Skip to main content
Top

2016 | OriginalPaper | Chapter

Carbon Nanohorns and Their High Potential in Biological Applications

Authors : Minfang Zhang, Masako Yudasaka

Published in: Carbon Nanoparticles and Nanostructures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon nanohorns, also called single-wall carbon nanohorns (SWNHs), are single-graphene tubules with horn-shaped tips, and were first reported by Iijima and colleagues in 1999 [1]. The tubule lengths and diameters range from 30 to 50 nm and 2 to 5 nm, respectively, and therefore, SWNHs are not uniform in size. Thousands of SWNHs assemble to form an aggregate, which in turn has an average diameter of ~80–100 nm. SWNHs are produced in large quantities (1 kg/day) by laser ablation of graphite. This process does not require a metal catalyst, and thus it is possible to prepare SWNHs with high purity (>95 %). Owing to their large surface area, molecular sieving effects and photo-thermal conversion characteristics, SWNHs show promise for applications in gas adsorption and storage, biosensor and nanomedicine such as drug delivery and photo-hyperthermia cancer therapy. In this chapter, we briefly introduce nanohorn production methods, biomaterial properties, and functionalization, and then highlight the potential use of SWNHs in various biological research fields. Issues concerning toxicity and biodegradation are also discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference F. Kokai, K. Takahashi, D. Kasuya, M. Yudasaka, S. Iijima, Growth dynamics of single-wall carbon nanotubes and nanohorn aggregates by CO2 laser vaporization at room temperature. Appl. Surf. Sci. 197–198, 650–655 (2002). doi:10.1016/S0169-4332(02)00434-8 CrossRef F. Kokai, K. Takahashi, D. Kasuya, M. Yudasaka, S. Iijima, Growth dynamics of single-wall carbon nanotubes and nanohorn aggregates by CO2 laser vaporization at room temperature. Appl. Surf. Sci. 197–198, 650–655 (2002). doi:10.​1016/​S0169-4332(02)00434-8 CrossRef
5.
go back to reference T. Azami, D. Kasuya, R. Yuge, M. Yudasaka, S. Iijima, T. Yoshitake, Y. Kubo, Large-scale production of single-wall carbon nanohorns with high purity. J. Phys. Chem. C 112, 1330–1334 (2008). doi:10.1021/jp076365o CrossRef T. Azami, D. Kasuya, R. Yuge, M. Yudasaka, S. Iijima, T. Yoshitake, Y. Kubo, Large-scale production of single-wall carbon nanohorns with high purity. J. Phys. Chem. C 112, 1330–1334 (2008). doi:10.​1021/​jp076365o CrossRef
11.
12.
go back to reference D. Kasuya, M. Yudasaka, K. Takahashi, F. Kokai, S. Iijima, Selective production of single-wall carbon nanohorn aggregates and their formation mechanism. J. Phy. Chem. B 106, 4947–4951 (2002). doi:10.1021/jp020387n CrossRef D. Kasuya, M. Yudasaka, K. Takahashi, F. Kokai, S. Iijima, Selective production of single-wall carbon nanohorn aggregates and their formation mechanism. J. Phy. Chem. B 106, 4947–4951 (2002). doi:10.​1021/​jp020387n CrossRef
15.
go back to reference C. Yang, H. Noguchi, K. Murata, M. Yudasaka, A. Hashimoto, S. Iijima, K. Kaneko, Highly ultramicroporous single-walled carbon nanohorn assemblies. Adv. Mater. 17, 866–870 (2005). doi:10.1002/adma.200400712 CrossRef C. Yang, H. Noguchi, K. Murata, M. Yudasaka, A. Hashimoto, S. Iijima, K. Kaneko, Highly ultramicroporous single-walled carbon nanohorn assemblies. Adv. Mater. 17, 866–870 (2005). doi:10.​1002/​adma.​200400712 CrossRef
16.
go back to reference S. Utsumi, J. Miyawaki, H. Tanaka, Y. Hattori, T. Ito, N. Ichikuni, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, Opening mechanism of internal nanoporosity of single-wall carbon nanohorn. J. Phys. Chem. B 109, 14319–14324 (2005). doi:10.1021/jp0512661 CrossRef S. Utsumi, J. Miyawaki, H. Tanaka, Y. Hattori, T. Ito, N. Ichikuni, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, Opening mechanism of internal nanoporosity of single-wall carbon nanohorn. J. Phys. Chem. B 109, 14319–14324 (2005). doi:10.​1021/​jp0512661 CrossRef
17.
go back to reference K. Murata, K. Kaneko, W. Steele, F. Kokai, K. Takahashi, D. Kasuya, K. Hirahara, M. Yudasaka, S. Iijima, Molecular potential structures of heat-treated Single-Wall Carbon Nanohorn Assemblies. J. Phys. Chem. B 105, 10210–10216 (2001). doi:10.1021/jp010754f CrossRef K. Murata, K. Kaneko, W. Steele, F. Kokai, K. Takahashi, D. Kasuya, K. Hirahara, M. Yudasaka, S. Iijima, Molecular potential structures of heat-treated Single-Wall Carbon Nanohorn Assemblies. J. Phys. Chem. B 105, 10210–10216 (2001). doi:10.​1021/​jp010754f CrossRef
18.
