2018 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
Published in:
Carbon
The history of carbon composites dates back to the late 1800s. Thomas Edison used carbon composite filament in light bulbs. A carbon composite is composed of two or more materials to create a superior and unique material. Edison’s carbon composite filaments were made out of cellulose-based materials, such as cotton or bamboo, unlike the petroleum-based precursors used today. It was not until late 1950s that high tensile strength carbon fibers were discovered [1–3]. However, the first truly modulus commercial grade carbon fibers were invented in 1964. The benefits of these high-strength carbon-based composites are that they weighed a fraction of the weight of steel, yet contained much greater tensile strength than steel [4].
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1.
go back to reference High performance carbon fibers, National Historic Chemical Landmarks, Am. Chem. Soc., (2014) High performance carbon fibers, National Historic Chemical Landmarks, Am. Chem. Soc., (2014)
2.
go back to reference A.K. Kaw, Mechanics of Composite Materials, 2nd edn. (CRC Press, Boka Raton, 2005) MATH A.K. Kaw,
Mechanics of Composite Materials, 2nd edn. (CRC Press, Boka Raton, 2005)
MATH
3.
go back to reference J.M. Corum, R.L. Battiste, K.C. Liu, M.B. Ruggles, Basic properties of reference crossply carbon fiber composite, Oak Ridge Nat. Lab. ORNL/TM-2000/29, DE-ACo5-96OR-22464 J.M. Corum, R.L. Battiste, K.C. Liu, M.B. Ruggles, Basic properties of reference crossply carbon fiber composite, Oak Ridge Nat. Lab. ORNL/TM-2000/29, DE-ACo5-96OR-22464
4.
go back to reference N. Baral, H. Guezenoc, P. Davies, C. Baley, High modulus carbon fibre composites: correlation between transverse tensile and module I interlaminar fracture properties. Mater. Lett. 62(6–7), 1096 (2008) CrossRef N. Baral, H. Guezenoc, P. Davies, C. Baley, High modulus carbon fibre composites: correlation between transverse tensile and module I interlaminar fracture properties. Mater. Lett.
62(6–7), 1096 (2008)
CrossRef
5.
go back to reference Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing. J. Mater. Sci. Technol. 30(7), 649 (2014) CrossRef Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing. J. Mater. Sci. Technol.
30(7), 649 (2014)
CrossRef
6.
go back to reference H. Hatta, T. Aoi, I. Kawaha, Y. Kogo, I. Shiota, Tensile strength of carbon-carbon composites: 1-effect of C-C density. J. Compos. Mater. 38(19), 1667 (2004) CrossRef H. Hatta, T. Aoi, I. Kawaha, Y. Kogo, I. Shiota, Tensile strength of carbon-carbon composites: 1-effect of C-C density. J. Compos. Mater.
38(19), 1667 (2004)
CrossRef
7.
go back to reference H.M. Stoller, E.R. Frye, 73rd Syp. On Am Chem. Soc., Adv. Mater. Composite and Carbon, Annual Meeting, Am. Ceram Soc. (1973), p. 163 H.M. Stoller, E.R. Frye, 73rd Syp. On Am Chem. Soc., Adv. Mater. Composite and Carbon, Annual Meeting, Am. Ceram Soc. (1973), p. 163
8.
go back to reference L.M. Manocha, High performance carbon carbon composite. Sadhana 28, 349 (2003) CrossRef L.M. Manocha, High performance carbon carbon composite. Sadhana
28, 349 (2003)
CrossRef
9.
go back to reference The Int. Handbook Committee, Vol. 1, of Engineered Materials Handbook. (ASM Int. Pub, Ohio, 1971) and also P. Morgan, Carbon Fibers and Their Composites (Taylor and Francis, FL, 2005) The Int. Handbook Committee,
Vol. 1, of Engineered Materials Handbook. (ASM Int. Pub, Ohio, 1971) and also P. Morgan,
Carbon Fibers and Their Composites (Taylor and Francis, FL, 2005)
10.
go back to reference H.M. Stoller, E.R. Eyre, Symposium of the 73rd Annual Meeting of the American Ceramic Society, Advanced Materials Composite and Carbon, Am. Ceram. Soc., (1973), p. 163 H.M. Stoller, E.R. Eyre, Symposium of the 73rd Annual Meeting of the American Ceramic Society, Advanced Materials Composite and Carbon, Am. Ceram. Soc., (1973), p. 163
11.
