Skip to main content
Top

2024 | OriginalPaper | Chapter

Carbon-Based Nanocomposites for Metal-Sulfur Batteries

Authors : Jennifer Laverde, Diana López, Robison Buitrago-Sierra, Nataly C. Rosero-Navarro

Published in: NanoCarbon: A Wonder Material for Energy Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The cyclability of metal-sulfur batteries is affected by the dilution of polysulfides in the electrolyte, for this reason, it is necessary to produce batteries with better electrochemical stability. Therefore, it is essential to know the cathode composite to improve the specific capacity that can be obtained; carbon-based nanocomposites are an alternative for the cathode improvement in metal-sulfur batteries. The first sections in this chapter summarize the main characteristics of metal-sulfur batteries considering the conformation of their electrodes and the reaction mechanisms involved during charge/discharge processes. Subsequently, in the following sections, carbonaceous materials will be addressed as an alternative to improve the sulfur conductive properties and to reduce the shuttle effect by forming S/C composites to anchor the metal-polysulfides (M-PS) using controlled porosity and/or heteroatoms on the surfaces of the carbonaceous materials. In the final section, the porosity developed in the carbonaceous materials will be briefly summarized given that characteristics such as porosity control and pore shape modulation influence how sulfur can infiltrate and stabilize within the pores of the carbonaceous material; and dependent on their interconnectivity, ionic mobility within the cathodes of metal-sulfur batteries will be favored or not.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)CrossRefPubMed Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)CrossRefPubMed
2.
go back to reference Kim, H.J., Krishna, T.N.V., Zeb, K., Rajangam, V., Muralee Gopi, C.V.V., Sambasivam, S., Raghavendra, K.V.G., Obaidat, I.M.: A comprehensive review of Li-ion battery materials and their recycling techniques. Electronics (Switzerland) 9, 1–44 (2020) Kim, H.J., Krishna, T.N.V., Zeb, K., Rajangam, V., Muralee Gopi, C.V.V., Sambasivam, S., Raghavendra, K.V.G., Obaidat, I.M.: A comprehensive review of Li-ion battery materials and their recycling techniques. Electronics (Switzerland) 9, 1–44 (2020)
3.
go back to reference Cha, E., Patel, M., Bhoyate, S., Prasad, V., Choi, W.: Nanoengineering to achieve high efficiency practical lithium-sulfur batteries. Nanoscale Horiz. 5, 808–831 (2020)CrossRefPubMed Cha, E., Patel, M., Bhoyate, S., Prasad, V., Choi, W.: Nanoengineering to achieve high efficiency practical lithium-sulfur batteries. Nanoscale Horiz. 5, 808–831 (2020)CrossRefPubMed
4.
go back to reference Manthiram, A., Fu, Y., Chung, S.H., Zu, C., Su, Y.S.: Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751–11787 (2014)CrossRefPubMed Manthiram, A., Fu, Y., Chung, S.H., Zu, C., Su, Y.S.: Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751–11787 (2014)CrossRefPubMed
5.
go back to reference Eftekhari, A.: On the theoretical capacity/energy of lithium batteries and their counterparts. ACS Sustain. Chem. Eng. 7, 3684–3687 (2019)CrossRef Eftekhari, A.: On the theoretical capacity/energy of lithium batteries and their counterparts. ACS Sustain. Chem. Eng. 7, 3684–3687 (2019)CrossRef
6.
go back to reference Krishnaveni, K., Subadevi, R., Radhika, G., Premkumar, T., Raja, M., Liu, W.R., Sivakumar, M.: Carbon wrapping effect on sulfur/polyacrylonitrile composite cathode materials for lithium sulfur batteries. J. Nanosci. Nanotechnol. 18, 121–126 (2018)CrossRefPubMed Krishnaveni, K., Subadevi, R., Radhika, G., Premkumar, T., Raja, M., Liu, W.R., Sivakumar, M.: Carbon wrapping effect on sulfur/polyacrylonitrile composite cathode materials for lithium sulfur batteries. J. Nanosci. Nanotechnol. 18, 121–126 (2018)CrossRefPubMed
7.