go back to reference J. Fan, M. Yudasaka, J. Miyawaki, K. Ajima, K. Murata, S. Iijima, Control of hole opening in single-wall carbon nanotubes and single-wall carbon nanohorns using oxygen. J. Phys. Chem. B 110, 1587–1591 (2006). doi:10.1021/jp0538870 CrossRef J. Fan, M. Yudasaka, J. Miyawaki, K. Ajima, K. Murata, S. Iijima, Control of hole opening in single-wall carbon nanotubes and single-wall carbon nanohorns using oxygen. J. Phys. Chem. B 110, 1587–1591 (2006). doi:10.​1021/​jp0538870 CrossRef
20.
go back to reference E. Bekyarova, K. Kaneko, M. Yudasaka, D. Kasuya, S. Iijima, A. Huidobro, F. Rodriguez-Reinoso, Controlled opening of single-wall carbon nanohorns by heat treatment in carbon dioxide. J. Phys. Chem. B 107, 4479–4484 (2003). doi:10.1021/jp026737n CrossRef E. Bekyarova, K. Kaneko, M. Yudasaka, D. Kasuya, S. Iijima, A. Huidobro, F. Rodriguez-Reinoso, Controlled opening of single-wall carbon nanohorns by heat treatment in carbon dioxide. J. Phys. Chem. B 107, 4479–4484 (2003). doi:10.​1021/​jp026737n CrossRef
21.
go back to reference C. Yang, D. Kasuya, M. Yudasaka, S. Iijima, K. Kaneko, Microporosity development of single-wall carbon nanohorn with chemically induced coalescence of the assembly structure. J. Phys. Chem. B 106, 17775–17782 (2004). doi:10.1021/jp048391h CrossRef C. Yang, D. Kasuya, M. Yudasaka, S. Iijima, K. Kaneko, Microporosity development of single-wall carbon nanohorn with chemically induced coalescence of the assembly structure. J. Phys. Chem. B 106, 17775–17782 (2004). doi:10.​1021/​jp048391h CrossRef
22.
go back to reference M. Zhang, M. Yudasaka, K. Ajima, J. Miyawaki, Sumio Iijima, Light-assisted oxidation of single-wall carbon nanohorns for abundant creation of oxygenated groups that enable chemical modifications with proteins to enhance biocompatibility. ACS Nano 1, 265–272 (2007). doi:10.1021/nn700130f CrossRef M. Zhang, M. Yudasaka, K. Ajima, J. Miyawaki, Sumio Iijima, Light-assisted oxidation of single-wall carbon nanohorns for abundant creation of oxygenated groups that enable chemical modifications with proteins to enhance biocompatibility. ACS Nano 1, 265–272 (2007). doi:10.​1021/​nn700130f CrossRef
24.
go back to reference J. Miyawaki, R. Yuge, T. Kawai, M. Yudasaka, S. Iijima, Evidence of thermal closing of atomic-vacancy holes in single-wall carbon nanohorns. J. Phys. Chem. C 111, 1553–1555 (2007). doi:10.1021/jp067283n CrossRef J. Miyawaki, R. Yuge, T. Kawai, M. Yudasaka, S. Iijima, Evidence of thermal closing of atomic-vacancy holes in single-wall carbon nanohorns. J. Phys. Chem. C 111, 1553–1555 (2007). doi:10.​1021/​jp067283n CrossRef
25.
go back to reference M. Zhang, M. Yudasaka, J. Miyawaki, J. Fan, S. Iijima, Isolating single-wall carbon nanohorns as small aggregates through a dispersion method. J. Phys. Chem. B 109, 22201–22204 (2005). doi:10.1021/jp054793t CrossRef M. Zhang, M. Yudasaka, J. Miyawaki, J. Fan, S. Iijima, Isolating single-wall carbon nanohorns as small aggregates through a dispersion method. J. Phys. Chem. B 109, 22201–22204 (2005). doi:10.​1021/​jp054793t CrossRef
26.
go back to reference M. Zhang, T. Yamaguchi, S. Iijima, M. Yudasaka, Individual single-wall carbon nanohorns separated from aggregates. J. Phys. Chem. C 113, 11184–11186 (2009). doi:10.1021/jp9037705 CrossRef M. Zhang, T. Yamaguchi, S. Iijima, M. Yudasaka, Individual single-wall carbon nanohorns separated from aggregates. J. Phys. Chem. C 113, 11184–11186 (2009). doi:10.​1021/​jp9037705 CrossRef
27.
29.
go back to reference S. Zhu, Z. Liu, L. Hu, Y. Yuan, G. Xu, Turn-on fluorescence sensor based on single-walled-carbon-nanohorn–peptide complex for the detection of thrombin. Chem. Eur. J. 18, 16556–16561 (2012). doi:10.1002/chem.201201468 CrossRef S. Zhu, Z. Liu, L. Hu, Y. Yuan, G. Xu, Turn-on fluorescence sensor based on single-walled-carbon-nanohorn–peptide complex for the detection of thrombin. Chem. Eur. J. 18, 16556–16561 (2012). doi:10.​1002/​chem.​201201468 CrossRef
30.