go back to reference D.F. Pedraza, P.G. Klemens, Effective conductivity of polycrystalline graphite. Carbon 31(6), 951 (1993) CrossRef D.F. Pedraza, P.G. Klemens, Effective conductivity of polycrystalline graphite. Carbon
31(6), 951 (1993)
CrossRef
12.
go back to reference R. Jain, L. Lee, Fiber Reinforced Polymer (FRP) Composites for Infrastructure Applications. Focussing on Inovation, Technology Implementation and Sustainability (Springer, New York, 2012) R. Jain, L. Lee,
Fiber Reinforced Polymer (FRP) Composites for Infrastructure Applications. Focussing on Inovation, Technology Implementation and Sustainability (Springer, New York, 2012)
13.
go back to reference M.J. Hinton, P.D. Soden, A.S. Kaddour, The world wide failure exercise, in Failure Criteria in Fiber-Reinforced-Polymer Composite, (Elsevier, Amsterdam, 2004) M.J. Hinton, P.D. Soden, A.S. Kaddour, The world wide failure exercise, in
Failure Criteria in Fiber-Reinforced-Polymer Composite, (Elsevier, Amsterdam, 2004)
14.
go back to reference J.D. Buckley, D.D. Edie, Carbon-Carbon Materials and Composites (Noyes, Park Ridge, 1993) J.D. Buckley, D.D. Edie,
Carbon-Carbon Materials and Composites (Noyes, Park Ridge, 1993)
15.
go back to reference M.K. Seo, S.H. Park, S.H. Kang, S.J. Park, Carbon fibers (III), recent technical and patent trends. Carbon Lett. 10(1), 43 (2009) CrossRef M.K. Seo, S.H. Park, S.H. Kang, S.J. Park, Carbon fibers (III), recent technical and patent trends. Carbon Lett.
10(1), 43 (2009)
CrossRef
16.
go back to reference A.K. Gupta, D.K. Paliwal, P. Bajaj, Melting behavior of acrylonitrile. J. Appl. Polym. Sci. 70, 2703 (1998) CrossRef A.K. Gupta, D.K. Paliwal, P. Bajaj, Melting behavior of acrylonitrile. J. Appl. Polym. Sci.
70, 2703 (1998)
CrossRef
17.
go back to reference P. Bajaj, T. Sreekumar, K. Sen, Effect of reaction medium on radical polymerization of acrylonitrile with venyl acids. J. Appl. Polym. Sci. 79, 1640 (2001) CrossRef P. Bajaj, T. Sreekumar, K. Sen, Effect of reaction medium on radical polymerization of acrylonitrile with venyl acids. J. Appl. Polym. Sci.
79, 1640 (2001)
CrossRef
18.
go back to reference A. Serkov, M. Radishevskii, Status and prospects for production of carbon fibers based on Polyacrylonitrile. Fiber Chem. 40, 24 (2008) CrossRef A. Serkov, M. Radishevskii, Status and prospects for production of carbon fibers based on Polyacrylonitrile. Fiber Chem.
40, 24 (2008)
CrossRef
19.
go back to reference D. Papkov et al., Simultaneously strong and tough ultra fine continuous nanofibers. ACS Nano 7(4), 3324 (2013) CrossRef D. Papkov et al., Simultaneously strong and tough ultra fine continuous nanofibers. ACS Nano
7(4), 3324 (2013)
CrossRef
20.
go back to reference E. Fitzer, PAN based carbon fibers –present state and trend of the technology from the view point of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon 27(5), 621 (1989) CrossRef E. Fitzer, PAN based carbon fibers –present state and trend of the technology from the view point of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon
27(5), 621 (1989)
CrossRef
21.
go back to reference E. Fitzer, W. frobs, M. Heine, Optimization of stabilization and carbonization treatment of PAN fibers and structural characterization of the resulting carbon fibers. Carbon 24(4), 387 (1986) CrossRef E. Fitzer, W. frobs, M. Heine, Optimization of stabilization and carbonization treatment of PAN fibers and structural characterization of the resulting carbon fibers. Carbon
24(4), 387 (1986)
CrossRef
22.
go back to reference G.S. Bhat et al., New aspects in stabilization of acrylic fibers for carbon fibers. Carbon 28(2–3), 377 (1990) CrossRef G.S. Bhat et al., New aspects in stabilization of acrylic fibers for carbon fibers. Carbon
28(2–3), 377 (1990)
CrossRef
23.
go back to reference S. Lee, J. Kim, B.C. Ku, J. Kim, Y. Chung, Effect of process conditionon tensile properties of carbon fiber. Carbon Lett. 12(1), 26 (2011) CrossRef S. Lee, J. Kim, B.C. Ku, J. Kim, Y. Chung, Effect of process conditionon tensile properties of carbon fiber. Carbon Lett.