go back to reference Liu, X., Li, Y., Xu, X., Zhou, L., Mai, L.: Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: materials and advances. J. Energy Chem. 61, 104–134 (2021)CrossRef Liu, X., Li, Y., Xu, X., Zhou, L., Mai, L.: Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: materials and advances. J. Energy Chem. 61, 104–134 (2021)CrossRef
8.
go back to reference Gao, T., Noked, M., Pearse, A.J., Gillette, E., Fan, X., Zhu, Y., Luo, C., Suo, L., Schroeder, M.A., Xu, K., Lee, S.B., Rubloff, G.W., Wang, C.: Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation. J. Am. Chem. Soc. 137, 12388–12393 (2015)CrossRefPubMed Gao, T., Noked, M., Pearse, A.J., Gillette, E., Fan, X., Zhu, Y., Luo, C., Suo, L., Schroeder, M.A., Xu, K., Lee, S.B., Rubloff, G.W., Wang, C.: Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation. J. Am. Chem. Soc. 137, 12388–12393 (2015)CrossRefPubMed
9.
go back to reference Yang, H., Yin, L., Liang, J., Sun, Z., Wang, Y., Li, H., He, K., Ma, L., Peng, Z., Qiu, S., Sun, C., Cheng, H.M., Li, F.: An aluminum-sulfur battery with a fast kinetic response. Angew. Chem. - Int. Ed. 57, 1898–1902 (2018)CrossRef Yang, H., Yin, L., Liang, J., Sun, Z., Wang, Y., Li, H., He, K., Ma, L., Peng, Z., Qiu, S., Sun, C., Cheng, H.M., Li, F.: An aluminum-sulfur battery with a fast kinetic response. Angew. Chem. - Int. Ed. 57, 1898–1902 (2018)CrossRef
10.
go back to reference Carter, R., Oakes, L., Douglas, A., Muralidharan, N., Cohn, A.P., Pint, C.L.: A sugar-derived room-temperature sodium sulfur battery with long term cycling stability. Nano Lett. 17, 1863–1869 (2017)CrossRefPubMed Carter, R., Oakes, L., Douglas, A., Muralidharan, N., Cohn, A.P., Pint, C.L.: A sugar-derived room-temperature sodium sulfur battery with long term cycling stability. Nano Lett. 17, 1863–1869 (2017)CrossRefPubMed
11.
go back to reference Zhao, M.Q., Zhang, Q., Huang, J.Q., Tian, G.L., Nie, J.Q., Peng, H.J., Wei, F.: Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 5 (2014) Zhao, M.Q., Zhang, Q., Huang, J.Q., Tian, G.L., Nie, J.Q., Peng, H.J., Wei, F.: Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 5 (2014)
12.
go back to reference Klimpel, M., Kovalenko, M.V., Kravchyk, K.V.: Advances and challenges of aluminum–sulfur batteries. Commun. Chem. 5 (2022) Klimpel, M., Kovalenko, M.V., Kravchyk, K.V.: Advances and challenges of aluminum–sulfur batteries. Commun. Chem. 5 (2022)
13.
go back to reference Liang, X., Hart, C., Pang, Q., Garsuch, A., Weiss, T., Nazar, L.F.: A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 6, 1–8 (2015)CrossRef Liang, X., Hart, C., Pang, Q., Garsuch, A., Weiss, T., Nazar, L.F.: A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 6, 1–8 (2015)CrossRef
14.
go back to reference Ji, X., Evers, S., Lee, K.T., Nazar, L.F.: Agitation induced loading of sulfur into carbon CMK-3 nanotubes: efficient scavenging of noble metals from aqueous solution. Chem. Commun. 46, 1658–1660 (2010)CrossRef Ji, X., Evers, S., Lee, K.T., Nazar, L.F.: Agitation induced loading of sulfur into carbon CMK-3 nanotubes: efficient scavenging of noble metals from aqueous solution. Chem. Commun. 46, 1658–1660 (2010)CrossRef
15.