31.
go back to reference C. Cioffi, S. Campidelli, C. Sooambar, M. Marcaccio, G. Marcolongo, M. Meneghetti, D. Paolucci, F. Paolucci, C. Ehli, G.M. Rahman, V. Sgobba, D.M. Guldi, M. Prato, Synthesis, characterization, and photoinduced electron transfer in functionalized single wall carbon nanohorns. J. Am. Chem. Soc. 129, 3938–3945 (2007). doi:10.1021/ja068007 CrossRef C. Cioffi, S. Campidelli, C. Sooambar, M. Marcaccio, G. Marcolongo, M. Meneghetti, D. Paolucci, F. Paolucci, C. Ehli, G.M. Rahman, V. Sgobba, D.M. Guldi, M. Prato, Synthesis, characterization, and photoinduced electron transfer in functionalized single wall carbon nanohorns. J. Am. Chem. Soc. 129, 3938–3945 (2007). doi:10.​1021/​ja068007 CrossRef
32.
go back to reference H. Isobe, T. Tanaka, R. Maeda, E. Noiri, N. Solin, M. Yudasaka, S. Iijima, E. Nakamura, Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregates. Angew. Chem. Int. Ed. 45, 6676–6680 (2006). doi:10.1002/ange.200601718 CrossRef H. Isobe, T. Tanaka, R. Maeda, E. Noiri, N. Solin, M. Yudasaka, S. Iijima, E. Nakamura, Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregates. Angew. Chem. Int. Ed. 45, 6676–6680 (2006). doi:10.​1002/​ange.​200601718 CrossRef
33.
go back to reference C. Cioffi, S. Campidelli, F.G. Brunetti, M. Meneghetti, M. Prato, Functionalisation of carbon nanohorns, ChemComm 2129–2131 (2006). doi:10.1039/B601176D C. Cioffi, S. Campidelli, F.G. Brunetti, M. Meneghetti, M. Prato, Functionalisation of carbon nanohorns, ChemComm 2129–2131 (2006). doi:10.​1039/​B601176D
34.
go back to reference N. Tagmatarchis, A. Maigne, M. Yudasaka, S. Iijima, Functionalization of carbon nanohorns with azomethine ylides: towards solubility enhancement and electron-transfer processes. Small 2, 490–494 (2006). doi:10.1002/smll.200500393 N. Tagmatarchis, A. Maigne, M. Yudasaka, S. Iijima, Functionalization of carbon nanohorns with azomethine ylides: towards solubility enhancement and electron-transfer processes. Small 2, 490–494 (2006). doi:10.​1002/​smll.​200500393
35.
go back to reference T. Murakami, J. Fan, M. Yudasaka, S. Iijima, K. Shiba, Solubilization of single-wall carbon nanohorns using a PEG—doxorubicin conjugate. Mol. Pharm. 3, 407–414 (2006). doi:10.1021/mp060027a CrossRef T. Murakami, J. Fan, M. Yudasaka, S. Iijima, K. Shiba, Solubilization of single-wall carbon nanohorns using a PEG—doxorubicin conjugate. Mol. Pharm. 3, 407–414 (2006). doi:10.​1021/​mp060027a CrossRef
36.
go back to reference S. Matsumura, S. Sato, M. Yudasaka, A. Tomida, T. Tsuruo, S. Iijima, K. Shiba, Prevention of carbon nanohorn agglomeration using a conjugate composed of comb-shaped polyethylene glycol and a peptide aptamer. Mol. Pharm. 6, 441–447 (2009). doi:10.1021/mp800141v CrossRef S. Matsumura, S. Sato, M. Yudasaka, A. Tomida, T. Tsuruo, S. Iijima, K. Shiba, Prevention of carbon nanohorn agglomeration using a conjugate composed of comb-shaped polyethylene glycol and a peptide aptamer. Mol. Pharm. 6, 441–447 (2009). doi:10.​1021/​mp800141v CrossRef
38.
go back to reference M. Yang, M. Wada, M. Zhang, K. Kostarelos, R. Yuge, S. Iijima, M. Masuda, M. Yudasaka, A high poly(ethylene glycol) density on graphene nanomaterials reduces the detachment of lipid–poly(ethylene glycol) and macrophage uptake. Acta Biomater. 9, 4744–4753 (2013). doi:10.1016/j.actbio.2012.09.012 CrossRef M. Yang, M. Wada, M. Zhang, K. Kostarelos, R. Yuge, S. Iijima, M. Masuda, M. Yudasaka, A high poly(ethylene glycol) density on graphene nanomaterials reduces the detachment of lipid–poly(ethylene glycol) and macrophage uptake. Acta Biomater. 9, 4744–4753 (2013). doi:10.​1016/​j.​actbio.​2012.​09.​012 CrossRef
39.
go back to reference M. Zhang, M.T. Murakami, K. Ajima, K. Tsuchida, O. Ito, S. Iijima, M. Yudasaka, Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc. Natl. Acad. Sci. U.S.A. 105, 14773–14778 (2008). doi:10.1073/pnas.0801349105 CrossRef M. Zhang, M.T. Murakami, K. Ajima, K. Tsuchida, O. Ito, S. Iijima, M. Yudasaka, Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc. Natl. Acad. Sci. U.S.A. 105, 14773–14778 (2008). doi:10.​1073/​pnas.​0801349105 CrossRef
40.
