Skip to main content
Top

2019 | OriginalPaper | Chapter

15. Carbon Nanotube-Based Enzymatic Biofuel Cells

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Enzymatic biofuel cells (BFCs) are bioelectric devices that utilize oxidoreductase enzymes to catalyze the conversion of chemical energy into electric energy. Here, it is reviewed that the carbon nanotube (CNT) is a key material to improve the performance of enzyme electrodes and BFCs. Thanks to the high specific surface area of the nanostructured CNT-based electrodes, the electrons involved in the bio-electrocatalytic processes can be efficiently transferred from or to an external circuit. These high-performance enzyme electrodes were applied to the insertion-type and the patch-type BEF devices. The insertion BFC device generates electricity directly from biofluids like fruits juice and animal bloods, and serves as a self-powered biosensor for sugar in biofluids. The patch-type medical devices drive the iontophoretic flow through the skin to accelerate drug dosing and wound healing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Luckarift HR, Atanassov PB. Johnson GR (eds) (2014) Enzymatic fuel cells: from fundamentals to applications. Wiley Luckarift HR, Atanassov PB. Johnson GR (eds) (2014) Enzymatic fuel cells: from fundamentals to applications. Wiley
2.
go back to reference Rasmussen M, Abdellaoui S, Minteer SD (2016) Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron 76:91–102CrossRef Rasmussen M, Abdellaoui S, Minteer SD (2016) Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron 76:91–102CrossRef
3.
go back to reference Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886CrossRef Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886CrossRef
4.
5.
go back to reference Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD (2008) Enzyme catalyzed biofuel cells. Energy Environ Sci 1:320–337CrossRef Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD (2008) Enzyme catalyzed biofuel cells. Energy Environ Sci 1:320–337CrossRef
6.
go back to reference Meredith MT, Minteer SD (2012) Biofuel cells: enhanced enzymatic bioelectrocatalysis. Annu Rev Anal Chem 5:157–179CrossRef Meredith MT, Minteer SD (2012) Biofuel cells: enhanced enzymatic bioelectrocatalysis. Annu Rev Anal Chem 5:157–179CrossRef
7.
go back to reference Kwon CH, Lee SH, Choi YB, Lee JA, Kim SH, Kim HH, Spinks GM, Wallace GG, Lima MD, Kozlov ME, Baughman RH, Kim SJ (2014) High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns. Nat Commun 5:3928CrossRef Kwon CH, Lee SH, Choi YB, Lee JA, Kim SH, Kim HH, Spinks GM, Wallace GG, Lima MD, Kozlov ME, Baughman RH, Kim SJ (2014) High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns. Nat Commun 5:3928CrossRef
8.
go back to reference Arechederra R, Minteer SD (2009) Nanomaterials in biofuel cells. American Scientific Publishers, Stevenson Ranch, CA, pp 287–299 Arechederra R, Minteer SD (2009) Nanomaterials in biofuel cells. American Scientific Publishers, Stevenson Ranch, CA, pp 287–299
9.
go back to reference Che AF, Germain V, Cretin M, Cornu D, Innocent C, Tingry S (2011) Fabrication of free-standing electrospun carbon nanofibers as efficient electrode materials for bioelectrocatalysis. New J Chem 35:2848–2853CrossRef Che AF, Germain V, Cretin M, Cornu D, Innocent C, Tingry S (2011) Fabrication of free-standing electrospun carbon nanofibers as efficient electrode materials for bioelectrocatalysis. New J Chem 35:2848–2853CrossRef
10.
go back to reference Minteer SD (2012) Nanobioelectrocatalysis and its applications in biosensors, biofuel cells and bioprocessing. Top Catal 55:1157–1161CrossRef Minteer SD (2012) Nanobioelectrocatalysis and its applications in biosensors, biofuel cells and bioprocessing. Top Catal 55:1157–1161CrossRef
11.