go back to reference Huang, L., Li, J., Liu, B., Li, Y., Shen, S., Deng, S., Lu, C., Zhang, W., Xia, Y., Pan, G., Wang, X., Xiong, Q., Xia, X., Tu, J.: Electrode design for lithium-sulfur batteries: problems and solutions. Adv. Funct. Mater. 30, 1910375 (2020)CrossRef Huang, L., Li, J., Liu, B., Li, Y., Shen, S., Deng, S., Lu, C., Zhang, W., Xia, Y., Pan, G., Wang, X., Xiong, Q., Xia, X., Tu, J.: Electrode design for lithium-sulfur batteries: problems and solutions. Adv. Funct. Mater. 30, 1910375 (2020)CrossRef
16.
go back to reference Qiu, Z., Cao, F., Pan, G., Li, C., Chen, M., Zhang, Y., He, X., Xia, Y., Xia, X., Zhang, W.: Carbon materials for metal-ion batteries. ChemPhysMater 2, 267–281 (2023)CrossRef Qiu, Z., Cao, F., Pan, G., Li, C., Chen, M., Zhang, Y., He, X., Xia, Y., Xia, X., Zhang, W.: Carbon materials for metal-ion batteries. ChemPhysMater 2, 267–281 (2023)CrossRef
17.
go back to reference Bandosz, T.J., Ren, T.Z.: Porous carbon modified with sulfur in energy related applications. Carbon N. Y. 118, 561–577 (2017)CrossRef Bandosz, T.J., Ren, T.Z.: Porous carbon modified with sulfur in energy related applications. Carbon N. Y. 118, 561–577 (2017)CrossRef
18.
go back to reference He, H., Zhang, R., Zhang, P., Wang, P., Chen, N., Qian, B., Zhang, L., Yu, J., Dai, B.: Functional carbon from nature: biomass-derived carbon materials and the recent progress of their applications. Adv. Sci. 10, 2205557 (2023)CrossRef He, H., Zhang, R., Zhang, P., Wang, P., Chen, N., Qian, B., Zhang, L., Yu, J., Dai, B.: Functional carbon from nature: biomass-derived carbon materials and the recent progress of their applications. Adv. Sci. 10, 2205557 (2023)CrossRef
19.
go back to reference Liang, J., Sun, Z.H., Li, F., Cheng, H.M.: Carbon materials for Li-S batteries: functional evolution and performance improvement. Energy Storage Mater. 2, 76–106 (2016)CrossRef Liang, J., Sun, Z.H., Li, F., Cheng, H.M.: Carbon materials for Li-S batteries: functional evolution and performance improvement. Energy Storage Mater. 2, 76–106 (2016)CrossRef
20.
go back to reference Chen, W., Wan, M., Liu, Q., Xiong, X., Yu, F., Huang, Y.: Heteroatom-doped carbon materials: synthesis, mechanism, and application for sodium-ion batteries. Small Methods 3, 1800323 (2019)CrossRef Chen, W., Wan, M., Liu, Q., Xiong, X., Yu, F., Huang, Y.: Heteroatom-doped carbon materials: synthesis, mechanism, and application for sodium-ion batteries. Small Methods 3, 1800323 (2019)CrossRef
21.
go back to reference Gong, B., Song, X., Shi, Y., Liu, J., Hao, C.: Understanding the inhibition of the shuttle effect of sulfides (S ≤ 3) in lithium-sulfur batteries by heteroatom-doped graphene: first-principles study. J. Phys. Chem. C 124, 3644–3649 (2020)CrossRef Gong, B., Song, X., Shi, Y., Liu, J., Hao, C.: Understanding the inhibition of the shuttle effect of sulfides (S ≤ 3) in lithium-sulfur batteries by heteroatom-doped graphene: first-principles study. J. Phys. Chem. C 124, 3644–3649 (2020)CrossRef
22.
go back to reference McCreary, C., An, Y., Kim, S.U., Hwa, Y.: A perspective on li/s battery design: modeling and development approaches. Batteries 7, 82 (2021)CrossRef McCreary, C., An, Y., Kim, S.U., Hwa, Y.: A perspective on li/s battery design: modeling and development approaches. Batteries 7, 82 (2021)CrossRef
23.
