Skip to main content
Top

2019 | OriginalPaper | Chapter

7. Carbon Nanomaterials and Two-Dimensional Transition Metal Dichalcogenides (2D TMDCs)

Author : Loutfy H. Madkour

Published in: Nanoelectronic Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon nanostructures are a leading material in the nanotechnology field. The discovery and research of carbon materials has considerably contributed to the advancement of modern day science and technology. After the discovery of fullerene and single walled carbon nanotube (CNT), which are zero-dimensional and one-dimensional carbon nanomaterials respectively, the researchers have tried to isolate 2D graphitic material or to make 1D nano-ribbons from 2D crystals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Novoselov, K., Geim, A.K., Morozov, S., Jiang, D., Grigorieva, M.K.I., Dubonos, S., et al.: Two dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005) Novoselov, K., Geim, A.K., Morozov, S., Jiang, D., Grigorieva, M.K.I., Dubonos, S., et al.: Two dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)
2.
go back to reference Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007) Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)
3.
go back to reference Li, D., Kaner, R.B.: Materials science. Graphene-based materials. Science 320, 1170–1171 (2008) Li, D., Kaner, R.B.: Materials science. Graphene-based materials. Science 320, 1170–1171 (2008)
4.
go back to reference Li, D., Kaner, R.B.: Graphene-based materials. Nat. Nanotechnol. 3, 101 (2008) Li, D., Kaner, R.B.: Graphene-based materials. Nat. Nanotechnol. 3, 101 (2008)
5.
go back to reference Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 622 (1947) Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 622 (1947)
6.
go back to reference Zou, J., Liu, J., Karakoti, A.S., Kumar, A., Joung, D., Li, Q., et al.: Ultralight multiwalled carbon nanotube aerogel. ACS Nano 4, 7293–7302 (2010) Zou, J., Liu, J., Karakoti, A.S., Kumar, A., Joung, D., Li, Q., et al.: Ultralight multiwalled carbon nanotube aerogel. ACS Nano 4, 7293–7302 (2010)
7.
go back to reference Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008) Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008)
8.
go back to reference Fuhrer, M.S., Lau, C.N., MacDonald, A.H.: Graphene: materially better carbon. MRS Bull. 35, 289–295 (2010) Fuhrer, M.S., Lau, C.N., MacDonald, A.H.: Graphene: materially better carbon. MRS Bull. 35, 289–295 (2010)
9.
go back to reference Durkop, T., Getty, S., Cobas, E., Fuhrer, M.: Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004) Durkop, T., Getty, S., Cobas, E., Fuhrer, M.: Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004)
10.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004) Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)
11.
go back to reference Geim, A., Grigorieva, I.: Van der Waals heterostructures. Nature 499, 419–425 (2013) Geim, A., Grigorieva, I.: Van der Waals heterostructures. Nature 499, 419–425 (2013)
12.
go back to reference Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J., Zamora, F.: 2D materials: to graphene and beyond. Nanoscale 3, 20–30 (2011) Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J., Zamora, F.: 2D materials: to graphene and beyond. Nanoscale 3, 20–30 (2011)
13.
go back to reference Xu, M., Liang, T., Shi, M., Chen, H.: Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013) Xu, M., Liang, T., Shi, M., Chen, H.: Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013)
14.
go back to reference Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., et al.: Tunable bandgap in silicene and germanene. Nano Lett. 12, 113–118 (2011) Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., et al.: Tunable bandgap in silicene and germanene. Nano Lett. 12, 113–118 (2011)
15.
go back to reference Tabert, C.J., Nicol, E.J.: AC/DC spin and valley Hall effects in silicene and germanene. Phys. Rev. B 87, 235426 (2013) Tabert, C.J., Nicol, E.J.: AC/DC spin and valley Hall effects in silicene and germanene. Phys. Rev. B 87, 235426 (2013)
16.
go back to reference Wei, W., Dai, Y., Huang, B., Jacob, T.: Many-body effects in silicene, silicane, germanene and germanane. Phys. Chem. Chem. Phys. 15, 8789–8794 (2013) Wei, W., Dai, Y., Huang, B., Jacob, T.: Many-body effects in silicene, silicane, germanene and germanane. Phys. Chem. Chem. Phys. 15, 8789–8794 (2013)
17.
go back to reference Cai, Y., Chuu, C.-P., Wei, C., Chou, M.: Stability and electronic properties of two-dimensional silicene and germanene on graphene. Phys. Rev. B 88, 245408 (2013) Cai, Y., Chuu, C.-P., Wei, C., Chou, M.: Stability and electronic properties of two-dimensional silicene and germanene on graphene. Phys. Rev. B 88, 245408 (2013)
18.
go back to reference Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S.: Graphene based materials: past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011) Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S.: Graphene based materials: past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011)
19.
go back to reference Yang, N., Zhai, J., Wang, D., Chen, Y., Jiang, L.: Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887–894 (2010) Yang, N., Zhai, J., Wang, D., Chen, Y., Jiang, L.: Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887–894 (2010)
20.
go back to reference Ghosh, S., Sarker, B.K., Chunder, A., Zhai, L., Khondaker, S.I.: Position dependent photodetector from large area reduced graphene oxide thin films. Appl. Phys. Lett. 96, 163109 (2010) Ghosh, S., Sarker, B.K., Chunder, A., Zhai, L., Khondaker, S.I.: Position dependent photodetector from large area reduced graphene oxide thin films. Appl. Phys. Lett. 96, 163109 (2010)
21.
go back to reference Chunder, A., Pal, T., Khondaker, S.I., Zhai, L.: Reduced graphene oxide/copper phthalocyanine composite and its optoelectrical properties. J. Phys. Chem. C 114, 15129–15135 (2010) Chunder, A., Pal, T., Khondaker, S.I., Zhai, L.: Reduced graphene oxide/copper phthalocyanine composite and its optoelectrical properties. J. Phys. Chem. C 114, 15129–15135 (2010)
22.
go back to reference Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012) Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)
23.
go back to reference Wilson, J., Di Salvo, F., Mahajan, S.: Charge-density waves in metallic, layered, transition-metal dichalcogenides. Phys. Rev. Lett. 32, 882 (1974) Wilson, J., Di Salvo, F., Mahajan, S.: Charge-density waves in metallic, layered, transition-metal dichalcogenides. Phys. Rev. Lett. 32, 882 (1974)
24.
go back to reference Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010) Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)
25.
go back to reference Canadell, E., LeBeuze, A., El Khalifa, M.A., Chevrel, R., Whangbo, M.H.: Origin of metal clustering in transition-metal chalcogenide layers MX2 (M = Nb, Ta, Mo, Re; X = S, Se). J. Am. Chem. Soc. 111, 3778–3782 (1989) Canadell, E., LeBeuze, A., El Khalifa, M.A., Chevrel, R., Whangbo, M.H.: Origin of metal clustering in transition-metal chalcogenide layers MX2 (M = Nb, Ta, Mo, Re; X = S, Se). J. Am. Chem. Soc. 111, 3778–3782 (1989)
26.
go back to reference Jin, S., Lukowski, M.A., Daniel, A.S., English, C.R., Meng, F., Forticaux, A., et al.: Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. (2014) Jin, S., Lukowski, M.A., Daniel, A.S., English, C.R., Meng, F., Forticaux, A., et al.: Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. (2014)
27.
go back to reference Andriotis, A.N., Menon, M.: Tunable magnetic properties of transition metal doped MoS2. Phys. Rev. B 90, 125304 (2014) Andriotis, A.N., Menon, M.: Tunable magnetic properties of transition metal doped MoS2. Phys. Rev. B 90, 125304 (2014)
28.
go back to reference He, J., Hummer, K., Franchini, C.: Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 89, 075409 (2014) He, J., Hummer, K., Franchini, C.: Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 89, 075409 (2014)
29.
go back to reference Huang, Y., Peng, C., Chen, R., Huang, Y., Ho, C.: Transport properties in semiconducting NbS2 nanoflakes. Appl. Phys. Lett. 105, 093106 (2014) Huang, Y., Peng, C., Chen, R., Huang, Y., Ho, C.: Transport properties in semiconducting NbS2 nanoflakes. Appl. Phys. Lett. 105, 093106 (2014)
30.
go back to reference Moore, D.B., Beekman, M., Disch, S., Zschack, P., Hausler, I., Neumann, W., et al.: Synthesis, structure, and properties of turbostratically disordered (PbSe)1.18(TiSe2)2. Chem. Mater. 25, 2404–2409 (2013) Moore, D.B., Beekman, M., Disch, S., Zschack, P., Hausler, I., Neumann, W., et al.: Synthesis, structure, and properties of turbostratically disordered (PbSe)1.18(TiSe2)2. Chem. Mater. 25, 2404–2409 (2013)
31.
go back to reference Jeong, S., Yoo, D., Jang, J.-t., Kim, M., Cheon, J.: Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J. Am. Chem. Soc. 134, 18233–18236 (2012) Jeong, S., Yoo, D., Jang, J.-t., Kim, M., Cheon, J.: Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J. Am. Chem. Soc. 134, 18233–18236 (2012)
32.
go back to reference Eda, G., Fujita, T., Yamaguchi, H., Voiry, D., Chen, M., Chhowalla, M.: Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6, 7311–7317 (2012) Eda, G., Fujita, T., Yamaguchi, H., Voiry, D., Chen, M., Chhowalla, M.: Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6, 7311–7317 (2012)
33.