go back to reference E. Miyakoa, T. Deguchi, Y. Nakajima, M. Yudasaka, Y. Hagihara, M. Horie, M. Shichiri, Y. Higuchi, F. Yamashita, M. Hashida, Y. Shigeri, Y. Yoshida, S. Iijima, Photothermic regulation of gene expression triggered by laser-induced carbon nanohorns. Proc. Natl. Acad. Sci. USA, 109, 7523–7528 (2012). doi:10.1073/pnas.1204391109 E. Miyakoa, T. Deguchi, Y. Nakajima, M. Yudasaka, Y. Hagihara, M. Horie, M. Shichiri, Y. Higuchi, F. Yamashita, M. Hashida, Y. Shigeri, Y. Yoshida, S. Iijima, Photothermic regulation of gene expression triggered by laser-induced carbon nanohorns. Proc. Natl. Acad. Sci. USA, 109, 7523–7528 (2012). doi:10.​1073/​pnas.​1204391109
41.
go back to reference J.R. Whitney, S. Sarkar, J. Zhang, T. Do, T. Young, M.K. Manson, T. Campbell, A. Puretzky, C. Rouleau, K. More, D. Geohegan, C. Rylander, H. Dorn, M.N. Rylander, Single-walled carbon nanohorns as photothermal cancer agents. Lasers Surg. Med. 43, 43–51 (2011). doi:10.1002/lsm.21025 CrossRef J.R. Whitney, S. Sarkar, J. Zhang, T. Do, T. Young, M.K. Manson, T. Campbell, A. Puretzky, C. Rouleau, K. More, D. Geohegan, C. Rylander, H. Dorn, M.N. Rylander, Single-walled carbon nanohorns as photothermal cancer agents. Lasers Surg. Med. 43, 43–51 (2011). doi:10.​1002/​lsm.​21025 CrossRef
44.
go back to reference E. Miyako, C. Hosokawa, M. Kojima, M. Yudasaka, R. Funahashi, I. Oishi, Y. Hagihara, M. Shichiri, M. Takashima, K. Nishio, Y. Yoshida, A photo-thermal-electrical convertor based on carbon nanotubes for bioelectronic applications. Angew. Chem. Int. Ed. 51, 2266–12270 (2011). doi:10.1002/ange.201106136 E. Miyako, C. Hosokawa, M. Kojima, M. Yudasaka, R. Funahashi, I. Oishi, Y. Hagihara, M. Shichiri, M. Takashima, K. Nishio, Y. Yoshida, A photo-thermal-electrical convertor based on carbon nanotubes for bioelectronic applications. Angew. Chem. Int. Ed. 51, 2266–12270 (2011). doi:10.​1002/​ange.​201106136
45.
46.
go back to reference S. Chechetka, B. Pichon, M. Zhang, M. Yudasaka, S. Begin-Colin, A. Bianco, E. Miyako, Multifunctional carbon nanohorn complexes for cancer treatment. Chem. Asian J. 10, 160–165 (2015). doi:10.1002/asia.201403059 CrossRef S. Chechetka, B. Pichon, M. Zhang, M. Yudasaka, S. Begin-Colin, A. Bianco, E. Miyako, Multifunctional carbon nanohorn complexes for cancer treatment. Chem. Asian J. 10, 160–165 (2015). doi:10.​1002/​asia.​201403059 CrossRef
47.
go back to reference T. Murakami, K. Ajima, J. Miyawaki, M. Yudasaka, S. Iijima, K. Shiba, Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol. Pharm. 1, 399–405 (2004). doi:10.1021/mp049928e CrossRef T. Murakami, K. Ajima, J. Miyawaki, M. Yudasaka, S. Iijima, K. Shiba, Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol. Pharm. 1, 399–405 (2004). doi:10.​1021/​mp049928e CrossRef
48.
go back to reference K. Ajima, T. Murakami A. Maigne, K. Shiba, S. Iijima, Carbon nanohorns as anticancer drug carriers. Mol. Pharm. 2:475–80 (2005). doi:10.1021/mp0500566 K. Ajima, T. Murakami A. Maigne, K. Shiba, S. Iijima, Carbon nanohorns as anticancer drug carriers. Mol. Pharm. 2:475–80 (2005). doi:10.​1021/​mp0500566
49.
go back to reference K. Ajima, A. Maigné, M. Yudasaka, Sumio Iijima, Optimum Hole-opening condition for cisplatin incorporation in single-wall carbon nanohorns and its release. J. Phys. Chem. B 110, 19097–19099 (2006). doi:10.1021/jp064915x CrossRef K. Ajima, A. Maigné, M. Yudasaka, Sumio Iijima, Optimum Hole-opening condition for cisplatin incorporation in single-wall carbon nanohorns and its release. J. Phys. Chem. B 110, 19097–19099 (2006). doi:10.​1021/​jp064915x CrossRef
50.
go back to reference K. Ajima, T. Murakami, Y. Mizoguchi, K. Tsuchida, T. Ichihashi, S. Iijima, M. Yudasaka, Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS Nano 2, 2057–2064 (2008). doi:10.1021/nn800395t CrossRef K. Ajima, T. Murakami, Y. Mizoguchi, K. Tsuchida, T. Ichihashi, S. Iijima, M. Yudasaka, Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS Nano 2, 2057–2064 (2008). doi:10.​1021/​nn800395t CrossRef
51.