24.
go back to reference Gao, T., Ji, X., Hou, S., Fan, X., Li, X., Yang, C., Han, F., Wang, F., Jiang, J., Xu, K., Wang, C.: Thermodynamics and kinetics of sulfur cathode during discharge in MgTFSI2–DME electrolyte. Adv. Mater. 30, 1704313 (2018)CrossRef Gao, T., Ji, X., Hou, S., Fan, X., Li, X., Yang, C., Han, F., Wang, F., Jiang, J., Xu, K., Wang, C.: Thermodynamics and kinetics of sulfur cathode during discharge in MgTFSI2–DME electrolyte. Adv. Mater. 30, 1704313 (2018)CrossRef
25.
go back to reference Yang, T., Niu, Y., Liu, Q., Xu, M.: Cathode host engineering for non-lithium (Na, K and Mg) sulfur/selenium batteries: a state-of-the-art review. Nano Mater. Sci. 5, 119–140 (2023)CrossRef Yang, T., Niu, Y., Liu, Q., Xu, M.: Cathode host engineering for non-lithium (Na, K and Mg) sulfur/selenium batteries: a state-of-the-art review. Nano Mater. Sci. 5, 119–140 (2023)CrossRef
26.
go back to reference Xin, S., Yin, Y.X., Guo, Y.G., Wan, L.J.: A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 26, 1261–1265 (2014)CrossRefPubMed Xin, S., Yin, Y.X., Guo, Y.G., Wan, L.J.: A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 26, 1261–1265 (2014)CrossRefPubMed
27.
go back to reference Feng, W., Kwon, S., Feng, X.: Sulfur impregnation on activated carbon fibers through H2S oxidation for vapor phase mercury removal. J. Environ. Eng. 292–300 (2006) Feng, W., Kwon, S., Feng, X.: Sulfur impregnation on activated carbon fibers through H2S oxidation for vapor phase mercury removal. J. Environ. Eng. 292–300 (2006)
28.
go back to reference Xu, J., Dong, G., Jin, C., Huang, M., Guan, L.: Sulfur and nitrogen co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction. ChemSusChem 6, 493–499 (2013)CrossRefPubMed Xu, J., Dong, G., Jin, C., Huang, M., Guan, L.: Sulfur and nitrogen co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction. ChemSusChem 6, 493–499 (2013)CrossRefPubMed
29.
go back to reference Jung, D.S., Hwang, T.H., Lee, J.H., Koo, H.Y., Shakoor, R.A., Kahraman, R., Jo, Y.N., Park, M., Choi, J.W.: Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium–sulfur battery. 1–8 (2014) Jung, D.S., Hwang, T.H., Lee, J.H., Koo, H.Y., Shakoor, R.A., Kahraman, R., Jo, Y.N., Park, M., Choi, J.W.: Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium–sulfur battery. 1–8 (2014)
30.
go back to reference He, J., Chen, Y., Li, P., Fu, F., Wang, Z., Zhang, H.: Three-dimensional CNT/graphene-sulfur hybrid sponges with high sulfur loading as superior-capacity cathode for lithium-sulfur batteries. Mater. Chem. A 3, 18605–18610 (2015) He, J., Chen, Y., Li, P., Fu, F., Wang, Z., Zhang, H.: Three-dimensional CNT/graphene-sulfur hybrid sponges with high sulfur loading as superior-capacity cathode for lithium-sulfur batteries. Mater. Chem. A 3, 18605–18610 (2015)
31.
go back to reference Ji, X., Evers, S., Black, R., Nazar, L.F.: Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2, 325–327 (2011)CrossRefPubMed Ji, X., Evers, S., Black, R., Nazar, L.F.: Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2, 325–327 (2011)CrossRefPubMed
32.