go back to reference Li, H., Lu, G., Wang, Y., Yin, Z., Cong, C., He, Q., et al.: Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 9, 1974–1981 (2013) Li, H., Lu, G., Wang, Y., Yin, Z., Cong, C., He, Q., et al.: Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 9, 1974–1981 (2013)
34.
go back to reference Li, H., Lu, G., Yin, Z., He, Q., Li, H., Zhang, Q., et al.: Optical identification of single- and few-layer MoS2 sheets. Small 8, 682–686 (2012) Li, H., Lu, G., Yin, Z., He, Q., Li, H., Zhang, Q., et al.: Optical identification of single- and few-layer MoS2 sheets. Small 8, 682–686 (2012)
35.
go back to reference Tongay, S., Zhou, J., Ataca, C., Lo, K., Matthews, T.S., Li, J., et al.: Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12, 5576–5580 (2012) Tongay, S., Zhou, J., Ataca, C., Lo, K., Matthews, T.S., Li, J., et al.: Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12, 5576–5580 (2012)
36.
go back to reference Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., et al.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011) Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., et al.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011)
37.
go back to reference Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutierrez, H.R., et al.: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013) Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutierrez, H.R., et al.: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013)
38.
go back to reference Wilson, J.A., Yoffe, A.D.: Transition metal dichalcogenides discussion and interpretation of observed optical, electrical, and structural properties. Adv. Phys. 18, 193–335 (1969) Wilson, J.A., Yoffe, A.D.: Transition metal dichalcogenides discussion and interpretation of observed optical, electrical, and structural properties. Adv. Phys. 18, 193–335 (1969)
39.
go back to reference Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., Dai, H.: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011) Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., Dai, H.: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011)
40.
go back to reference Wang, T., Liu, L., Zhu, Z., Papakonstantinou, P., Hu, J., Liu, H., et al.: Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ. Sci. 6, 625–633 (2013) Wang, T., Liu, L., Zhu, Z., Papakonstantinou, P., Hu, J., Liu, H., et al.: Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ. Sci. 6, 625–633 (2013)
41.
go back to reference Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., et al.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008) Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., et al.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)
42.
go back to reference Taha-Tijerina, J., Narayanan, T.N., Gao, G., Rohde, M., Tsentalovich, D.A., Pasquali, M., et al.: Electrically insulating thermal nanooils using 2D fillers. ACS Nano 6, 1214–1220 (2012) Taha-Tijerina, J., Narayanan, T.N., Gao, G., Rohde, M., Tsentalovich, D.A., Pasquali, M., et al.: Electrically insulating thermal nanooils using 2D fillers. ACS Nano 6, 1214–1220 (2012)
43.
go back to reference Lin, S.S.: Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 116, 3951–3955 (2012) Lin, S.S.: Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 116, 3951–3955 (2012)
44.
go back to reference Yang, S., Gong, Y., Liu, Z., Zhan, L., Hashim, D.P., Ma, L., et al.: Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 13, 1596–1601 (2013) Yang, S., Gong, Y., Liu, Z., Zhan, L., Hashim, D.P., Ma, L., et al.: Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 13, 1596–1601 (2013)
45.
go back to reference Kong, D., Dang, W., Cha, J.J., Li, H., Meister, S., Peng, H., et al.: Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 10, 2245–2250 (2010) Kong, D., Dang, W., Cha, J.J., Li, H., Meister, S., Peng, H., et al.: Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 10, 2245–2250 (2010)
46.
go back to reference Hu, L., Ma, R., Ozawa, T.C., Sasaki, T.: Exfoliation of layered europium hydroxide into unilamellar nanosheets. Chem. Asian J. 5, 248–251 (2010) Hu, L., Ma, R., Ozawa, T.C., Sasaki, T.: Exfoliation of layered europium hydroxide into unilamellar nanosheets. Chem. Asian J. 5, 248–251 (2010)
47.
go back to reference Ozawa, T.C., Fukuda, K., Akatsuka, K., Ebina, Y., Sasaki, T.: Preparation and characterization of the Eu3+ doped perovskite nanosheet phosphor: La0.9Eu0.05Nb2O7. Chem. Mater. 19, 6575–6580 (2007) Ozawa, T.C., Fukuda, K., Akatsuka, K., Ebina, Y., Sasaki, T.: Preparation and characterization of the Eu3+ doped perovskite nanosheet phosphor: La0.9Eu0.05Nb2O7. Chem. Mater. 19, 6575–6580 (2007)
48.
go back to reference Ozawa, T.C., Fukuda, K., Akatsuka, K., Ebina, Y., Sasaki, T., Kurashima, K., et al.: (K1.5Eu0.5)Ta3O10: a far-red luminescent nanosheet phosphor with the double perovskite structure. J. Phys. Chem. C 112, 17115–17120 (2008) Ozawa, T.C., Fukuda, K., Akatsuka, K., Ebina, Y., Sasaki, T., Kurashima, K., et al.: (K1.5Eu0.5)Ta3O10: a far-red luminescent nanosheet phosphor with the double perovskite structure. J. Phys. Chem. C 112, 17115–17120 (2008)
49.
go back to reference Ida, S., Ogata, C., Eguchi, M., Youngblood, W.J., Mallouk, T.E., Matsumoto, Y.: Photoluminescence of perovskite nanosheets prepared by exfoliation of layered oxides, K2Ln2Ti3O10, KLnNb2O7, and RbLnTa2O7 (Ln: lanthanide ion). J. Am. Chem. Soc. 130, 7052–7059 (2008) Ida, S., Ogata, C., Eguchi, M., Youngblood, W.J., Mallouk, T.E., Matsumoto, Y.: Photoluminescence of perovskite nanosheets prepared by exfoliation of layered oxides, K2Ln2Ti3O10, KLnNb2O7, and RbLnTa2O7 (Ln: lanthanide ion). J. Am. Chem. Soc. 130, 7052–7059 (2008)
50.
go back to reference Ebina, Y., Sasaki, T., Harada, M., Watanabe, M.: Restacked perovskite nanosheets and their Pt-loaded materials as photocatalysts. Chem. Mater. 14, 4390–4395 (2002) Ebina, Y., Sasaki, T., Harada, M., Watanabe, M.: Restacked perovskite nanosheets and their Pt-loaded materials as photocatalysts. Chem. Mater. 14, 4390–4395 (2002)
51.
go back to reference Osada, M., Akatsuka, K., Ebina, Y., Funakubo, H., Ono, K., Takada, K., et al.: Robust high-j response in molecularly thin perovskite nanosheets. ACS Nano 4, 5225–5232 (2010) Osada, M., Akatsuka, K., Ebina, Y., Funakubo, H., Ono, K., Takada, K., et al.: Robust high-j response in molecularly thin perovskite nanosheets. ACS Nano 4, 5225–5232 (2010)
52.
go back to reference Ma, R., Liu, Z., Takada, K., Iyi, N., Bando, Y., Sasaki, T.: Synthesis and exfoliation of Co2+–Fe3+ layered double hydroxides: an innovative topochemical approach. J. Am. Chem. Soc. 129, 5257–5263 (2007) Ma, R., Liu, Z., Takada, K., Iyi, N., Bando, Y., Sasaki, T.: Synthesis and exfoliation of Co2+–Fe3+ layered double hydroxides: an innovative topochemical approach. J. Am. Chem. Soc. 129, 5257–5263 (2007)
53.
go back to reference Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., et al.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010) Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., et al.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010)
54.
go back to reference Meng, L., Wang, Y., Zhang, L., Du, S., Wu, R., Li, L., et al.: Buckled silicene formation on Ir(111). Nano Lett. 13, 685–690 (2013) Meng, L., Wang, Y., Zhang, L., Du, S., Wu, R., Li, L., et al.: Buckled silicene formation on Ir(111). Nano Lett. 13, 685–690 (2013)
55.
go back to reference Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y., Yamada-Takamura, Y.: Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 245501 (2012) Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y., Yamada-Takamura, Y.: Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 245501 (2012)
56.
go back to reference Jung, H., Park, J., Oh, I.-K., Choi, T., Lee, S., Hong, J., et al.: Fabrication of transferable Al2O3 nanosheet by atomic layer deposition for graphene FET. ACS Appl. Mater. Interfaces 6, 2764–2769 (2014) Jung, H., Park, J., Oh, I.-K., Choi, T., Lee, S., Hong, J., et al.: Fabrication of transferable Al2O3 nanosheet by atomic layer deposition for graphene FET. ACS Appl. Mater. Interfaces 6, 2764–2769 (2014)
57.
go back to reference Ruggiero, C.D., Badal, M., Choi, T., Gohlke, D., Stroud, D., Gupta, J.A.: Emergence of surface states in nanoscale Cu2N islands. Phys. Rev. B 83, 245430 (2011) Ruggiero, C.D., Badal, M., Choi, T., Gohlke, D., Stroud, D., Gupta, J.A.: Emergence of surface states in nanoscale Cu2N islands. Phys. Rev. B 83, 245430 (2011)
58.