12(1), 26 (2011)
CrossRef
24.
go back to reference S. Lee, J. Kim, B.C. Ku, J. Kim, Y. Chung, Structural evolution of polyacrylonitrile fibers in stabilization and carbonization. Adv. Chem. Eng. Sci. 2, 275 (2012) CrossRef S. Lee, J. Kim, B.C. Ku, J. Kim, Y. Chung, Structural evolution of polyacrylonitrile fibers in stabilization and carbonization. Adv. Chem. Eng. Sci.
2, 275 (2012)
CrossRef
25.
go back to reference H.O. Pierson, Hand Book of Carbon, Graphite, Diamond and Fullerenes (Noyace, NJ, 1984) H.O. Pierson,
Hand Book of Carbon, Graphite, Diamond and Fullerenes (Noyace, NJ, 1984)
26.
go back to reference R.J. Diefendrof, Continuous Carbon Fiber Reinforced Carbon Matrix Composites in Composites, Ed. ASM Int. Handbook Committee, Vol.1 of Engineered Materials Handbook (ASM International, OH, 1987), p. 911 R.J. Diefendrof, Continuous Carbon Fiber Reinforced Carbon Matrix Composites in Composites, Ed. ASM Int. Handbook Committee,
Vol.1 of Engineered Materials Handbook (ASM International, OH, 1987), p. 911
27.
go back to reference M. Balasubramanium, Composite Materials and Processing (CRC Press, Boka Raton, 2013) CrossRef M. Balasubramanium,
Composite Materials and Processing (CRC Press, Boka Raton, 2013)
CrossRef
28.
go back to reference K.H. Bang, G.-Y. Chung, H.H. Koo, Preparation of C/C composites by chemical vapor infiltration (CVI) of propane pyrolysis. Korean J. Chem. Eng. 28(1), 272 (2011) CrossRef K.H. Bang, G.-Y. Chung, H.H. Koo, Preparation of C/C composites by chemical vapor infiltration (CVI) of propane pyrolysis. Korean J. Chem. Eng.
28(1), 272 (2011)
CrossRef
29.
go back to reference V. Liedike, K.J. Hunttinger, Pitches as matrix precursor of carbon fiber reinforced carbon: II Stabilization of mesophase pitch matrix by oxygen treatment. Carbon 35(9), 106 (1996) V. Liedike, K.J. Hunttinger, Pitches as matrix precursor of carbon fiber reinforced carbon: II Stabilization of mesophase pitch matrix by oxygen treatment. Carbon
35(9), 106 (1996)
30.
go back to reference M. Hoffstetter, E. Wintermantel, Meso fiber –a novel approach to reinforce micro parts. Biomaterials 41(12), 1011 (2010) M. Hoffstetter, E. Wintermantel, Meso fiber –a novel approach to reinforce micro parts. Biomaterials
41(12), 1011 (2010)
31.
go back to reference X. Haung, Fabrication properties of carbon fibers. Materials 2, 2369 (2009) CrossRef X. Haung, Fabrication properties of carbon fibers. Materials
2, 2369 (2009)
CrossRef
32.
go back to reference T. Roberts, The Carbon Fiber Industries: Global Strategic Market Evaluations, 2006–2010, Mater. Technol. Pub. Watford, UK., pp. 93–177, (2006) and E. Fitzer, Pan-Based Carbon Fibers –Present State and Trend of the Technology from the View Point of Possibilities and Limits to Influence and to Control the Fiber Properties by the Process Parameters, Carbon 27(5), 621 (1989) T. Roberts, The Carbon Fiber Industries: Global Strategic Market Evaluations, 2006–2010, Mater. Technol. Pub. Watford, UK., pp. 93–177, (2006) and E. Fitzer, Pan-Based Carbon Fibers –Present State and Trend of the Technology from the View Point of Possibilities and Limits to Influence and to Control the Fiber Properties by the Process Parameters, Carbon
27(5), 621 (1989)
33.
go back to reference G.B. Kauffman, Rayon, first synthetic fiber product. J. Chem. Educ. 70(11), 887 (1993) CrossRef G.B. Kauffman, Rayon, first synthetic fiber product. J. Chem. Educ.