go back to reference Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A (2013) Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B 1:4878–4908CrossRef Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A (2013) Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B 1:4878–4908CrossRef
12.
go back to reference Wen D, Deng L, Zhou M, Guo S, Shang L, Xu G, Dong S (2010) A biofuel cell with a single-walled carbon nanohorn-based bioanode operating at physiological condition. Biosens Bioelectron 25:1544–1547CrossRef Wen D, Deng L, Zhou M, Guo S, Shang L, Xu G, Dong S (2010) A biofuel cell with a single-walled carbon nanohorn-based bioanode operating at physiological condition. Biosens Bioelectron 25:1544–1547CrossRef
13.
go back to reference Yan Y, Zheng W, Su L, Mao L (2006) Carbon nanotube-based glucose/O2 biofuel cells. Adv Mater 18:2639–2643CrossRef Yan Y, Zheng W, Su L, Mao L (2006) Carbon nanotube-based glucose/O2 biofuel cells. Adv Mater 18:2639–2643CrossRef
14.
go back to reference Cosnier S, Holzinger M, Goff AL (2014) Recent advances in carbon nanotube-based enzymatic fuel cells. Front Bioeng Biotechnol 2:45CrossRef Cosnier S, Holzinger M, Goff AL (2014) Recent advances in carbon nanotube-based enzymatic fuel cells. Front Bioeng Biotechnol 2:45CrossRef
15.
go back to reference Miyake T, Yoshino S, Yamada T, Hata K, Nishizawa M (2011) Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells. J Am Chem Soc 133:5129–5134CrossRef Miyake T, Yoshino S, Yamada T, Hata K, Nishizawa M (2011) Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells. J Am Chem Soc 133:5129–5134CrossRef
16.
go back to reference Yoshino S, Miyake T, Yamada T, Hata K, Nishizawa M (2013) Molecularly ordered bioelectrocatalytic composite inside a film of aligned carbon nanotubes. Adv Energy Mater 3:60–64CrossRef Yoshino S, Miyake T, Yamada T, Hata K, Nishizawa M (2013) Molecularly ordered bioelectrocatalytic composite inside a film of aligned carbon nanotubes. Adv Energy Mater 3:60–64CrossRef
17.
go back to reference Ogawa Y, Yoshino S, Miyakea T, Nishizawa M (2014) Surfactant-assisted direct electron transfer between multi-copper oxidases and carbon nanotube-based porous electrodes. Phys Chem Chem Phys 16:13059–13062CrossRef Ogawa Y, Yoshino S, Miyakea T, Nishizawa M (2014) Surfactant-assisted direct electron transfer between multi-copper oxidases and carbon nanotube-based porous electrodes. Phys Chem Chem Phys 16:13059–13062CrossRef
18.
go back to reference Haneda K, Yoshino S, Ofuji T, Miyake T, Nishizawa M (2012) Sheet-shaped biofuel cell constructed from enzyme-modified nanoengineered carbon fabric. Electrochim Acta 82:175–178CrossRef Haneda K, Yoshino S, Ofuji T, Miyake T, Nishizawa M (2012) Sheet-shaped biofuel cell constructed from enzyme-modified nanoengineered carbon fabric. Electrochim Acta 82:175–178CrossRef
19.
go back to reference Miyake T, Haneda K, Yoshino S, Nishizawa M (2013) Flexible, layered biofuel cells. Biosens Bioelectron 40:45–49CrossRef Miyake T, Haneda K, Yoshino S, Nishizawa M (2013) Flexible, layered biofuel cells. Biosens Bioelectron 40:45–49CrossRef
20.
go back to reference Ogawa Y, Takai Y, Kato Y, Kai H, Miyake T, Nishizawa M (2015) Stretchable biofuel cell with enzyme-modified conductive textiles. Biosens Bioelectron 74:947–952CrossRef Ogawa Y, Takai Y, Kato Y, Kai H, Miyake T, Nishizawa M (2015) Stretchable biofuel cell with enzyme-modified conductive textiles. Biosens Bioelectron 74:947–952CrossRef
21.