go back to reference Sterrer, M., Risse, T., Pozzoni, U.M., Giordano, L., Heyde, M., Rust, H.-P., et al.: Control of the charge state of metal atoms on thin MgO films. Phys. Rev. Lett. 98, 096107 (2007) Sterrer, M., Risse, T., Pozzoni, U.M., Giordano, L., Heyde, M., Rust, H.-P., et al.: Control of the charge state of metal atoms on thin MgO films. Phys. Rev. Lett. 98, 096107 (2007)
59.
go back to reference Hao, B., Yan, Y., Wang, X., Chen, G.: Synthesis of anatase TiO2 nanosheets with enhanced pseudocapacitive contribution for fast lithium storage. ACS Appl. Mater. Interfaces 5, 6285–6291 (2013) Hao, B., Yan, Y., Wang, X., Chen, G.: Synthesis of anatase TiO2 nanosheets with enhanced pseudocapacitive contribution for fast lithium storage. ACS Appl. Mater. Interfaces 5, 6285–6291 (2013)
60.
go back to reference Oughaddou, H., Aufray, B., Biberian, J.P., Hoarau, J.Y.: Growth mode and dissolution kinetics of germanium thin films on Ag (001) surface: an AES–LEED investigation. Surf. Sci. 429, 320–326 (1999) Oughaddou, H., Aufray, B., Biberian, J.P., Hoarau, J.Y.: Growth mode and dissolution kinetics of germanium thin films on Ag (001) surface: an AES–LEED investigation. Surf. Sci. 429, 320–326 (1999)
61.
go back to reference Oughaddou, H., Gay, J.M., Aufray, B., Lapena, L., Lay, G.L., Bunk, O., et al.: Ge tetramer structure of the p(2√2 × 4√2)R45° surface reconstruction of Ge/Ag(001): a surface X-ray diffraction and STM study. Phys. Rev. B 61, 5692 (2000) Oughaddou, H., Gay, J.M., Aufray, B., Lapena, L., Lay, G.L., Bunk, O., et al.: Ge tetramer structure of the p(2√2 × 4√2)R45° surface reconstruction of Ge/Ag(001): a surface X-ray diffraction and STM study. Phys. Rev. B 61, 5692 (2000)
62.
go back to reference Golias, E., Xenogiannopoulou, E., Tsoutsou, D., Tsipas, P., Giamini, S.A., Dimoulas, A.: Surface electronic bands of submonolayer Ge on Ag(111). Phys. Rev. B 88, 075403 (2013) Golias, E., Xenogiannopoulou, E., Tsoutsou, D., Tsipas, P., Giamini, S.A., Dimoulas, A.: Surface electronic bands of submonolayer Ge on Ag(111). Phys. Rev. B 88, 075403 (2013)
63.
go back to reference Oughaddou, H., Mayne, A., Aufray, B., Biberian, J.P., Lay, G.L., Ealet, B., et al.: Germanium adsorption on Ag(111): an AES-LEED and STM study. J. Nanosci. Nanotechnol. 7, 3189–3192 (2007) Oughaddou, H., Mayne, A., Aufray, B., Biberian, J.P., Lay, G.L., Ealet, B., et al.: Germanium adsorption on Ag(111): an AES-LEED and STM study. J. Nanosci. Nanotechnol. 7, 3189–3192 (2007)
64.
go back to reference Cullis, A.G., Booker, G.R.: The epitaxial growth of silicon and germanium films on (111) silicon surfaces using UHV sublimation and evaporation techniques. J. Cryst. Growth 9, 132–138 (1971) Cullis, A.G., Booker, G.R.: The epitaxial growth of silicon and germanium films on (111) silicon surfaces using UHV sublimation and evaporation techniques. J. Cryst. Growth 9, 132–138 (1971)
65.
go back to reference Nicolosi, V., Chhowalla, M., Kanatzidis, M.G., Strano, M.S., Coleman, J.N.: Liquid exfoliation of layered materials. Science 340, 1226419 (2013) Nicolosi, V., Chhowalla, M., Kanatzidis, M.G., Strano, M.S., Coleman, J.N.: Liquid exfoliation of layered materials. Science 340, 1226419 (2013)
66.
go back to reference Ozawa, T.C., Fukuda, K., Akatsuka, K., Ebina, Y., Sasaki, T.: Preparation and characterization of the Eu3+ doped perovskite nanosheet phosphor: La0.90Eu0.05Nb2O7. Chem. Mater. 19, 6575–6580 (2007) Ozawa, T.C., Fukuda, K., Akatsuka, K., Ebina, Y., Sasaki, T.: Preparation and characterization of the Eu3+ doped perovskite nanosheet phosphor: La0.90Eu0.05Nb2O7. Chem. Mater. 19, 6575–6580 (2007)
67.
go back to reference Cunningham, G., Lotya, M., Cucinotta, C.S., Sanvito, S., Bergin, S.D., Menzel, R., et al.: Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6, 3468–3480 (2012) Cunningham, G., Lotya, M., Cucinotta, C.S., Sanvito, S., Bergin, S.D., Menzel, R., et al.: Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6, 3468–3480 (2012)
68.
go back to reference Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., et al.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008) Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., et al.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008)
69.
go back to reference Diaz, E., Ordonez, S., Vega, A.: Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites. J. Colloid Interface Sci. 305, 7–16 (2007) Diaz, E., Ordonez, S., Vega, A.: Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites. J. Colloid Interface Sci. 305, 7–16 (2007)
70.
go back to reference Ataca, C., Sahin, H., Ciraci, S.: Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012) Ataca, C., Sahin, H., Ciraci, S.: Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012)
71.
go back to reference Fang, C., Van Bruggen, C., De Groot, R., Wiegers, G., Haas, C.: The electronic structure of the metastable layer compound. J. Phys.: Condens. Matter 9, 10173 (1997) Fang, C., Van Bruggen, C., De Groot, R., Wiegers, G., Haas, C.: The electronic structure of the metastable layer compound. J. Phys.: Condens. Matter 9, 10173 (1997)
72.
go back to reference Zhang, J.H., Birdwhistell, T.L., O’Connor, C.J.: Magnetic and electrical properties of a new chromium telluride phase: CrTe2. Solid State Commun. 74, 443–446 (1990) Zhang, J.H., Birdwhistell, T.L., O’Connor, C.J.: Magnetic and electrical properties of a new chromium telluride phase: CrTe2. Solid State Commun. 74, 443–446 (1990)
73.
go back to reference Koneshova, T., Babitsyna, A., Emel’yanova, T.: Cu–Te and Cr–Te Phase Diagrams (2001) Koneshova, T., Babitsyna, A., Emel’yanova, T.: Cu–Te and Cr–Te Phase Diagrams (2001)
74.
go back to reference Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004) Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)
75.
go back to reference Balendhran, S., et al.: Atomically thin layers of MoS2 via a two-step thermal evaporation-exfoliation method. Nanoscale 4(2), 461–466 (2012) Balendhran, S., et al.: Atomically thin layers of MoS2 via a two-step thermal evaporation-exfoliation method. Nanoscale 4(2), 461–466 (2012)
76.
go back to reference Nicolosi, V., et al.: Liquid exfoliation of layered materials. Science 340, 6139 (2013) Nicolosi, V., et al.: Liquid exfoliation of layered materials. Science 340, 6139 (2013)
77.
go back to reference Wang, J., et al.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613), 1719–1722 (2003) Wang, J., et al.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613), 1719–1722 (2003)
78.
go back to reference Zixu, Z., et al.: Graphene geometric diodes for terahertz rectennas. J. Phys. D Appl. Phys. 46(18), 185101 (2013) Zixu, Z., et al.: Graphene geometric diodes for terahertz rectennas. J. Phys. D Appl. Phys. 46(18), 185101 (2013)
79.
go back to reference O’Hare, A., Kusmartsev, F.V., Kugel, K.I.: A stable, “flat” form of two-dimensional crystals: could graphene, silicene, germanene be minigap semiconductors? Nano Lett. 12(2), 1045–1052 (2012) O’Hare, A., Kusmartsev, F.V., Kugel, K.I.: A stable, “flat” form of two-dimensional crystals: could graphene, silicene, germanene be minigap semiconductors? Nano Lett. 12(2), 1045–1052 (2012)
80.
go back to reference Kuc, A., Zibouche, N., Heine, T.: Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83(24), 245213 (2011) Kuc, A., Zibouche, N., Heine, T.: Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83(24), 245213 (2011)
81.
go back to reference Xu, M., et al.: Unique synthesis of graphene-based materials for clean energy and biological sensing applications. Chin. Sci. Bull. 57(23), 3000–3009 (2012) Xu, M., et al.: Unique synthesis of graphene-based materials for clean energy and biological sensing applications. Chin. Sci. Bull. 57(23), 3000–3009 (2012)
82.
go back to reference Zhu, W., et al.: Graphene radio frequency devices on flexible substrate. Appl. Phys. Lett. 102(23), 233102 (2013) Zhu, W., et al.: Graphene radio frequency devices on flexible substrate. Appl. Phys. Lett. 102(23), 233102 (2013)
83.
go back to reference Bae, S., et al.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010) Bae, S., et al.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)
84.
go back to reference Klein, C.A., Straub, W.D.: Carrier densities and mobilities in pyrolytic graphite. Phys. Rev. 123(5), 1581–1583 (1961) Klein, C.A., Straub, W.D.: Carrier densities and mobilities in pyrolytic graphite. Phys. Rev. 123(5), 1581–1583 (1961)
85.