go back to reference Manthiram, A., Fu, Y., Su, Y.: Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2013)CrossRefPubMed Manthiram, A., Fu, Y., Su, Y.: Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2013)CrossRefPubMed
33.
go back to reference Laverde, J., Rosero-Navarro, N.C., Buitrago-Sierra, R., López, D.: Nitrogen functionalities in mesoporous carbons and their impact on the sulfur infiltration efficiency and in the electrochemical performance of Li–S cells. Solid State Ion 399, 116303 (2023)CrossRef Laverde, J., Rosero-Navarro, N.C., Buitrago-Sierra, R., López, D.: Nitrogen functionalities in mesoporous carbons and their impact on the sulfur infiltration efficiency and in the electrochemical performance of Li–S cells. Solid State Ion 399, 116303 (2023)CrossRef
34.
go back to reference Laverde, J., Rosero-Navarro, N.C., Miura, A., Buitrago-Sierra, R., Tadanaga, K., López, D.: Impact of sulfur infiltration time and its content in an N-doped mesoporous carbon for application in Li-S batteries. Batteries 8, 58 (2022)CrossRef Laverde, J., Rosero-Navarro, N.C., Miura, A., Buitrago-Sierra, R., Tadanaga, K., López, D.: Impact of sulfur infiltration time and its content in an N-doped mesoporous carbon for application in Li-S batteries. Batteries 8, 58 (2022)CrossRef
35.
go back to reference Ren, W., Ma, W., Zhang, S., Tang, B.: Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Mater. 23, 707–732 (2019)CrossRef Ren, W., Ma, W., Zhang, S., Tang, B.: Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Mater. 23, 707–732 (2019)CrossRef
36.
go back to reference Liu, Y., Ma, S., Liu, L., Koch, J., Rosebrock, M., Li, T., Bettels, F., He, T., Pfnür, H., Bigall, N.C., Feldhoff, A., Ding, F., Zhang, L.: Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S batteries. Adv. Funct. Mater. 30, 2002462–2002472 (2020)CrossRef Liu, Y., Ma, S., Liu, L., Koch, J., Rosebrock, M., Li, T., Bettels, F., He, T., Pfnür, H., Bigall, N.C., Feldhoff, A., Ding, F., Zhang, L.: Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S batteries. Adv. Funct. Mater. 30, 2002462–2002472 (2020)CrossRef
37.
go back to reference Yi, G.S., Sim, E.S., Chung, Y.C.: Effect of lithium-trapping on nitrogen-doped graphene as an anchoring material for lithium-sulfur batteries: a density functional theory study. Phys. Chem. Chem. Phys. 19, 28189–28194 (2017)CrossRefPubMed Yi, G.S., Sim, E.S., Chung, Y.C.: Effect of lithium-trapping on nitrogen-doped graphene as an anchoring material for lithium-sulfur batteries: a density functional theory study. Phys. Chem. Chem. Phys. 19, 28189–28194 (2017)CrossRefPubMed
38.
go back to reference Cao, Y., Li, X.L., Sen Zheng, M., Yang, M.P., Yang, X.L., Dong, Q.F.: Ultra-high rates and reversible capacity of Li-S battery with a nitrogen-doping conductive Lewis base matrix. Electrochim. Acta 192, 467–474 (2016) Cao, Y., Li, X.L., Sen Zheng, M., Yang, M.P., Yang, X.L., Dong, Q.F.: Ultra-high rates and reversible capacity of Li-S battery with a nitrogen-doping conductive Lewis base matrix. Electrochim. Acta 192, 467–474 (2016)
39.
go back to reference Xia, Y., Wang, C., Li, R., Fukuto, M., Vogt, B.D.: Sulfur diffusion within nitrogen doped ordered mesoporous carbons determined by in-situ X-ray scattering. 34, 8767–8776 (2018) Xia, Y., Wang, C., Li, R., Fukuto, M., Vogt, B.D.: Sulfur diffusion within nitrogen doped ordered mesoporous carbons determined by in-situ X-ray scattering. 34, 8767–8776 (2018)
40.