go back to reference T. Murakami, H. Sawada, G. Tamura, M. Yudasaka, S. Iijima, K. Tsuchida, Water-dispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy. Nanomed. Lond. 3, 453–463 (2008). doi:10.2217/17435889.3.4.453 CrossRef T. Murakami, H. Sawada, G. Tamura, M. Yudasaka, S. Iijima, K. Tsuchida, Water-dispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy. Nanomed. Lond. 3, 453–463 (2008). doi:10.​2217/​17435889.​3.​4.​453 CrossRef
54.
go back to reference M. Nakamura, Y. Tahara, Y. Ikehara, T. Murakami, K. Tsuchida, S. Iijima, I. Waga, M. Yudasaka, Single-walled carbon nanohorns as drug carriers: adsorption of prednisolone and anti-inflammatory effects on arthritis. Nanotechnology 22, 465102 (2011). doi:10.1088/0957-4484/22/46/465102 CrossRef M. Nakamura, Y. Tahara, Y. Ikehara, T. Murakami, K. Tsuchida, S. Iijima, I. Waga, M. Yudasaka, Single-walled carbon nanohorns as drug carriers: adsorption of prednisolone and anti-inflammatory effects on arthritis. Nanotechnology 22, 465102 (2011). doi:10.​1088/​0957-4484/​22/​46/​465102 CrossRef
55.
go back to reference A.S.D. Sandanayaka, O. Ito, M. Zhang, K. Ajima, S. Iijima, M. Yudasaka, T. Murakami, K. Tsuchida, Photoinduced electron transfer in zinc phthalocyanine loaded on single-walled carbon nanohorns in aqueous solution. Adv. Mater. 21, 4366–4371 (2009). doi:10.1002/adma.200901256 CrossRef A.S.D. Sandanayaka, O. Ito, M. Zhang, K. Ajima, S. Iijima, M. Yudasaka, T. Murakami, K. Tsuchida, Photoinduced electron transfer in zinc phthalocyanine loaded on single-walled carbon nanohorns in aqueous solution. Adv. Mater. 21, 4366–4371 (2009). doi:10.​1002/​adma.​200901256 CrossRef
56.
go back to reference E. Miyako, J. Russier, M. Mauro, C. Cebrian, H. Yawo, C. Ménard-Moyon, J. Hutchison, M. Yudasaka, S. Iijima, L. De Cola, A. Bianco, Photofunctional nanomodulators for bioexcitation. Angew. Chem. Int. Ed. 53, 13121–13125 (2014). doi:10.1002/annie.201407169 CrossRef E. Miyako, J. Russier, M. Mauro, C. Cebrian, H. Yawo, C. Ménard-Moyon, J. Hutchison, M. Yudasaka, S. Iijima, L. De Cola, A. Bianco, Photofunctional nanomodulators for bioexcitation. Angew. Chem. Int. Ed. 53, 13121–13125 (2014). doi:10.​1002/​annie.​201407169 CrossRef
57.
go back to reference M. Mitsunaga, M. Ogawa, N. Kosaka, L. Rosenblum, P. Choyke, H. Kobayashi, Cancer cell–selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 17, 1685–1691 (2011). doi:10.1038/nm.2554 CrossRef M. Mitsunaga, M. Ogawa, N. Kosaka, L. Rosenblum, P. Choyke, H. Kobayashi, Cancer cell–selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 17, 1685–1691 (2011). doi:10.​1038/​nm.​2554 CrossRef
58.
go back to reference X. Peng, D. Draney, W. Volcheck, G. Bashford, D. Lamb, D. Grone, Y. Zhang, C. Johnson, Phthalocyanine dye as an extremely photostable and highly fluorescent near-infrared labeling reagent. Proc. SPIE Int. Soc. Opt. Eng. 6097, 113–124 (2006). doi:10.1117/12.669173 X. Peng, D. Draney, W. Volcheck, G. Bashford, D. Lamb, D. Grone, Y. Zhang, C. Johnson, Phthalocyanine dye as an extremely photostable and highly fluorescent near-infrared labeling reagent. Proc. SPIE Int. Soc. Opt. Eng. 6097, 113–124 (2006). doi:10.​1117/​12.​669173
59.
go back to reference M. Ohkita, S. Saito, T. Imagawa, K. Takahashi, M. Tominaga, T. Ohta, Molecular cloning and functional characterization of xenopus tropicalis frog transient receptor potential vanilloid 1 reveal its functional evolution for heat, acid, and capsaicin sensitivities in terrestrial vertebrates. J. Biol. Chem. 287, 2388–2397 (2012). doi:10.1074/jbc.M111.305698 CrossRef M. Ohkita, S. Saito, T. Imagawa, K. Takahashi, M. Tominaga, T. Ohta, Molecular cloning and functional characterization of xenopus tropicalis frog transient receptor potential vanilloid 1 reveal its functional evolution for heat, acid, and capsaicin sensitivities in terrestrial vertebrates. J. Biol. Chem. 287, 2388–2397 (2012). doi:10.​1074/​jbc.​M111.​305698 CrossRef
62.