go back to reference Novoselov, K.S., et al.: Room-temperature quantum hall effect in graphene. Science 315(5817), 1379 (2007) Novoselov, K.S., et al.: Room-temperature quantum hall effect in graphene. Science 315(5817), 1379 (2007)
86.
go back to reference Novoselov, K.S., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005) Novoselov, K.S., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005)
87.
go back to reference Stankovich, S., et al.: Graphene-based composite materials. Nature 442(7100), 282–286 (2006) Stankovich, S., et al.: Graphene-based composite materials. Nature 442(7100), 282–286 (2006)
88.
go back to reference Balandin, A.A., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008) Balandin, A.A., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)
89.
go back to reference Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005) Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005)
90.
go back to reference Mattheiss, L.F.: Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973) Mattheiss, L.F.: Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973)
91.
go back to reference Bernardi, M., Palummo, M., Grossman, J.C.: Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013) Bernardi, M., Palummo, M., Grossman, J.C.: Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013)
92.
go back to reference Lee, H.S., Min, S.-W., Chang, Y.-G., Park, M.K., Nam, T., Kim, H., Kim, J.H., Ryu, S., Im, S.: MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012) Lee, H.S., Min, S.-W., Chang, Y.-G., Park, M.K., Nam, T., Kim, H., Kim, J.H., Ryu, S., Im, S.: MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012)
93.
go back to reference Withers, F., Del Pozo-Zamudio, O., Mishchenko, A., Rooney, A.P., Gholinia, A., Watanabe, K., Taniguchi, T., Haigh, S.J., Geim, A.K., Tartakovskii, A.I., Novoselov, K.S.: Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015) Withers, F., Del Pozo-Zamudio, O., Mishchenko, A., Rooney, A.P., Gholinia, A., Watanabe, K., Taniguchi, T., Haigh, S.J., Geim, A.K., Tartakovskii, A.I., Novoselov, K.S.: Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015)
94.
go back to reference Chhowalla, M., Shin, H.S., Eda, G., Li, L.J., Loh, K.P., Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013) Chhowalla, M., Shin, H.S., Eda, G., Li, L.J., Loh, K.P., Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)
95.
go back to reference Chia, X., Eng, A.Y.S., Ambrosi, A., Tan, S.M., Pumera, M.: Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. (Washington, DC, US) 115, 11941–11966 (2015) Chia, X., Eng, A.Y.S., Ambrosi, A., Tan, S.M., Pumera, M.: Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. (Washington, DC, US) 115, 11941–11966 (2015)
96.
go back to reference Windom, B.C., Sawyer, W.G., Hahn, D.W.: A Raman spectroscopic study of MoS2 and MoO3: applications to tribological systems. Tribol. Lett. 42, 301–310 (2011) Windom, B.C., Sawyer, W.G., Hahn, D.W.: A Raman spectroscopic study of MoS2 and MoO3: applications to tribological systems. Tribol. Lett. 42, 301–310 (2011)
97.
go back to reference Fleischauer, P.D., Lince, J.R., Bertrand, P.A., Bauer, R.: Electronic structure and lubrication properties of MoS2: a qualitative molecular orbital approach. Langmuir 5, 1009–1015 (1989) Fleischauer, P.D., Lince, J.R., Bertrand, P.A., Bauer, R.: Electronic structure and lubrication properties of MoS2: a qualitative molecular orbital approach. Langmuir 5, 1009–1015 (1989)
98.
go back to reference Salomon, G., De Gee, A.W.J., Zaat, J.H.: Mechano-chemical factors in MoS2-film lubrication. Wear 7, 87–101 (1964) Salomon, G., De Gee, A.W.J., Zaat, J.H.: Mechano-chemical factors in MoS2-film lubrication. Wear 7, 87–101 (1964)
99.
go back to reference Azhagurajan, M., Kajita, T., Itoh, T., Kim, Y.-G., Itaya, K.: In situ visualization of lithium ion intercalation into MoS2 single crystals using differential optical microscopy with atomic layer resolution. J. Am. Chem. Soc. 138, 3355–3361 (2016) Azhagurajan, M., Kajita, T., Itoh, T., Kim, Y.-G., Itaya, K.: In situ visualization of lithium ion intercalation into MoS2 single crystals using differential optical microscopy with atomic layer resolution. J. Am. Chem. Soc. 138, 3355–3361 (2016)
100.
go back to reference Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H.: 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016) Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H.: 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016)
101.
go back to reference Ajayan, P., Kim, P., Banerjee, K.: Two-dimensional van der Waals materials. Phys. Today 69, 38–44 (2016) Ajayan, P., Kim, P., Banerjee, K.: Two-dimensional van der Waals materials. Phys. Today 69, 38–44 (2016)
102.
go back to reference Oughaddou, H., et al.: Prog. Surf. Sci. 90, 46 (2015) Oughaddou, H., et al.: Prog. Surf. Sci. 90, 46 (2015)
103.
104.
go back to reference Abergel, D.S.L., et al.: Properties of graphene: a theoretical perspective. Adv. Phys. 59(4), 261–482 (2010) Abergel, D.S.L., et al.: Properties of graphene: a theoretical perspective. Adv. Phys. 59(4), 261–482 (2010)
105.
go back to reference Alferov, Z.I.: Rev. Mod. Phys. 73(3), 767 (2001) Alferov, Z.I.: Rev. Mod. Phys. 73(3), 767 (2001)
106.
go back to reference Kroemer, H.: Rev. Mod. Phys. 73(3), 783 (2001) Kroemer, H.: Rev. Mod. Phys. 73(3), 783 (2001)
107.
go back to reference Isamu, A., et al.: J. Lumin. 48–49(Part 2), 666 (1991) Isamu, A., et al.: J. Lumin. 4849(Part 2), 666 (1991)
108.
go back to reference Amano, H., et al.: Jpn. J. Appl. Phys. 28(12A), L2112 (1989) Amano, H., et al.: Jpn. J. Appl. Phys. 28(12A), L2112 (1989)
109.
go back to reference Duan, X., et al.: Chem. Soc. Rev. 44, 8859 (2015) Duan, X., et al.: Chem. Soc. Rev. 44, 8859 (2015)
110.
go back to reference Jariwala, D., et al.: ACS Nano 8, 1102 (2014) Jariwala, D., et al.: ACS Nano 8, 1102 (2014)
111.
go back to reference Mahatha, S., et al.: J. Phys.: Condens. Matter 24, 475504 (2012) Mahatha, S., et al.: J. Phys.: Condens. Matter 24, 475504 (2012)
112.
go back to reference Hwang, W.S., et al.: Appl. Phys. Lett. 101, 013107 (2012) Hwang, W.S., et al.: Appl. Phys. Lett. 101, 013107 (2012)
113.
go back to reference Vogt, P., et al.: Phys. Rev. Lett. 108, 155501 (2012) Vogt, P., et al.: Phys. Rev. Lett. 108, 155501 (2012)
114.
go back to reference Pakdel, A., et al.: Mater. Today 15, 256 (2012) Pakdel, A., et al.: Mater. Today 15, 256 (2012)
115.
go back to reference Song, L., et al.: Phys. Rev. B 86, 075429 (2012) Song, L., et al.: Phys. Rev. B 86, 075429 (2012)
116.
117.
go back to reference Liu, Z., et al.: Nano Lett. 11, 2032 (2011) Liu, Z., et al.: Nano Lett. 11, 2032 (2011)
118.
119.
go back to reference Das, S., et al.: Crit. Rev. Solid State Mater. Sci. 39, 231 (2014) Das, S., et al.: Crit. Rev. Solid State Mater. Sci. 39, 231 (2014)
120.
go back to reference Wang, X.-R., et al.: Chin. Phys. B 22, 098505 (2013) Wang, X.-R., et al.: Chin. Phys. B 22, 098505 (2013)
121.
go back to reference Das, S., et al.: Annu. Rev. Mater. Res. 45, 1 (2015) Das, S., et al.: Annu. Rev. Mater. Res. 45, 1 (2015)
122.
go back to reference Cheng, R., et al.: Nat. Commun. 5, 5143 (2014) Cheng, R., et al.: Nat. Commun. 5, 5143 (2014)
123.
go back to reference Akinwande, D., et al.: Nat. Commun. 5, 5678 (2014) Akinwande, D., et al.: Nat. Commun. 5, 5678 (2014)
124.
go back to reference Bao, W., et al.: Appl. Phys. Lett. 102, 042104 (2013) Bao, W., et al.: Appl. Phys. Lett. 102, 042104 (2013)
125.
go back to reference Frey, G., et al.: Phys. Rev. B 57, 6666 (1998) Frey, G., et al.: Phys. Rev. B 57, 6666 (1998)
126.
go back to reference Islam, M.R., et al.: Nanoscale 6, 10033 (2014) Islam, M.R., et al.: Nanoscale 6, 10033 (2014)
127.
go back to reference Choudhary, N., et al.: J. Phys.: Condens. Matter 28, 364002 (2016) Choudhary, N., et al.: J. Phys.: Condens. Matter 28, 364002 (2016)
128.
go back to reference Fuhrer, M.S., Hone, J.: Nat. Nanotechnol. 8, 146 (2013) Fuhrer, M.S., Hone, J.: Nat. Nanotechnol. 8, 146 (2013)
129.
