Skip to main content
Top

2024 | OriginalPaper | Chapter

Carbon Dioxide Capture, Separation and Storage Technologies

Authors : Sakshi Singh, Gourav Kumar Rath, Swagata Sharma, Wagisha Shree, Gaurav Pandey, Datshita Rawat, Ishita Arora, Nadezhda Molokitina

Published in: Sustainable Design and Eco Technologies for Infrastructure

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As the world’s energy demand increased with the increase in the population, the use of conventional energy sources increased leading to greenhouse gas (GHG) emissions. Over the decade the CO2 ratio has increased in the atmosphere due to anthropogenic activities, to lower the atmospheric CO2. International Energy Agency (IEA), Intergovernmental Panel on Climate Change (IPCC), and Carbon Sequestration Leadership Forum (CSLF), have jointly reported that we need to decrease CO2 emissions. According to the International Energy Agency, carbon capture technology can minimize global CO2 emissions by 17% by 2050. CO2 capture technology is most feasible technology to reduce atmospheric CO2. The three main CO2 collection methods used for CCS are oxy-fuel combustion, pre-combustion, and post-combustion. Industries typically use post-combustion carbon capture to absorb CO2. Enhanced oil recovery (EOR) in oil and gas reservoirs, storage in impermeable coal beds, storage in saline aquifers, and deep ocean storage are the four main storage methods used in CO2 capture. It was determined that using CO2 storage with enhanced oil recovery applications concurrently increases oil production and stores CO2. There are several techniques used to separate CO2, but some important ones include adsorption, absorption, chemical separations, membrane separations, hydrate-based separation, and cryogenic distillation. Future research should take into account the need for scientific study on selective membrane applications in CO2 separation, Natural Gas Hydrates as a CO2 storage facility, and bio-additives for the creation of CO2 hydrates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference US Department of Commerce NGML (n.d.) Global monitoring laboratory—carbon cycle greenhouse gases US Department of Commerce NGML (n.d.) Global monitoring laboratory—carbon cycle greenhouse gases
4.
go back to reference Reader A (n.d.) The following files are in PDF and can be read using Acrobat Reader Reader A (n.d.) The following files are in PDF and can be read using Acrobat Reader
5.
go back to reference Baxter LL, Baxter A, Bever E, Burt S, Chamberlain S, Frankman D, Hoeger C, Mansfield E, Parkinson D, Sayre A, Stitt K (2019) Cryogenic carbon capture development final/technical report. Pittsburgh, PA, and Morgantown, WV (United States). https://doi.org/10.2172/1572908 Baxter LL, Baxter A, Bever E, Burt S, Chamberlain S, Frankman D, Hoeger C, Mansfield E, Parkinson D, Sayre A, Stitt K (2019) Cryogenic carbon capture development final/technical report. Pittsburgh, PA, and Morgantown, WV (United States). https://​doi.​org/​10.​2172/​1572908
6.
go back to reference Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, Fennell PS, Fuss S, Galindo A, Hackett LA, Hallett JP, Herzog HJ, Jackson G, Kemper J, Krevor S, Maitland GC, Matuszewski M, Metcalfe IS, Petit C, Puxty G, Reimer J, Reiner DM, Rubin ES, Scott SA, Shah N, Smit B, Trusler JPM, Webley P, Wilcox J, Mac Dowell N (2018) Carbon capture and storage (CCS): the way forward. Energy Environ Sci 11:1062–1176. https://doi.org/10.1039/C7EE02342ACrossRef Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, Fennell PS, Fuss S, Galindo A, Hackett LA, Hallett JP, Herzog HJ, Jackson G, Kemper J, Krevor S, Maitland GC, Matuszewski M, Metcalfe IS, Petit C, Puxty G, Reimer J, Reiner DM, Rubin ES, Scott SA, Shah N, Smit B, Trusler JPM, Webley P, Wilcox J, Mac Dowell N (2018) Carbon capture and storage (CCS): the way forward. Energy Environ Sci 11:1062–1176. https://​doi.​org/​10.​1039/​C7EE02342ACrossRef
15.
go back to reference Hoffmann S, Bartlett M, Finkenrath M, Evulet A, Ursin TP (2008) Performance and cost analysis of advanced gas turbine cycles with pre-combustion CO2 capture. In: Volume 2: controls, diagnostics and instrumentation; cycle innovations; electric power. ASMEDC, pp 663–671. https://doi.org/10.1115/GT2008-51027 Hoffmann S, Bartlett M, Finkenrath M, Evulet A, Ursin TP (2008) Performance and cost analysis of advanced gas turbine cycles with pre-combustion CO2 capture. In: Volume 2: controls, diagnostics and instrumentation; cycle innovations; electric power. ASMEDC, pp 663–671. https://​doi.​org/​10.​1115/​GT2008-51027