go back to reference L. Shi, X. Liu, W. Niu, H. Li, S. Han, J. Chen, G. Xu, Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohorn modified electrode. Biosens. Bioelectron. 24(2009), 1159–1163 (2009)CrossRef L. Shi, X. Liu, W. Niu, H. Li, S. Han, J. Chen, G. Xu, Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohorn modified electrode. Biosens. Bioelectron. 24(2009), 1159–1163 (2009)CrossRef
64.
go back to reference J. Zhang, J. Lei, C. Xu, L. Ding, H. Ju, Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Anal. Chem. 82, 1117–1122 (2010). doi:10.1021/ac902914r CrossRef J. Zhang, J. Lei, C. Xu, L. Ding, H. Ju, Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Anal. Chem. 82, 1117–1122 (2010). doi:10.​1021/​ac902914r CrossRef
65.
go back to reference I. Ojeda, B. Garcinuñ, M. Moreno-Guzman, A. Gonzalez-Cortes, M. Yudasaka, S. Iijima, F. Langa, P. Yanez-Sedeno, J. Pingarron, Carbon nanohorns as a scaffold for the construction of disposable electrochemical immunosensing platforms. Application to the determination of fibrinogen in human plasma and urine. Anal. Chem. 86, 7749–7756 (2014). doi:10.1021/ac501681n CrossRef I. Ojeda, B. Garcinuñ, M. Moreno-Guzman, A. Gonzalez-Cortes, M. Yudasaka, S. Iijima, F. Langa, P. Yanez-Sedeno, J. Pingarron, Carbon nanohorns as a scaffold for the construction of disposable electrochemical immunosensing platforms. Application to the determination of fibrinogen in human plasma and urine. Anal. Chem. 86, 7749–7756 (2014). doi:10.​1021/​ac501681n CrossRef
66.
go back to reference F. Yang, J. Han, Y. Zhuo, Z. Yang, Y. Chai, R. Yuan, Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection. Biosens. Bioelectron. 55, 360–365 (2014). doi:10.1016/j.bios.2013.12.040 CrossRef F. Yang, J. Han, Y. Zhuo, Z. Yang, Y. Chai, R. Yuan, Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection. Biosens. Bioelectron. 55, 360–365 (2014). doi:10.​1016/​j.​bios.​2013.​12.​040 CrossRef
67.
go back to reference WHO, Guidelines for drinking-water quality, Addendum to Volume 2, Health Criteria and Other Supporting Information (World Health Organization, Geneva, Switzerland, 1998) WHO, Guidelines for drinking-water quality, Addendum to Volume 2, Health Criteria and Other Supporting Information (World Health Organization, Geneva, Switzerland, 1998)
68.
go back to reference J. Miyawaki, M. Yudasaka, T. Azami, Y Kubo, S. Iijima, Toxicity of single-walled carbon nanohorns, ACS Nano, 2(2), 213–226 (2008). doi:10.1021/nn700185t J. Miyawaki, M. Yudasaka, T. Azami, Y Kubo, S. Iijima, Toxicity of single-walled carbon nanohorns, ACS Nano, 2(2), 213–226 (2008). doi:10.​1021/​nn700185t
69.
go back to reference Y. Tahara1, J. Miyawaki,, M. Zhang, M. Yang, I. Waga, S. Iijima, H. Irie, M. Yudasaka, Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns. Nanotechnology 22, 265106, 8 (2011). doi:10.1088/0957-4484/22/26/265106 Y. Tahara1, J. Miyawaki,, M. Zhang, M. Yang, I. Waga, S. Iijima, H. Irie, M. Yudasaka, Histological assessments for toxicity and functionalization-dependent biodistribution of carbon nanohorns. Nanotechnology 22, 265106, 8 (2011). doi:10.​1088/​0957-4484/​22/​26/​265106
71.
72.
go back to reference M. Yang, M. Zhang, Y. Tahara, S. Chechetka, E. Miyako, S. Iijima, M. Yudasaka, Lysosomal membrane permeabilization: Carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism. Toxicol. Appl. Pharmacol. 280, 117–126 (2014). doi:10.1016/j.taap.2014.07.022 CrossRef M. Yang, M. Zhang, Y. Tahara, S. Chechetka, E. Miyako, S. Iijima, M. Yudasaka, Lysosomal membrane permeabilization: Carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism. Toxicol. Appl. Pharmacol. 280, 117–126 (2014). doi:10.​1016/​j.​taap.​2014.​07.​022 CrossRef
73.
go back to reference A. Hashimoto, H. Yorimitsu, K. Ajima, K. Suenaga, H. Isobe, J. Miyawaki, M. Yudasaka, S. Iijima, E. Nakamura, Selective deposition of a gadolinium(III) cluster in a hole opening of single-wall carbon nanohorn Proc. Natl. Acad. Sci. U.S.A. 101, 8527–8530 (2004). doi:10.1073/pnas.0400596101 CrossRef A. Hashimoto, H. Yorimitsu, K. Ajima, K. Suenaga, H. Isobe, J. Miyawaki, M. Yudasaka, S. Iijima, E. Nakamura, Selective deposition of a gadolinium(III) cluster in a hole opening of single-wall carbon nanohorn Proc. Natl. Acad. Sci. U.S.A. 101, 8527–8530 (2004). doi:10.​1073/​pnas.​0400596101 CrossRef
74.