go back to reference Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A road map for graphene. Nature 490, 192–200 (2012) Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A road map for graphene. Nature 490, 192–200 (2012)
130.
go back to reference Tributsch, H., Bennett, J.C.: Electrochemistry and photochemistry of MoS2 layer crystals. I. J. Electroanal. Chem. 81, 97–111 (1977) Tributsch, H., Bennett, J.C.: Electrochemistry and photochemistry of MoS2 layer crystals. I. J. Electroanal. Chem. 81, 97–111 (1977)
131.
go back to reference Fivaz, R., Mooser, E.: Mobility of charge carriers in semiconducting layerstructures. Phys. Rev. 163, 743–755 (1967) Fivaz, R., Mooser, E.: Mobility of charge carriers in semiconducting layerstructures. Phys. Rev. 163, 743–755 (1967)
132.
go back to reference Geim, A.K.: Nobel lecture: random walk to graphene. Rev. Mod. Phys. 83, 851–862 (2011) Geim, A.K.: Nobel lecture: random walk to graphene. Rev. Mod. Phys. 83, 851–862 (2011)
133.
go back to reference Osada, M., Sasaki, T.: Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 210–228 (2012) Osada, M., Sasaki, T.: Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 210–228 (2012)
134.
go back to reference Miró, P., Audiffred, M., Heine, T.: An atlas of two-dimensional materials. Chem. Soc. Rev. 43, 6537–6554 (2014) Miró, P., Audiffred, M., Heine, T.: An atlas of two-dimensional materials. Chem. Soc. Rev. 43, 6537–6554 (2014)
135.
go back to reference Wang, F., Wang, Z., Wang, Q., Wang, F., Yin, L., Xu, K., Huang, Y., He, J.: Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology 26, 292001 (2015) Wang, F., Wang, Z., Wang, Q., Wang, F., Yin, L., Xu, K., Huang, Y., He, J.: Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology 26, 292001 (2015)
136.
go back to reference Bromley, R.A., Murray, R.B., Yoffe, A.D.: The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials. J. Phys. C: Solid State Phys. 5, 759–778 (1972) Bromley, R.A., Murray, R.B., Yoffe, A.D.: The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials. J. Phys. C: Solid State Phys. 5, 759–778 (1972)
137.
go back to reference Lin, Y.-C., Dumcenco, D.O., Huang, Y.-S., Suenaga, K.: Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014) Lin, Y.-C., Dumcenco, D.O., Huang, Y.-S., Suenaga, K.: Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014)
138.
go back to reference Kappera, R., Voiry, D., Yalcin, S.E., Branch, B., Gupta, G., Mohite, A.D., Chhowalla, M.: Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014) Kappera, R., Voiry, D., Yalcin, S.E., Branch, B., Gupta, G., Mohite, A.D., Chhowalla, M.: Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014)
139.
go back to reference Slonczewski, J.C., Weiss, P.R.: Band structure of graphite. Phys. Rev. 109, 272–279 (1958) Slonczewski, J.C., Weiss, P.R.: Band structure of graphite. Phys. Rev. 109, 272–279 (1958)
140.
go back to reference Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Acharya, K.L., Blanter, S.I., Groenendijk, D.J., Buscema, M., Steele, G.A., Alvarez, J.V., Zandbergen, H.W., Palacios, J.J., van der Zant, H.S.J.: Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014) Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Acharya, K.L., Blanter, S.I., Groenendijk, D.J., Buscema, M., Steele, G.A., Alvarez, J.V., Zandbergen, H.W., Palacios, J.J., van der Zant, H.S.J.: Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014)
141.
go back to reference Novoselov, K.S.: Nobel lecture: graphene: materials in the flatland. Rev. Mod. Phys. 83, 837–849 (2011) Novoselov, K.S.: Nobel lecture: graphene: materials in the flatland. Rev. Mod. Phys. 83, 837–849 (2011)
142.
go back to reference Guo, Z., Zhang, H., Lu, S., Wang, Z., Tang, S., Shao, J., Sun, Z., Xie, H., Wang, H., Yu, X.-F., Chu, P.K.: From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25, 6996–7002 (2015) Guo, Z., Zhang, H., Lu, S., Wang, Z., Tang, S., Shao, J., Sun, Z., Xie, H., Wang, H., Yu, X.-F., Chu, P.K.: From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25, 6996–7002 (2015)
143.
go back to reference Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011) Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)
144.
go back to reference Zhu, X., Monahan, N.R., Gong, Z., Zhu, H., Williams, K.W., Nelson, C.A.: Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 137, 8313–8320 (2015) Zhu, X., Monahan, N.R., Gong, Z., Zhu, H., Williams, K.W., Nelson, C.A.: Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 137, 8313–8320 (2015)
145.
go back to reference Kim, K.K., et al.: Nano Lett. 12(1), 161 (2011) Kim, K.K., et al.: Nano Lett. 12(1), 161 (2011)
146.
go back to reference Shi, Y., et al.: Nano Lett. 10(10), 4134 (2010) Shi, Y., et al.: Nano Lett. 10(10), 4134 (2010)
147.
go back to reference C.-H. Chen, et al.: 2D Mater. 1(3), 034001 (2014) C.-H. Chen, et al.: 2D Mater. 1(3), 034001 (2014)
148.
go back to reference Liu, K.-K., et al.: Nano Lett. 12(3), 1538 (2012) Liu, K.-K., et al.: Nano Lett. 12(3), 1538 (2012)
149.
go back to reference Li, X., et al.: Science 324(5932), 1312 (2009) Li, X., et al.: Science 324(5932), 1312 (2009)
150.
151.
go back to reference Radisavljevic, B, et al.: Nat. Nanotechnol. 6(3), 147 (2011) Radisavljevic, B, et al.: Nat. Nanotechnol. 6(3), 147 (2011)
152.
153.
go back to reference Fang, H., et al.: Nano Lett. 12(7), 3788 (2012) Fang, H., et al.: Nano Lett. 12(7), 3788 (2012)
154.
go back to reference Huang, J.-K., et al.: ACS Nano 8(1), 923 (2013) Huang, J.-K., et al.: ACS Nano 8(1), 923 (2013)
155.
go back to reference Pu, J., et al.: Nano Lett. 12(8), 4013 (2012) Pu, J., et al.: Nano Lett. 12(8), 4013 (2012)
156.
go back to reference Geim, A.K., Grigorieva, I.V.: Nature 499(7459), 419 (2013) Geim, A.K., Grigorieva, I.V.: Nature 499(7459), 419 (2013)
157.
go back to reference Wang, H., et al.: Nanoscale 6(21), 12250 (2014) Wang, H., et al.: Nanoscale 6(21), 12250 (2014)
158.
go back to reference Buscema, M., et al.: Chem. Soc. Rev. 44(11), 3691 (2015) Buscema, M., et al.: Chem. Soc. Rev. 44(11), 3691 (2015)
159.
go back to reference Park, N.-M., Kim, T.-S., Park, S.-J.: Band gap engineering of amorphous silicon quantum dots for light-emitting diodes. Appl. Phys. Lett. 78(17), 2575 (2001) Park, N.-M., Kim, T.-S., Park, S.-J.: Band gap engineering of amorphous silicon quantum dots for light-emitting diodes. Appl. Phys. Lett. 78(17), 2575 (2001)
160.
go back to reference Partoens, B., Peeters, F.M.: From graphene to graphite: electronic structure around the K point. Phys. Rev. B 74(7), 075404 (2006) Partoens, B., Peeters, F.M.: From graphene to graphite: electronic structure around the K point. Phys. Rev. B 74(7), 075404 (2006)
161.
go back to reference Wallace, P.R.: The band theory of graphite. Phys. Rev. 71(9), 622–634 (1947) Wallace, P.R.: The band theory of graphite. Phys. Rev. 71(9), 622–634 (1947)
162.
go back to reference Wilder, J.W.G., et al.: Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662), 59–62 (1998) Wilder, J.W.G., et al.: Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662), 59–62 (1998)
163.
go back to reference Golden, M.S., et al.: The electronic structure of fullerenes and fullerene compounds from high-energy spectroscopy. J. Phys.: Condens. Matter 7(43), 8219 (1995) Golden, M.S., et al.: The electronic structure of fullerenes and fullerene compounds from high-energy spectroscopy. J. Phys.: Condens. Matter 7(43), 8219 (1995)
164.
go back to reference Herman, F.: Electronic structure of the diamond crystal. Phys. Rev. 88(5), 1210–1211 (1952) Herman, F.: Electronic structure of the diamond crystal. Phys. Rev. 88(5), 1210–1211 (1952)
165.
go back to reference Bauer, L.A., Birenbaum, N.S., Meyer, G.J.: Biological applications of high aspect ratio nanoparticles. J. Mater. Chem. 14(4), 517–526 (2004) Bauer, L.A., Birenbaum, N.S., Meyer, G.J.: Biological applications of high aspect ratio nanoparticles. J. Mater. Chem. 14(4), 517–526 (2004)
166.
go back to reference Yoriya, S., et al.: Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 μm to 222 μm in length. Sens. Lett. 4(3), 334–339 (2006) Yoriya, S., et al.: Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 μm to 222 μm in length. Sens. Lett. 4(3), 334–339 (2006)
167.
