rep, 4: 6677. CrossRef
130.
go back to reference Deng Y, Luo Z, Conrad NJ, Liu H, Gong Y, Najmaei S, Ajayan PM, Lou J, Xu X, Ye PD (2014). Black phosphorus-monolayer MoS 2 van der Waals heterojunction p–n diode. ACS Nano, 8(8): 8292–8299. CrossRef Deng Y, Luo Z, Conrad NJ, Liu H, Gong Y, Najmaei S, Ajayan PM, Lou J, Xu X, Ye PD (2014). Black phosphorus-monolayer MoS 2 van der Waals heterojunction p–n diode. ACS Nano, 8(8): 8292–8299. CrossRef
131.
go back to reference Huang M, Li S, Zhang Z, Xiong X, Li X, Wu Y (2017). Multifunctional high-performance van der Waals heterostructures. Nature Nanotechnol, 12: 1148–1154. CrossRef Huang M, Li S, Zhang Z, Xiong X, Li X, Wu Y (2017). Multifunctional high-performance van der Waals heterostructures. Nature Nanotechnol, 12: 1148–1154. CrossRef
132.
go back to reference Liu Y, Shivananju BN, Wang Y, Zhang Y, Yu W, Xiao S, Sun T, Ma W, Mu H, Lin S, Zhang H (2017). Highly efficient and air stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure. ACS Appl Mater Interfaces, 9(41): 36137–36145. CrossRef Liu Y, Shivananju BN, Wang Y, Zhang Y, Yu W, Xiao S, Sun T, Ma W, Mu H, Lin S, Zhang H (2017). Highly efficient and air stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure. ACS Appl Mater Interfaces, 9(41): 36137–36145. CrossRef
133.
go back to reference Zhou GG, Li ZJ, Ge YQ, Zhang H, Sun ZH (2020). A self-encapsulated broadband phototransistor based on a hybrid of graphene and black phosphorus nanosheets. Nanoscale Adv, 2: 1059–1065. CrossRef Zhou GG, Li ZJ, Ge YQ, Zhang H, Sun ZH (2020). A self-encapsulated broadband phototransistor based on a hybrid of graphene and black phosphorus nanosheets. Nanoscale Adv, 2: 1059–1065. CrossRef
134.
go back to reference Lu Q, Yu L, Liu Y, Zhang J, Han G, Hao Y (2019). Low-noise mid-infrared photodetection in BP/h-BN/Graphene van der Waals heterojunctions. Mater, 12(16): 2532. CrossRef Lu Q, Yu L, Liu Y, Zhang J, Han G, Hao Y (2019). Low-noise mid-infrared photodetection in BP/h-BN/Graphene van der Waals heterojunctions. Mater, 12(16): 2532. CrossRef
Metadata
Title
Carbon-Based Heterojunction Broadband Photodetectors
Author
Yanjie Su
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-5497-8_5