go back to reference J. Miyawaki, M. Yudasaka, H. Imai, H. Yorimitsu, H. Isobe, E. Nakamura, S. Iijima, Synthesis of ultrafine Gd2O3 nanoparticles inside single-wall carbon nanohorns. J. Phys. Chem. B 110, 5179–5181 (2006). doi:10.1021/jp0607622 CrossRef J. Miyawaki, M. Yudasaka, H. Imai, H. Yorimitsu, H. Isobe, E. Nakamura, S. Iijima, Synthesis of ultrafine Gd2O3 nanoparticles inside single-wall carbon nanohorns. J. Phys. Chem. B 110, 5179–5181 (2006). doi:10.​1021/​jp0607622 CrossRef
75.
go back to reference R. Yuge, R. Ichihashi, J. Miyawaki, T. Yoshitake, S. Iijima, M. Yudasaka, Hidden caves in an aggregate of single-wall carbon nanohorns found by using Gd2O3 Probes. J. Phys. Chem. C 113, 2741–2744 (2009)CrossRef R. Yuge, R. Ichihashi, J. Miyawaki, T. Yoshitake, S. Iijima, M. Yudasaka, Hidden caves in an aggregate of single-wall carbon nanohorns found by using Gd2O3 Probes. J. Phys. Chem. C 113, 2741–2744 (2009)CrossRef
76.
go back to reference J. Miyawaki, S. Matsumura, R. Yuge, T. Murakami, S. Sato, A. Tomida, T. Tsuruo, T. Ichihashi, T. Fujinami, H. Irie, K. Tsuchida, S. Iijima, K. Shiba, M. Yudasaka, Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels. ACS Nano 3, 1399–1406 (2009). doi:10.1021/nn9004846 CrossRef J. Miyawaki, S. Matsumura, R. Yuge, T. Murakami, S. Sato, A. Tomida, T. Tsuruo, T. Ichihashi, T. Fujinami, H. Irie, K. Tsuchida, S. Iijima, K. Shiba, M. Yudasaka, Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels. ACS Nano 3, 1399–1406 (2009). doi:10.​1021/​nn9004846 CrossRef
77.
go back to reference M. Zhang, Y. Tahara, M. Yang, X. Zhou, S. Iijima, M. Yudasaka, Quantification of whole body and excreted carbon nanohorns intravenously injected into mice. Advanced Healthcare Materials 3, 239–244 (2013). doi:10.1002/adhm.201300192 CrossRef M. Zhang, Y. Tahara, M. Yang, X. Zhou, S. Iijima, M. Yudasaka, Quantification of whole body and excreted carbon nanohorns intravenously injected into mice. Advanced Healthcare Materials 3, 239–244 (2013). doi:10.​1002/​adhm.​201300192 CrossRef
80.
81.
go back to reference C. Thakaral, J.L. Abraham, Automated scanning electron microscopy and X-ray microanalysis for in-situ quantification of gadolinium deposits in skin. J. Electron Microsc. 56, 181–187 (2007). doi:10.1093/jmicro/dfm020 CrossRef C. Thakaral, J.L. Abraham, Automated scanning electron microscopy and X-ray microanalysis for in-situ quantification of gadolinium deposits in skin. J. Electron Microsc. 56, 181–187 (2007). doi:10.​1093/​jmicro/​dfm020 CrossRef
82.
go back to reference B.L. Allen, P.D. Kichambare, P. Gou, I. Vlasova, A. Kapralov, N. Konduru, V.E. Kagan, A. Star, Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett. 8, 3899–3903 (2008). doi:10.1021/nl802315h CrossRef B.L. Allen, P.D. Kichambare, P. Gou, I. Vlasova, A. Kapralov, N. Konduru, V.E. Kagan, A. Star, Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett. 8, 3899–3903 (2008). doi:10.​1021/​nl802315h CrossRef
83.
go back to reference B.L. Allen, G.P. Kotchey, Y. Chen, N. Yanamala, J. Klein-Seetharaman, V.E. Kagan, A. Star, Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 17194–17205 (2009). doi:10.1021/ja9083623 CrossRef B.L. Allen, G.P. Kotchey, Y. Chen, N. Yanamala, J. Klein-Seetharaman, V.E. Kagan, A. Star, Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 17194–17205 (2009). doi:10.​1021/​ja9083623 CrossRef
84.
go back to reference V. Kagan, N. Konduru, W. Feng, B. Allen, J. Conroy, Y. Volkov, I. Vlasova, N. Belikova, N. Yanamala, A. Kapralov, Y. Tyurina, J. Shi, E. Kisin, A. Murray, J. Franks, D. Stolz, P. Gou, J. Klein-Seetharaman, B. Fadeel, A. Star, A. Shvedova, Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat. Nanotechnol. 5, 354–359 (2010). doi:10.1038/nnano.2010.44 CrossRef V. Kagan, N. Konduru, W. Feng, B. Allen, J. Conroy, Y. Volkov, I. Vlasova, N. Belikova, N. Yanamala, A. Kapralov, Y. Tyurina, J. Shi, E. Kisin, A. Murray, J. Franks, D. Stolz, P. Gou, J. Klein-Seetharaman, B. Fadeel, A. Star, A. Shvedova, Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat. Nanotechnol. 5, 354–359 (2010). doi:10.​1038/​nnano.​2010.​44 CrossRef
87.