go back to reference Bimberg, D., Grundmann, M., Ledentsov, N.N.: Quantum Dot Heterostructures, vol. 471973882. Wiley, Chichester (1999) Bimberg, D., Grundmann, M., Ledentsov, N.N.: Quantum Dot Heterostructures, vol. 471973882. Wiley, Chichester (1999)
168.
go back to reference Xiang, J., et al.: Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441(7092), 489–493 (2006) Xiang, J., et al.: Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441(7092), 489–493 (2006)
169.
go back to reference Lin, Y.-M., et al.: 100-GHz transistors from wafer-scale epitaxial graphene. Science 327(5966), 662 (2010) Lin, Y.-M., et al.: 100-GHz transistors from wafer-scale epitaxial graphene. Science 327(5966), 662 (2010)
170.
go back to reference Liu, M., et al.: A graphene-based broadband optical modulator. Nature 474(7349), 64–67 (2011) Liu, M., et al.: A graphene-based broadband optical modulator. Nature 474(7349), 64–67 (2011)
171.
go back to reference Kim, K.S., et al.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009) Kim, K.S., et al.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)
172.
go back to reference Kim, Y.J., et al.: Chemically modified multiwalled carbon nanotubes as an additive for supercapacitors. Small 2(3), 339–345 (2006) Kim, Y.J., et al.: Chemically modified multiwalled carbon nanotubes as an additive for supercapacitors. Small 2(3), 339–345 (2006)
173.
go back to reference Zhu, Y., et al.: Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011) Zhu, Y., et al.: Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011)
174.
go back to reference Dimitrakakis, G.K., Tylianakis, E., Froudakis, G.E.: Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 8(10), 3166–3170 (2008) Dimitrakakis, G.K., Tylianakis, E., Froudakis, G.E.: Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 8(10), 3166–3170 (2008)
175.
go back to reference Henwood, D., Carey, J.D.: Ab initio investigation of molecular hydrogen physisorption on graphene and carbon nanotubes. Phys. Rev. B 75(24), 245413 (2007) Henwood, D., Carey, J.D.: Ab initio investigation of molecular hydrogen physisorption on graphene and carbon nanotubes. Phys. Rev. B 75(24), 245413 (2007)
176.
go back to reference El-Kady, M.F., et al.: Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012) El-Kady, M.F., et al.: Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)
177.
go back to reference Yang, X., et al.: Graphene uniformly decorated with gold nanodots: in situ synthesis, enhanced dispersibility and applications. J. Mater. Chem. 21(22), 8096–8103 (2011) Yang, X., et al.: Graphene uniformly decorated with gold nanodots: in situ synthesis, enhanced dispersibility and applications. J. Mater. Chem. 21(22), 8096–8103 (2011)
178.
go back to reference Schedin, F., et al.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007) Schedin, F., et al.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)
179.
go back to reference Deng, M., et al.: Electrochemical deposition of polypyrrole/graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes. Sens. Actuators B: Chem. 158(1), 176–184 (2011) Deng, M., et al.: Electrochemical deposition of polypyrrole/graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes. Sens. Actuators B: Chem. 158(1), 176–184 (2011)
180.
go back to reference Xu, M., Fujita, D., Hanagata, N.: Perspectives and challenges of emerging single-molecule DNA sequencing technologies. Small 5(23), 2638–2649 (2009) Xu, M., Fujita, D., Hanagata, N.: Perspectives and challenges of emerging single-molecule DNA sequencing technologies. Small 5(23), 2638–2649 (2009)
181.
go back to reference Garaj, S., et al.: Graphene as a subnanometre trans-electrode membrane. Nature 467(7312), 190–193 (2010) Garaj, S., et al.: Graphene as a subnanometre trans-electrode membrane. Nature 467(7312), 190–193 (2010)
182.
go back to reference Wilson, N.R., et al.: Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3(9), 2547–2556 (2009) Wilson, N.R., et al.: Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3(9), 2547–2556 (2009)
183.
go back to reference Kim, K., et al.: A role for graphene in silicon-based semiconductor devices. Nature 479(7373), 338–344 (2011) Kim, K., et al.: A role for graphene in silicon-based semiconductor devices. Nature 479(7373), 338–344 (2011)
184.
go back to reference Castro, E., et al.: Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99(21), 216802 (2007) Castro, E., et al.: Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99(21), 216802 (2007)
185.
go back to reference McCann, E.: Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74(16), 161403 (2006) McCann, E.: Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74(16), 161403 (2006)
186.
go back to reference Ohta, T., et al.: Controlling the electronic structure of bilayer graphene. Science (New York, N.Y.) 313(5789), 951–954 (2006) Ohta, T., et al.: Controlling the electronic structure of bilayer graphene. Science (New York, N.Y.) 313(5789), 951–954 (2006)
187.
go back to reference Samuels, A.J., Carey, J.D.: Molecular doping and band-gap opening of bilayer graphene. ACS Nano 7(3), 2790–2799 (2013) Samuels, A.J., Carey, J.D.: Molecular doping and band-gap opening of bilayer graphene. ACS Nano 7(3), 2790–2799 (2013)
188.
go back to reference Zhang, Y., et al.: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248), 820–823 (2009) Zhang, Y., et al.: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248), 820–823 (2009)
189.
go back to reference Xu, M., et al.: Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013) Xu, M., et al.: Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013)
190.
go back to reference Novoselov, K.S., et al.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005) Novoselov, K.S., et al.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005)
191.
go back to reference Osada, M., Sasaki, T.: Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24(2), 210–228 (2012) Osada, M., Sasaki, T.: Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24(2), 210–228 (2012)
192.
go back to reference Giovannetti, G., et al.: Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B 76(7), 073103 (2007) Giovannetti, G., et al.: Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B 76(7), 073103 (2007)
193.
go back to reference Sławioska, J., Zasada, I., Klusek, Z.: Energy gap tuning in graphene on hexagonal boron nitride bilayer system. Phys. Rev. B 81(15), 155433 (2010) Sławioska, J., Zasada, I., Klusek, Z.: Energy gap tuning in graphene on hexagonal boron nitride bilayer system. Phys. Rev. B 81(15), 155433 (2010)
194.
go back to reference Zhang, H., et al.: Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5(6), 438–442 (2009) Zhang, H., et al.: Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5(6), 438–442 (2009)
195.
go back to reference Tang, H., et al.: Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. ACS Nano 5(9), 7510–7516 (2011) Tang, H., et al.: Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. ACS Nano 5(9), 7510–7516 (2011)
196.
go back to reference Gourmelon, E., et al.: MS2 (M = W, Mo) photosensitive thin films for solar cells. Sol. Energy Mater. Sol. Cells 46(2), 115–121 (1997) Gourmelon, E., et al.: MS2 (M = W, Mo) photosensitive thin films for solar cells. Sol. Energy Mater. Sol. Cells 46(2), 115–121 (1997)
197.
go back to reference Eda, G., et al.: Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 92(23), 233305 (2008) Eda, G., et al.: Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 92(23), 233305 (2008)
198.
go back to reference Motohiko, E.: A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 14(3), 033003 (2012) Motohiko, E.: A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 14(3), 033003 (2012)
199.
go back to reference Shahil, K.M.F., et al.: Crystal symmetry breaking in few-quintuple Bi2Te3 films: applications in nanometrology of topological insulators. Appl. Phys. Lett. 96(15), 153103 (2010) Shahil, K.M.F., et al.: Crystal symmetry breaking in few-quintuple Bi2Te3 films: applications in nanometrology of topological insulators. Appl. Phys. Lett. 96(15), 153103 (2010)
200.
go back to reference Gamble, F.R., Silbernagel, B.G.: Anisotropy of the proton spin–lattice relaxation time in the superconducting intercalation complex TaS2 (NH3): structural and bonding implications. J. Chem. Phys. 63(6), 2544–2552 (1975) Gamble, F.R., Silbernagel, B.G.: Anisotropy of the proton spin–lattice relaxation time in the superconducting intercalation complex TaS2 (NH3): structural and bonding implications. J. Chem. Phys. 63(6), 2544–2552 (1975)
201.
go back to reference Tang, X., et al.: Preparation and thermoelectric transport properties of high performance p-type Bi2Te3 with layered nanostructure. Appl. Phys. Lett. 90(1), 012102 (2007) Tang, X., et al.: Preparation and thermoelectric transport properties of high performance p-type Bi2Te3 with layered nanostructure. Appl. Phys. Lett. 90(1), 012102 (2007)
202.
go back to reference Ma, Y., Dai, Y., Guo, M., Niu, C., Huang, B.: Graphene adhesion on MoS2 monolayer: an ab initio study. Nanoscale 3, 3883–3887 (2011) Ma, Y., Dai, Y., Guo, M., Niu, C., Huang, B.: Graphene adhesion on MoS2 monolayer: an ab initio study. Nanoscale 3, 3883–3887 (2011)
203.
go back to reference Hong, X., Kim, J., Shi, S.F., Zhang, Y., Jin, C., Sun, Y., et al.: Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014) Hong, X., Kim, J., Shi, S.F., Zhang, Y., Jin, C., Sun, Y., et al.: Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014)
204.
go back to reference Xu, H., Wu, J., Feng, Q., Mao, N., Wang, C., Zhang, J.: High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small 10, 2300–2306 (2014) Xu, H., Wu, J., Feng, Q., Mao, N., Wang, C., Zhang, J.: High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small 10, 2300–2306 (2014)
205.
go back to reference Zhang, W., Chuu, C.P., Huang, J.K., Chen, C.H., Tsai, M.L., Chang, Y.H., et al.: Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 4(3826), 1–8 (2014) Zhang, W., Chuu, C.P., Huang, J.K., Chen, C.H., Tsai, M.L., Chang, Y.H., et al.: Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 4(3826), 1–8 (2014)
206.
go back to reference Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S., Lin, Z., et al.: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014) Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S., Lin, Z., et al.: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014)
207.
go back to reference Wi, S., Kim, H., Chen, M., Nam, H., Guo, L.J., Meyhofer, E., et al.: Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. ACS Nano 8, 5270–5281 (2014) Wi, S., Kim, H., Chen, M., Nam, H., Guo, L.J., Meyhofer, E., et al.: Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. ACS Nano 8, 5270–5281 (2014)
208.
go back to reference Choudhary, N., et al.: J. Mater. Res. 31, 824 (2016) Choudhary, N., et al.: J. Mater. Res. 31, 824 (2016)
209.
go back to reference Varghese, S.S., et al.: Electronics 4, 651 (2015) Varghese, S.S., et al.: Electronics 4, 651 (2015)
210.