70(11), 887 (1993)
CrossRef
34.
go back to reference J.D.E. White, A.H. Simpson, A.S. Shteinberg, A.S. Mukasyan, Cobustion joining of refractory materials: carbon-carbon composite. J. Mater. Res. 23(1), 160 (2007) CrossRef J.D.E. White, A.H. Simpson, A.S. Shteinberg, A.S. Mukasyan, Cobustion joining of refractory materials: carbon-carbon composite. J. Mater. Res.
23(1), 160 (2007)
CrossRef
35.
go back to reference F.K. Fo, Preform fiber architecture for ceramic matrix composite. Ceram. Bull. 68(2), 401 (1989) F.K. Fo, Preform fiber architecture for ceramic matrix composite. Ceram. Bull.
68(2), 401 (1989)
36.
go back to reference R. Warren, Ceramic Matrix Composites (Blackie and Son, London, 1992) R. Warren,
Ceramic Matrix Composites (Blackie and Son, London, 1992)
37.
go back to reference D.D.L. Chung, Carbon-Carbon Composites (Butterworth Heinemann, Newton, 1994), p. 131 D.D.L. Chung,
Carbon-Carbon Composites (Butterworth Heinemann, Newton, 1994), p. 131
38.
go back to reference J.F. Silvain, A. Veillere, Y. Lu, Copper-carbon and aluminum-carbon fabricated by powder metallurgy processes, J. Physics, Eurotherm Seminar, 102, Conf. Sr. No. 525 (2014) J.F. Silvain, A. Veillere, Y. Lu, Copper-carbon and aluminum-carbon fabricated by powder metallurgy processes, J. Physics, Eurotherm Seminar, 102, Conf. Sr. No. 525 (2014)
39.
go back to reference K. Kuniya, H. Arakawa, T. Kanai, T. Yasuda, Development of copper-carbon fiber composite for electrodes of power semicinductor devices. IEEE Trans. Comp. Hybrid. Manuf. Technol. 6(4), 467 (1983) CrossRef K. Kuniya, H. Arakawa, T. Kanai, T. Yasuda, Development of copper-carbon fiber composite for electrodes of power semicinductor devices. IEEE Trans. Comp. Hybrid. Manuf. Technol.
6(4), 467 (1983)
CrossRef
40.
go back to reference J.F. Silvain, A. Veillere, Y. Lu, Copper-carbon and aluminum-carbon fabricated by powder metallurgy processes, J. Physics, Eurotherm Seminar, 102, Conf. Sr. No. 525 (2014) J.F. Silvain, A. Veillere, Y. Lu, Copper-carbon and aluminum-carbon fabricated by powder metallurgy processes, J. Physics, Eurotherm Seminar, 102, Conf. Sr. No. 525 (2014)
41.
go back to reference P.M. Geffroy, J.F. Silvan, Structural and thermal properties of hot-pressed Cu/C matrix composites materials used for the thermal management of high power electronic devices. Mater. Sci. Forum 534-536, 1505–1508 (2007) CrossRef P.M. Geffroy, J.F. Silvan, Structural and thermal properties of hot-pressed Cu/C matrix composites materials used for the thermal management of high power electronic devices. Mater. Sci. Forum
534-536, 1505–1508 (2007)
CrossRef
42.
go back to reference A. Burkert, Materials and Corrosion (Wiley, New York, 2001) A. Burkert,
Materials and Corrosion (Wiley, New York, 2001)
43.
go back to reference H.P. Hack, Galvanic Corrosion (ASTM Intl, Philadelphia, 1988) CrossRef H.P. Hack,
Galvanic Corrosion (ASTM Intl, Philadelphia, 1988)
CrossRef
44.
go back to reference K. Upadhya, Ceramics and composites for rocket engines and space structures. J. Metals 44, 15–18 (1992) K. Upadhya, Ceramics and composites for rocket engines and space structures. J. Metals
44, 15–18 (1992)
45.
go back to reference M. Singh, T.P. Shpargel, G.N. Morscher, R. Asthana, Active metal brazing and characterization of brazed joints in titanium to carbon-carbon composites. Mater. Sci. Eng. 412(1–2), 123 (2005) CrossRef M. Singh, T.P. Shpargel, G.N. Morscher, R. Asthana, Active metal brazing and characterization of brazed joints in titanium to carbon-carbon composites. Mater. Sci. Eng.