go back to reference Cheng, R., Guan, Y., Luo, Y., Zhang, C., Xia, Y., Wei, S., Zhao, M., Lin, Q., Li, H., Zheng, S., Rosei, F., Sun, L., Xu, F., Pan, H.: Guanine-assisted N-doped ordered mesoporous carbons as efficient capacity decaying suppression materials for lithium–sulfur batteries. J. Mater. Sci. Technol. 101, 155–164 (2022)CrossRef Cheng, R., Guan, Y., Luo, Y., Zhang, C., Xia, Y., Wei, S., Zhao, M., Lin, Q., Li, H., Zheng, S., Rosei, F., Sun, L., Xu, F., Pan, H.: Guanine-assisted N-doped ordered mesoporous carbons as efficient capacity decaying suppression materials for lithium–sulfur batteries. J. Mater. Sci. Technol. 101, 155–164 (2022)CrossRef
41.
go back to reference Yin, L.C., Liang, J., Zhou, G.M., Li, F., Saito, R., Cheng, H.M.: Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy 25, 203–210 (2016)CrossRef Yin, L.C., Liang, J., Zhou, G.M., Li, F., Saito, R., Cheng, H.M.: Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy 25, 203–210 (2016)CrossRef
42.
go back to reference Li, X., Wang, Y., Xu, C., Pan, L.: Mesoporous carbon/sulfur composite with N-doping and tunable pore size for high-performance Li-S batteries. J. Solid State Electrochem. 21, 1101–1109 (2017)CrossRef Li, X., Wang, Y., Xu, C., Pan, L.: Mesoporous carbon/sulfur composite with N-doping and tunable pore size for high-performance Li-S batteries. J. Solid State Electrochem. 21, 1101–1109 (2017)CrossRef
43.
go back to reference Niu, S., Zhou, G., Lv, W., Shi, H., Luo, C., He, Y., Li, B., Yang, Q.H., Kang, F.: Sulfur confined in nitrogen-doped microporous carbon used in a carbonate-based electrolyte for long-life, safe lithium-sulfur batteries. Carbon N. Y. 109, 1–6 (2016)CrossRef Niu, S., Zhou, G., Lv, W., Shi, H., Luo, C., He, Y., Li, B., Yang, Q.H., Kang, F.: Sulfur confined in nitrogen-doped microporous carbon used in a carbonate-based electrolyte for long-life, safe lithium-sulfur batteries. Carbon N. Y. 109, 1–6 (2016)CrossRef
44.
go back to reference Zhou, H., Zhu, S., Hibino, M., Honma, I., Ichihara, M.: Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv. Mater. 15, 2107–2111 (2003)CrossRef Zhou, H., Zhu, S., Hibino, M., Honma, I., Ichihara, M.: Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv. Mater. 15, 2107–2111 (2003)CrossRef
45.
go back to reference Saikia, D., Wang, T.H., Chou, C.J., Fang, J., Tsai, L.D., Kao, H.M.: A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries. RSC Adv. 5, 42922–42930 (2015)CrossRef Saikia, D., Wang, T.H., Chou, C.J., Fang, J., Tsai, L.D., Kao, H.M.: A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries. RSC Adv. 5, 42922–42930 (2015)CrossRef
46.
go back to reference Guo, R., Yue, W., An, Y., Ren, Y., Yan, X.: Graphene-encapsulated porous carbon-ZnO composites as high-performance anode materials for Li-ion batteries. Electrochim. Acta 135, 161–167 (2014)CrossRef Guo, R., Yue, W., An, Y., Ren, Y., Yan, X.: Graphene-encapsulated porous carbon-ZnO composites as high-performance anode materials for Li-ion batteries. Electrochim. Acta 135, 161–167 (2014)CrossRef
Metadata
Title
Carbon-Based Nanocomposites for Metal-Sulfur Batteries
Authors
Jennifer Laverde
Diana López
Robison Buitrago-Sierra
Nataly C. Rosero-Navarro
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9931-6_10