211.
go back to reference Perera-Lopez, N., et al.: 2D Mater. 1, 011004 (2014) Perera-Lopez, N., et al.: 2D Mater. 1, 011004 (2014)
212.
go back to reference Choudhary, N., et al.: Sci. Rep. 6, 25456 (2016) Choudhary, N., et al.: Sci. Rep. 6, 25456 (2016)
213.
go back to reference Lee, C.-H., et al.: Nat. Nanotechnol. 9, 676 (2014) Lee, C.-H., et al.: Nat. Nanotechnol. 9, 676 (2014)
214.
go back to reference Mak, K.F., Shan, J.: Nat. Photonics 10, 216 (2016) Mak, K.F., Shan, J.: Nat. Photonics 10, 216 (2016)
215.
216.
217.
go back to reference Choudhary, N., et al.: J. Mater. Chem. A 3, 24049 (2015) Choudhary, N., et al.: J. Mater. Chem. A 3, 24049 (2015)
218.
219.
go back to reference Cui, S., et al.: Nat. Commun. 6, 8632 (2015) Cui, S., et al.: Nat. Commun. 6, 8632 (2015)
220.
go back to reference Sarkar, D., et al.: ACS Nano 8, 3992 (2014) Sarkar, D., et al.: ACS Nano 8, 3992 (2014)
221.
go back to reference Blake, P., Hill, E.W., Castro Neto, A.H., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J., Geim, A.K.: Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007) Blake, P., Hill, E.W., Castro Neto, A.H., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J., Geim, A.K.: Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007)
222.
go back to reference Dean, C.R., et al.: Nat. Nanotechnol. 5(10), 722 (2010) Dean, C.R., et al.: Nat. Nanotechnol. 5(10), 722 (2010)
223.
go back to reference Hsu, W.-T., et al.: ACS Nano 8(3), 2951 (2014) Hsu, W.-T., et al.: ACS Nano 8(3), 2951 (2014)
224.
go back to reference Fang, H., et al.: Proc. Natl. Acad. Sci. USA 111(17), 6198 (2014) Fang, H., et al.: Proc. Natl. Acad. Sci. USA 111(17), 6198 (2014)
225.
go back to reference Chiu, M.-H., et al.: ACS Nano 8(9), 9649 (2014) Chiu, M.-H., et al.: ACS Nano 8(9), 9649 (2014)
226.
go back to reference Song, J.-G., et al.: ACS Nano 7, 11333 (2013) Song, J.-G., et al.: ACS Nano 7, 11333 (2013)
227.
go back to reference Zhou, X., et al.: J. Am. Chem. Soc. 137, 7994 (2015) Zhou, X., et al.: J. Am. Chem. Soc. 137, 7994 (2015)
228.
go back to reference Keum, D.H., et al.: Nat. Phys. 11, 482 (2015) Keum, D.H., et al.: Nat. Phys. 11, 482 (2015)
229.
230.
231.
go back to reference Han, M.Y., et al.: Phys. Rev. Lett. 98, 206805 (2007) Han, M.Y., et al.: Phys. Rev. Lett. 98, 206805 (2007)
232.
go back to reference Del Pozo-Zamudio, O., et al.: 2D Mater. 2, 035010 (2015) Del Pozo-Zamudio, O., et al.: 2D Mater. 2, 035010 (2015)
233.
go back to reference Tongay, S., et al.: Nat. Commun. 5, 3252 (2014) Tongay, S., et al.: Nat. Commun. 5, 3252 (2014)
234.
go back to reference Kang, J., et al.: Proc. SPIE 9083, 908305 (2014) Kang, J., et al.: Proc. SPIE 9083, 908305 (2014)
235.
go back to reference Chen, C.-H., et al.: Nanomed. Nanotechnol. Biol. Med. 9(5), 600 (2013) Chen, C.-H., et al.: Nanomed. Nanotechnol. Biol. Med. 9(5), 600 (2013)
236.
go back to reference Zhu, C., et al.: J. Am. Chem. Soc. 135(16), 5998 (2013) Zhu, C., et al.: J. Am. Chem. Soc. 135(16), 5998 (2013)
237.
go back to reference Loo, A.H., et al.: Nanoscale 6(20), 11971 (2014) Loo, A.H., et al.: Nanoscale 6(20), 11971 (2014)
238.
go back to reference Loan, P.T.K., et al.: Adv. Mater. 26(28), 4838 (2014) Loan, P.T.K., et al.: Adv. Mater. 26(28), 4838 (2014)
239.
go back to reference Mak, K.F., et al.: Nat. Mater. 12(3), 207 (2013) Mak, K.F., et al.: Nat. Mater. 12(3), 207 (2013)
240.
go back to reference Bernardi, M., et al.: Nano Lett. 13(8), 3664 (2013) Bernardi, M., et al.: Nano Lett. 13(8), 3664 (2013)
241.
go back to reference Furchi, M.M., et al.: Nano Lett. 14(8), 4785 (2014) Furchi, M.M., et al.: Nano Lett. 14(8), 4785 (2014)
242.
go back to reference Lee, C.-H., et al.: Nat. Nanotechnol. 9(9), 676 (2014) Lee, C.-H., et al.: Nat. Nanotechnol. 9(9), 676 (2014)
243.
244.
go back to reference Tsai, M.-L., et al.: ACS Nano 8(8), 8317 (2014) Tsai, M.-L., et al.: ACS Nano 8(8), 8317 (2014)
245.
go back to reference Shanmugam, M., et al.: Nanoscale 6(21), 12682 (2014) Shanmugam, M., et al.: Nanoscale 6(21), 12682 (2014)
246.
go back to reference Duan, X., et al.: Nat. Nanotechnol. 9, 1024 (2014) Duan, X., et al.: Nat. Nanotechnol. 9, 1024 (2014)
247.
go back to reference Li, M.-Y., et al.: Science 349(6247), 524 (2015) Li, M.-Y., et al.: Science 349(6247), 524 (2015)
248.
go back to reference Roy, T., et al.: ACS Nano 8(6), 6259 (2014) Roy, T., et al.: ACS Nano 8(6), 6259 (2014)
249.
go back to reference Fang, H., et al.: Nano Lett. 13(5), 1991 (2013) Fang, H., et al.: Nano Lett. 13(5), 1991 (2013)
250.
go back to reference Tosun, M., et al.: ACS Nano 8(5), 4948 (2014) Tosun, M., et al.: ACS Nano 8(5), 4948 (2014)
251.
go back to reference Liu, H., et al.: ACS Nano 8(4), 4033 (2014) Liu, H., et al.: ACS Nano 8(4), 4033 (2014)
252.
go back to reference Das, S., Roelofs, A. In: 2014 72nd Annual Device Research Conference (DRC), p. 185 (2014) Das, S., Roelofs, A. In: 2014 72nd Annual Device Research Conference (DRC), p. 185 (2014)
253.
go back to reference Yu, L., et al.: Nano Lett. 15(8), 4928 (2015) Yu, L., et al.: Nano Lett. 15(8), 4928 (2015)
254.
go back to reference Britnell, L., et al.: Science 335(6071), 947 (2012) Britnell, L., et al.: Science 335(6071), 947 (2012)
255.
go back to reference Georgiou, T., et al.: Nat. Nanotechnol. 8(2), 100 (2013) Georgiou, T., et al.: Nat. Nanotechnol. 8(2), 100 (2013)
256.
go back to reference Yu, W.J., et al.: Nat. Mater. 12(3), 246 (2013) Yu, W.J., et al.: Nat. Mater. 12(3), 246 (2013)
257.
go back to reference Moriya, R., et al.: Appl. Phys. Lett. 105(8), 083119 (2014) Moriya, R., et al.: Appl. Phys. Lett. 105(8), 083119 (2014)
258.
go back to reference Sarkar, D., et al.: Nature 526(7571), 91 (2015) Sarkar, D., et al.: Nature 526(7571), 91 (2015)
259.
go back to reference Britnell, L., et al.: Science 340(6138), 1311 (2013) Britnell, L., et al.: Science 340(6138), 1311 (2013)
260.