go back to reference G.P. Kotchey, S.A. Hasan, A. Kapralov, S. Ha, K. Kim, A. Shvedova, V.E. Kagan, A. Star, A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials. Acc. Chem. Res. 45, 1770–1781 (2012). doi:10.1021/ar300106h CrossRef G.P. Kotchey, S.A. Hasan, A. Kapralov, S. Ha, K. Kim, A. Shvedova, V.E. Kagan, A. Star, A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials. Acc. Chem. Res. 45, 1770–1781 (2012). doi:10.​1021/​ar300106h CrossRef
88.
go back to reference A. Shvedova, A. Kapralov, W. Feng, E. Kisin, A. Murray, R. Mercer, C. St Croix, M. Lang, S. Watkins, N. Konduru, B. Allen, J. Conroy, G. Kotchey, B. Mohamed, A. Meade, Y. Volkov, A. Star, B. Fadeel, V. Kagan, Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice. PLoS ONE 7, e30923 (2012). doi:10.1371/journal.pone.0030923 CrossRef A. Shvedova, A. Kapralov, W. Feng, E. Kisin, A. Murray, R. Mercer, C. St Croix, M. Lang, S. Watkins, N. Konduru, B. Allen, J. Conroy, G. Kotchey, B. Mohamed, A. Meade, Y. Volkov, A. Star, B. Fadeel, V. Kagan, Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice. PLoS ONE 7, e30923 (2012). doi:10.​1371/​journal.​pone.​0030923 CrossRef
89.
go back to reference A. Nunes, C. Bussy, L. Gherardini, M. Meneghetti, M.A. Herrero, A. Bianco, M. Prato, T. Pizzorusso, K. Al-Jamal, K. Kostarelos, In vivo degradation of functionalized carbon nanotubes after stereotactic administration in the brain cortex. Nanomed. Lond. 7, 1485–1494 (2012). doi:10.2217/nnm.12.33 CrossRef A. Nunes, C. Bussy, L. Gherardini, M. Meneghetti, M.A. Herrero, A. Bianco, M. Prato, T. Pizzorusso, K. Al-Jamal, K. Kostarelos, In vivo degradation of functionalized carbon nanotubes after stereotactic administration in the brain cortex. Nanomed. Lond. 7, 1485–1494 (2012). doi:10.​2217/​nnm.​12.​33 CrossRef
90.
go back to reference Y. Sato, A. Yokoyama, Y. Nodasaka, T. Kohgo, K. Motomiya, H. Matsumoto, E. Nakazawa, T. Numata, M. Zhang, M. Yudasaka, H. Hara, R. Araki, O. Tsukamoto, H. Saito, T. Kamino, F. Watari, K. Tohji, Long-term biopersistence of tangled oxidized carbon nanotubes inside and outside macrophages in rat subcutaneous tissue. Sci. Rep. 3, 2516 (2013). doi:10.1038/srep0216 Y. Sato, A. Yokoyama, Y. Nodasaka, T. Kohgo, K. Motomiya, H. Matsumoto, E. Nakazawa, T. Numata, M. Zhang, M. Yudasaka, H. Hara, R. Araki, O. Tsukamoto, H. Saito, T. Kamino, F. Watari, K. Tohji, Long-term biopersistence of tangled oxidized carbon nanotubes inside and outside macrophages in rat subcutaneous tissue. Sci. Rep. 3, 2516 (2013). doi:10.​1038/​srep0216
91.
go back to reference V.E. Kagan, A. Kapralov, C. St, S.C. Croix, E.R. Watkins, G.P. Kisin, K.Balasubramanian Kotchey, I. Vlasova, J. Yu, K. Kim, W. Seo, R.K. Mallampalli, A. Star, A. Shvedova, Lung macrophages “digest” carbon nanotubes using a superoxide/peroxynitrite oxidative pathway. ACS Nano 8, 5610–5621 (2014). doi:10.1021/nn406484b CrossRef V.E. Kagan, A. Kapralov, C. St, S.C. Croix, E.R. Watkins, G.P. Kisin, K.Balasubramanian Kotchey, I. Vlasova, J. Yu, K. Kim, W. Seo, R.K. Mallampalli, A. Star, A. Shvedova, Lung macrophages “digest” carbon nanotubes using a superoxide/peroxynitrite oxidative pathway. ACS Nano 8, 5610–5621 (2014). doi:10.​1021/​nn406484b CrossRef
92.
go back to reference M. Zhang, M. Yang, C. Bussay, S. Iijima, K. Kostarelos, M. Yudasaka, Biodegradation of carbon nanohorns in macrophage cells. Nanoscale 7, 2834–3840 (2015). doi:10.1039/c4nr06175f CrossRef M. Zhang, M. Yang, C. Bussay, S. Iijima, K. Kostarelos, M. Yudasaka, Biodegradation of carbon nanohorns in macrophage cells. Nanoscale 7, 2834–3840 (2015). doi:10.​1039/​c4nr06175f CrossRef
Metadata
Title
Carbon Nanohorns and Their High Potential in Biological Applications
Authors
Minfang Zhang
Masako Yudasaka
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-28782-9_3

Premium Partners