412(1–2), 123 (2005)
CrossRef
46.
go back to reference R. Naslain, Materials design and Procrssing of high temperature ceramic matrix composites: state of the art and future trends. Adv. Compos. Mater. 8(1), 3 (1999) CrossRef R. Naslain, Materials design and Procrssing of high temperature ceramic matrix composites: state of the art and future trends. Adv. Compos. Mater.
8(1), 3 (1999)
CrossRef
47.
go back to reference Q. Zhang, G. Li, A review of the application of C/SiC composites in thermal protecting systems. Multidiscip. Model. Mater. Struct. 5(2), 199 (2009) CrossRef Q. Zhang, G. Li, A review of the application of C/SiC composites in thermal protecting systems. Multidiscip. Model. Mater. Struct.
5(2), 199 (2009)
CrossRef
48.
go back to reference R.B. Deo, J.H. Starnes, R.C. Holzwarth, Low cost composite materials and structures for aircraft applications, Scitific and Technical Aerospace Rept. (STAR), 41 (22): 1-1-1-11, NASA, USA (2003) R.B. Deo, J.H. Starnes, R.C. Holzwarth, Low cost composite materials and structures for aircraft applications, Scitific and Technical Aerospace Rept. (STAR), 41 (22): 1-1-1-11, NASA, USA (2003)
49.
go back to reference R. Naslain, Preparation and properties of non-oxide CMCs for application in engines and nuclear reactors, an overview. Compos. Sci. Technol. 64, 155 (2004) CrossRef R. Naslain, Preparation and properties of non-oxide CMCs for application in engines and nuclear reactors, an overview. Compos. Sci. Technol.
64, 155 (2004)
CrossRef
50.
go back to reference Z. Rak, CF/SiC/C composites for tribological application, in High Temperature Ceramic Matrix Composites, ed. by W. Krenkel, R. Naslain, H. Schneider (Wiley, Weinheim, 2001), p. 820 Z. Rak, CF/SiC/C composites for tribological application, in
High Temperature Ceramic Matrix Composites, ed. by W. Krenkel, R. Naslain, H. Schneider (Wiley, Weinheim, 2001), p. 820
51.
go back to reference W. Krenkel, Carbon fibre reinforced silicon carbide composites, in Handbook of Ceramic Composites, ed. by N. P. Bansal (Springer, Heidelberg, 2005), p. 117 W. Krenkel, Carbon fibre reinforced silicon carbide composites, in
Handbook of Ceramic Composites, ed. by N. P. Bansal (Springer, Heidelberg, 2005), p. 117
52.
go back to reference C.P. Ju, C.K. Wang, H.Y. Cheng, J.H.C. Lin, Process and wear behavior of monolithic SiC and short carbon fiber-SiC matrix composite. J. Mater. Sci. 35, 4477 (2000) CrossRef C.P. Ju, C.K. Wang, H.Y. Cheng, J.H.C. Lin, Process and wear behavior of monolithic SiC and short carbon fiber-SiC matrix composite. J. Mater. Sci.
35, 4477 (2000)
CrossRef
53.
go back to reference W. Kucler, Chemische Technik: Prozesse, vol 8, ed. by R. Dittmeyer et al. (Wiley-VCH, Weinham, 2005), p. 11166 W. Kucler,
Chemische Technik: Prozesse, vol 8, ed. by R. Dittmeyer et al. (Wiley-VCH, Weinham, 2005), p. 11166
54.
go back to reference C.A. Nannetti, A. Ortona, D.A. de Pinto, B. Riccardi, Manufacturing SiC-fibre reinforced SiC matrix composites by improved CVI/slurry infiltration/polymer impregnation and pyrolysis. J. Am. Ceram. Soc. 87, 1205 (2004) CrossRef C.A. Nannetti, A. Ortona, D.A. de Pinto, B. Riccardi, Manufacturing SiC-fibre reinforced SiC matrix composites by improved CVI/slurry infiltration/polymer impregnation and pyrolysis. J. Am. Ceram. Soc.
87, 1205 (2004)
CrossRef
- Title
- Carbon Composites and Related Metal Matrix
- DOI
- https://doi.org/10.1007/978-3-319-66405-7_3
- Author:
-
Tapan Gupta
- Publisher
- Springer International Publishing
- Sequence number
- 3
- Chapter number
- Chapter 3