go back to reference Yu, W.J., et al.: Nat. Nanotechnol. 8(12), 952 (2013) Yu, W.J., et al.: Nat. Nanotechnol. 8(12), 952 (2013)
261.
go back to reference Cheng, R., et al.: Nano Lett. 14(10), 5590 (2014) Cheng, R., et al.: Nano Lett. 14(10), 5590 (2014)
262.
go back to reference Deng, Y., et al.: ACS Nano 8(8), 8292 (2014) Deng, Y., et al.: ACS Nano 8(8), 8292 (2014)
263.
go back to reference Lopez-Sanchez, O., et al.: ACS Nano 8(3), 3042 (2014) Lopez-Sanchez, O., et al.: ACS Nano 8(3), 3042 (2014)
264.
go back to reference Pospischil, A., et al.: Nat. Nano 9(4), 257 (2014) Pospischil, A., et al.: Nat. Nano 9(4), 257 (2014)
265.
go back to reference Baugher, B.W.H., et al.: Nat. Nano 9(4), 262 (2014) Baugher, B.W.H., et al.: Nat. Nano 9(4), 262 (2014)
266.
go back to reference Ross, J.S., et al.: Nat. Nano 9(4), 268 (2014) Ross, J.S., et al.: Nat. Nano 9(4), 268 (2014)
267.
go back to reference Zhang, Y.-J., et al.: Science 344(6185), 725 (2014) Zhang, Y.-J., et al.: Science 344(6185), 725 (2014)
268.
go back to reference Withers, F., et al.: Nat. Mater. 14(3), 301 (2015) Withers, F., et al.: Nat. Mater. 14(3), 301 (2015)
269.
go back to reference Zhang, W., et al.: Sci. Rep. 4, 3826 (2014) Zhang, W., et al.: Sci. Rep. 4, 3826 (2014)
270.
go back to reference Roy, K., et al.: Nat. Nanotechnol. 8(11), 826 (2013) Roy, K., et al.: Nat. Nanotechnol. 8(11), 826 (2013)
271.
go back to reference Pop, E., et al.: MRS Bull. 37(12), 1273 (2012) Pop, E., et al.: MRS Bull. 37(12), 1273 (2012)
272.
go back to reference Chen, C.-C., et al.: Nano Res. 8(2), 666 (2015) Chen, C.-C., et al.: Nano Res. 8(2), 666 (2015)
283.
go back to reference de Marneffe, J.F., Cooke, M., Goodyear, A., Braithwaite, N.S.J., Sutton, Y., Bowden, M., Altimarano-Sanchez, E., Zotovich, A., El Otell, Z., Chan, B.T., Knoll, A., Rawlings, C., Duerig, U., Spieser, M., Kaestner, M., Neuber, C., Rangelow, I.: Advanced etching for nano-devices and 2D materials. In: Proceedings of the 42nd International Conference on Micro and Nano Engineering, SNM-1-52016 (2016). https://www.researchgate.net/publication/308764935 de Marneffe, J.F., Cooke, M., Goodyear, A., Braithwaite, N.S.J., Sutton, Y., Bowden, M., Altimarano-Sanchez, E., Zotovich, A., El Otell, Z., Chan, B.T., Knoll, A., Rawlings, C., Duerig, U., Spieser, M., Kaestner, M., Neuber, C., Rangelow, I.: Advanced etching for nano-devices and 2D materials. In: Proceedings of the 42nd International Conference on Micro and Nano Engineering, SNM-1-52016 (2016). https://​www.​researchgate.​net/​publication/​308764935
284.
go back to reference Gogolides, E., Argitis, P., Couladouros, E.A., Vidali, V.P., Vasilopoulou, M., Cordoyiannis, G., Diakoumakos, C.D., Tserepi, A.: J. Vac. Sci. Technol. B: Microelectron. Nanometer. Struct. Process. Meas. Phenom. 21, 141 (2003). https://doi.org/10.1116/1.1535930 Gogolides, E., Argitis, P., Couladouros, E.A., Vidali, V.P., Vasilopoulou, M., Cordoyiannis, G., Diakoumakos, C.D., Tserepi, A.: J. Vac. Sci. Technol. B: Microelectron. Nanometer. Struct. Process. Meas. Phenom. 21, 141 (2003). https://​doi.​org/​10.​1116/​1.​1535930
289.
go back to reference Kim, H., Gilmore, C.M., Piqué, A., Horwitz, J.S., Mattoussi, H., Murata, H., Kafafi, Z.H., Chrisey, D.B.: Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 86, 6451–6461 (1999) Kim, H., Gilmore, C.M., Piqué, A., Horwitz, J.S., Mattoussi, H., Murata, H., Kafafi, Z.H., Chrisey, D.B.: Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 86, 6451–6461 (1999)
291.
go back to reference Pumera, M., Sofer, Z., Ambrosi, A.: Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2, 8981–8987 (2014) Pumera, M., Sofer, Z., Ambrosi, A.: Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2, 8981–8987 (2014)
292.
go back to reference Koskinen, P., Fampiou, I., Ramasubramaniam, A.: Density-functional tight-binding simulations of curvature-controlled layer decoupling and band-gap tuning in bilayer MoS2. Phys. Rev. Lett. 112, 186802 (2014) Koskinen, P., Fampiou, I., Ramasubramaniam, A.: Density-functional tight-binding simulations of curvature-controlled layer decoupling and band-gap tuning in bilayer MoS2. Phys. Rev. Lett. 112, 186802 (2014)
293.
go back to reference Lee, H.S., Luong, D.H., Kim, M.S., Jin, Y., Kim, H., Yun, S., Lee, Y.H.: Reconfigurable exciton-plasmon interconversion for nanophotonic circuits. Nat. Commun. 7, 13663 (2016) Lee, H.S., Luong, D.H., Kim, M.S., Jin, Y., Kim, H., Yun, S., Lee, Y.H.: Reconfigurable exciton-plasmon interconversion for nanophotonic circuits. Nat. Commun. 7, 13663 (2016)
294.
go back to reference Mak, K.F., He, K., Shan, J., Heinz, T.F.: Control of valley polarization inmonolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012) Mak, K.F., He, K., Shan, J., Heinz, T.F.: Control of valley polarization inmonolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012)
295.
go back to reference Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H.: 2D materialsand van der Waals heterostructures. Science 353, aac9439 (2016) Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H.: 2D materialsand van der Waals heterostructures. Science 353, aac9439 (2016)
296.
go back to reference Cai, Y., et al.: Highly itinerant atomic vacancies in phosphorene. J. Am. Chem. Soc. 138, 10199–10206 (2016) Cai, Y., et al.: Highly itinerant atomic vacancies in phosphorene. J. Am. Chem. Soc. 138, 10199–10206 (2016)
297.
go back to reference Zou, X., Liu, Y., Yakobson, B.I.: Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 13, 253–258 (2013) Zou, X., Liu, Y., Yakobson, B.I.: Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 13, 253–258 (2013)
298.
go back to reference Zhou, W., et al.: Intrinsic structural defects in monolayer molybdenum disulphide. Nano Lett. 13, 2615–2622 (2013) Zhou, W., et al.: Intrinsic structural defects in monolayer molybdenum disulphide. Nano Lett. 13, 2615–2622 (2013)
299.
go back to reference Elias, D., et al.: Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009) Elias, D., et al.: Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009)
300.
go back to reference Zhu, S., Li, T.: Hydrogenation enabled scrolling of graphene. J. Phys. D Appl. Phys. 46, 075301 (2013) Zhu, S., Li, T.: Hydrogenation enabled scrolling of graphene. J. Phys. D Appl. Phys. 46, 075301 (2013)
301.
go back to reference Zhu, S., Li, T.: Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS Nano 8, 2864–2872 (2014) Zhu, S., Li, T.: Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS Nano 8, 2864–2872 (2014)
302.
go back to reference Blees, M.K., et al.: Graphene kirigami. Nature 524, 204–207 (2015) Blees, M.K., et al.: Graphene kirigami. Nature 524, 204–207 (2015)
303.
go back to reference Zhu, S., Huang, Y., Li, T.: Extremely compliant and highly stretchable patterned graphene. Appl. Phys. Lett. 104, 173103 (2014) Zhu, S., Huang, Y., Li, T.: Extremely compliant and highly stretchable patterned graphene. Appl. Phys. Lett. 104, 173103 (2014)
304.
go back to reference Li, T., et al.: Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 20, 3274–3277 (2005) Li, T., et al.: Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 20, 3274–3277 (2005)
305.
go back to reference Qi, Z., Campbell, D.K., Park, H.S.: Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami. Phys. Rev. B 90, 245437 (2014) Qi, Z., Campbell, D.K., Park, H.S.: Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami. Phys. Rev. B 90, 245437 (2014)
306.
go back to reference Bahamon, D., et al.: Graphene kirigami as a platform for stretchable and tunable quantum dot arrays. Phys. Rev. B 93, 235408 (2016) Bahamon, D., et al.: Graphene kirigami as a platform for stretchable and tunable quantum dot arrays. Phys. Rev. B 93, 235408 (2016)
Metadata
Title
Carbon Nanomaterials and Two-Dimensional Transition Metal Dichalcogenides (2D TMDCs)
Author
Loutfy H. Madkour
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-21621-4_7

Premium Partners