18.
go back to reference International I (2009) Developing a pipeline infrastructure for CO2 capture and storage: issues and challenges International I (2009) Developing a pipeline infrastructure for CO2 capture and storage: issues and challenges
25.
go back to reference Atlantic O, Cretaceous L (2022) Quantitative evaluation of co2 storage potential in the offshore atlantic lower cretaceous strata, Southeastern United States Atlantic O, Cretaceous L (2022) Quantitative evaluation of co2 storage potential in the offshore atlantic lower cretaceous strata, Southeastern United States
26.
go back to reference Doughty C, Freifeld B, Trautz R (n.d.) Site characterization for CO2 geologic storage and vice versa : the Frio brine pilot, Texas, USA as a case study. 1–23 Doughty C, Freifeld B, Trautz R (n.d.) Site characterization for CO2 geologic storage and vice versa : the Frio brine pilot, Texas, USA as a case study. 1–23
27.
go back to reference Al Hameli F, Belhaj H, Al Dhuhoori M (2022) Trapping mechanisms matrix assessment Al Hameli F, Belhaj H, Al Dhuhoori M (2022) Trapping mechanisms matrix assessment
29.
go back to reference Centre OB, Orchard S (n.d.) IEA GHG weyburn CO2 monitoring & storage project Centre OB, Orchard S (n.d.) IEA GHG weyburn CO2 monitoring & storage project
30.
go back to reference Ph RN (2004) Improvement in power generation with post-combustion capture of CO2. Report Number PH4/33 November 2004 Ph RN (2004) Improvement in power generation with post-combustion capture of CO2. Report Number PH4/33 November 2004
35.
go back to reference Congress US (2007) Energy independence and security act. Public Law 110–140:1492–1801 Congress US (2007) Energy independence and security act. Public Law 110–140:1492–1801
36.
go back to reference Taylor P, White CM, Strazisar BR, Granite EJ, Hoffman JS, Pennline W, White CM, Strazisar BR, Granite EJ, Hoffman JS, Pennline HW (n.d.) Separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds and deep saline aquifers separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds 37–41 Taylor P, White CM, Strazisar BR, Granite EJ, Hoffman JS, Pennline W, White CM, Strazisar BR, Granite EJ, Hoffman JS, Pennline HW (n.d.) Separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds and deep saline aquifers separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds 37–41
37.
go back to reference Anbia M, Hoseini V (2012) Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide. Chem Eng J 191:326–330 Anbia M, Hoseini V (2012) Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide. Chem Eng J 191:326–330
40.
go back to reference Arts RJ, Zweigel P, Lothe AE (2000) Reservoir geology of the Utsira Sand in the southern Viking Graben area - a site for potential CO2 storage. 1–4 Arts RJ, Zweigel P, Lothe AE (2000) Reservoir geology of the Utsira Sand in the southern Viking Graben area - a site for potential CO2 storage. 1–4
58.
go back to reference Songolzadeh M, Ravanchi MT, Soleimani M (2012) Carbon dioxide capture and storage: a general review on adsorbents. Int J Chem Mol Nucl Mater Metall Eng 6 Songolzadeh M, Ravanchi MT, Soleimani M (2012) Carbon dioxide capture and storage: a general review on adsorbents. Int J Chem Mol Nucl Mater Metall Eng 6
61.
go back to reference Dantas TLP, Luna FMT, Silva IJ Jr, Torres AEB, Azevedo DCS, Rodrigues AE, Moreira RF (2011) Carbon dioxide–nitrogen separation through pressure swing adsorption. Chem Eng J 172:698–704 Dantas TLP, Luna FMT, Silva IJ Jr, Torres AEB, Azevedo DCS, Rodrigues AE, Moreira RF (2011) Carbon dioxide–nitrogen separation through pressure swing adsorption. Chem Eng J 172:698–704
62.
go back to reference Li J-R, Ma Y, McCarthy, MC, Sculley, J, Yu J, Jeong H-K, Balbuena PB, Zhou HC (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255:1791–1823 Li J-R, Ma Y, McCarthy, MC, Sculley, J, Yu J, Jeong H-K, Balbuena PB, Zhou HC (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255:1791–1823
Metadata
Title
Carbon Dioxide Capture, Separation and Storage Technologies
Authors
Sakshi Singh
Gourav Kumar Rath
Swagata Sharma
Wagisha Shree
Gaurav Pandey
Datshita Rawat
Ishita Arora
Nadezhda Molokitina
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-8465-7_28