go back to reference Kai H, Ogawa Y, Chen HY, Hata K, Nishizawa M (in press) Austin J Biosens Bioelectron Kai H, Ogawa Y, Chen HY, Hata K, Nishizawa M (in press) Austin J Biosens Bioelectron
22.
go back to reference Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047 Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047
23.
go back to reference Inam F, Yan H, Reece MJ, Peijs T (2008) Dimethylformamide: an effective dispersant for making ceramic-carbon nanotube composites. Nanotechnology 19:195710CrossRef Inam F, Yan H, Reece MJ, Peijs T (2008) Dimethylformamide: an effective dispersant for making ceramic-carbon nanotube composites. Nanotechnology 19:195710CrossRef
24.
go back to reference Ishibashi A, Nakashima N (2006) Individual dissolution of single-walled carbon nanotubes in aqueous solutions of steroid or sugar compounds and their raman and near-IR spectral properties. Chem Eur J 12:7595–7602CrossRef Ishibashi A, Nakashima N (2006) Individual dissolution of single-walled carbon nanotubes in aqueous solutions of steroid or sugar compounds and their raman and near-IR spectral properties. Chem Eur J 12:7595–7602CrossRef
25.
go back to reference Kaempgen M, Duesberg GS, Roth S (2005) Transparent carbon nanotube coatings. Appl Surf Sci 252:425–429CrossRef Kaempgen M, Duesberg GS, Roth S (2005) Transparent carbon nanotube coatings. Appl Surf Sci 252:425–429CrossRef
26.
go back to reference Abe Y, Tomuro R, Sano M (2005) Highly efficient direct current electrodeposition of single-walled carbon nanotubes in anhydrous solvents. Adv Mater 17:2192–2194CrossRef Abe Y, Tomuro R, Sano M (2005) Highly efficient direct current electrodeposition of single-walled carbon nanotubes in anhydrous solvents. Adv Mater 17:2192–2194CrossRef
27.
go back to reference Whitby RL, Fukuda T, Maekawa T, James SL, Mikhalovsky SV (2008) Geometric control and tuneable pore size distribution of buckypaper and buckydiscs. Carbon 46:949–956CrossRef Whitby RL, Fukuda T, Maekawa T, James SL, Mikhalovsky SV (2008) Geometric control and tuneable pore size distribution of buckypaper and buckydiscs. Carbon 46:949–956CrossRef
28.
go back to reference Vohrer U, Kolaric I, Haque MH, Roth S, Detlaff-Weglikowska U (2004) Carbon nanotube sheets for the use as artificial muscles. Carbon 42:1159–1164CrossRef Vohrer U, Kolaric I, Haque MH, Roth S, Detlaff-Weglikowska U (2004) Carbon nanotube sheets for the use as artificial muscles. Carbon 42:1159–1164CrossRef
29.
go back to reference Hennrich F, Lebedkin S, Malik S, Tracy J, Barczewski M, Rösner H, Kappes M (2002) Preparation, characterization and applications of free-standing single walled carbon nanotube thin films. Phys Chem Chem Phys 4:2273–2277CrossRef Hennrich F, Lebedkin S, Malik S, Tracy J, Barczewski M, Rösner H, Kappes M (2002) Preparation, characterization and applications of free-standing single walled carbon nanotube thin films. Phys Chem Chem Phys 4:2273–2277CrossRef
30.
go back to reference Hussein L, Urban G, Krüger M (2011) Fabrication and characterization of buckypaper-based nanostructured electrodes as a novel material for biofuel cell applications. Phys Chem Chem Phys 13:5831–5839CrossRef Hussein L, Urban G, Krüger M (2011) Fabrication and characterization of buckypaper-based nanostructured electrodes as a novel material for biofuel cell applications. Phys Chem Chem Phys 13:5831–5839CrossRef
31.
go back to reference Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276CrossRef Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276CrossRef
32.
go back to reference Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang GL, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15:1161–1165CrossRef Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang GL, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15:1161–1165CrossRef
33.
go back to reference Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290:1331–1334CrossRef Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290:1331–1334CrossRef
34.
go back to reference Gao F, Viry L, Maugey M, Poulin P, Mano N (2010) Engineering hybrid nanotube wires for high power biofuel cells. Nat Commun 1:2 Gao F, Viry L, Maugey M, Poulin P, Mano N (2010) Engineering hybrid nanotube wires for high power biofuel cells. Nat Commun 1:2
35.
go back to reference Cosnier S Le, Goff A, Holzinger M (2014) Towards glucose biofuel cells implanted in human body for powering artificial organs. Electrochem Commun 38:19–23CrossRef Cosnier S Le, Goff A, Holzinger M (2014) Towards glucose biofuel cells implanted in human body for powering artificial organs. Electrochem Commun 38:19–23CrossRef
36.
go back to reference Patolsky F, Weizmann Y, Willner I (2004) Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Edit 43:2113–2117CrossRef Patolsky F, Weizmann Y, Willner I (2004) Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Edit 43:2113–2117CrossRef
37.
go back to reference Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839CrossRef Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839CrossRef
38.
go back to reference Hiraoka T, Izadi-Najafabadi A, Yamada T, Futaba DN, Yasuda S, Tanaike O, Hatori H, Yumura M, Iijima S, Hata K (2010) Compact and light supercapacitor electrodes from a surface-only solid by opened carbon nanotubes with 2200 m2 g−1 surface area. Adv Funct Mater 20:422–428CrossRef Hiraoka T, Izadi-Najafabadi A, Yamada T, Futaba DN, Yasuda S, Tanaike O, Hatori H, Yumura M, Iijima S, Hata K (2010) Compact and light supercapacitor electrodes from a surface-only solid by opened carbon nanotubes with 2200 m2 g−1 surface area. Adv Funct Mater 20:422–428CrossRef
39.
go back to reference Ata S, Kobashi K, Yumura M, Hata K (2012) Mechanically durable and highly conductive elastomeric composites from long single-walled carbon nanotubes mimicking the chain structure of polymers. Nano Lett 12:2710–2716CrossRef Ata S, Kobashi K, Yumura M, Hata K (2012) Mechanically durable and highly conductive elastomeric composites from long single-walled carbon nanotubes mimicking the chain structure of polymers. Nano Lett 12:2710–2716CrossRef
40.
go back to reference Kamitaka Y, Tsujimura S, Setoyama N, Kajino T, Kano K (2007) Fructose/Dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Phys Chem Chem Phys 9:1793–1801CrossRef Kamitaka Y, Tsujimura S, Setoyama N, Kajino T, Kano K (2007) Fructose/Dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Phys Chem Chem Phys 9:1793–1801CrossRef
41.
go back to reference Heller A, Feldman B (2010) Electrochemistry in diabetes management. Acc Chem Res 43:963–973CrossRef Heller A, Feldman B (2010) Electrochemistry in diabetes management. Acc Chem Res 43:963–973CrossRef
42.
go back to reference Bourdillon C, Demaille C, Gueris J, Moiroux J, Saveant JM (1993) A fully active monolayer enzyme electrode derivatized by antigen-antibody attachment. J Am Chem Soc 115:12264–12269CrossRef Bourdillon C, Demaille C, Gueris J, Moiroux J, Saveant JM (1993) A fully active monolayer enzyme electrode derivatized by antigen-antibody attachment. J Am Chem Soc 115:12264–12269CrossRef
43.
go back to reference Tsujimura S, Kamitaka Y, Kano K (2007) Diffusion-controlled oxygen reduction on multi-copper oxidase-adsorbed carbon aerogel electrodes without mediator. Fuel Cells 7:463–469CrossRef Tsujimura S, Kamitaka Y, Kano K (2007) Diffusion-controlled oxygen reduction on multi-copper oxidase-adsorbed carbon aerogel electrodes without mediator. Fuel Cells 7:463–469CrossRef
44.
go back to reference Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6:2583–2590CrossRef Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6:2583–2590CrossRef
45.
go back to reference Wu ZL, Gong JP (2011) Hydrogels with self-assembling ordered structures and their functions. NPG Asia Mater 3:57–64CrossRef Wu ZL, Gong JP (2011) Hydrogels with self-assembling ordered structures and their functions. NPG Asia Mater 3:57–64CrossRef
46.
go back to reference Hanashi T, Yamazaki T, Tsugawa W, Ferri S, Nakayama D, Tomiyama M, Ikebukuro K, Sode K (2009) BioCapacitor-a novel category of biosensor. Biosens Bioelectron 24:1837–1842CrossRef Hanashi T, Yamazaki T, Tsugawa W, Ferri S, Nakayama D, Tomiyama M, Ikebukuro K, Sode K (2009) BioCapacitor-a novel category of biosensor. Biosens Bioelectron 24:1837–1842CrossRef
47.
go back to reference Dráber P, Sulimenko V, Sulimenko T, Dráberová E (2014) Stabilization of protein by freeze-drying in the presence of trehalose: a case study of tubulin. protein downstream processing: design, development and application of high and low-resolution methods. Methods Mol Biol 1129:443–458CrossRef Dráber P, Sulimenko V, Sulimenko T, Dráberová E (2014) Stabilization of protein by freeze-drying in the presence of trehalose: a case study of tubulin. protein downstream processing: design, development and application of high and low-resolution methods. Methods Mol Biol 1129:443–458CrossRef
48.
go back to reference Roman T, Dino WA, Nakanishi H, Kasai H (2006) Amino acid adsorption on single-walled carbon nanotubes. Eur Phys J 38:117–120 Roman T, Dino WA, Nakanishi H, Kasai H (2006) Amino acid adsorption on single-walled carbon nanotubes. Eur Phys J 38:117–120
49.
go back to reference Hickey DP, Reid RC, Milton RD, Minteer SD (2016) A self-powered amperometric lactate biosensor based on lactate oxidase immobilized in dimethylferrocene-modified LPEI. Biosens Bioelectron 77:26–31CrossRef Hickey DP, Reid RC, Milton RD, Minteer SD (2016) A self-powered amperometric lactate biosensor based on lactate oxidase immobilized in dimethylferrocene-modified LPEI. Biosens Bioelectron 77:26–31CrossRef
50.
go back to reference Mano N, Heller A (2003) A miniature membraneless biofuel cell operating at 0.36 V under physiological conditions. J Electrochem Soc 150:A1136–A1138CrossRef Mano N, Heller A (2003) A miniature membraneless biofuel cell operating at 0.36 V under physiological conditions. J Electrochem Soc 150:A1136–A1138CrossRef
51.
go back to reference Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A, Boucher F, Alcaraz JP, Gorgy K, Lenouvel F, Mathe S, Porcu P, Cosnier S (2010) A glucose biofuel cell implanted in rats. PLoS ONE 5:e10476CrossRef Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A, Boucher F, Alcaraz JP, Gorgy K, Lenouvel F, Mathe S, Porcu P, Cosnier S (2010) A glucose biofuel cell implanted in rats. PLoS ONE 5:e10476CrossRef
52.
go back to reference Halámková L, Halámek J, Bocharova V, Szczupak A, Alfonta L, Katz E (2012) Implanted biofuel cell operating in a living snail. J Am Chem Soc 134:5040–5043CrossRef Halámková L, Halámek J, Bocharova V, Szczupak A, Alfonta L, Katz E (2012) Implanted biofuel cell operating in a living snail. J Am Chem Soc 134:5040–5043CrossRef
53.
go back to reference Szczupak A, Halámek J, Halámková L, Bocharova V, Alfonta L, Katz E (2012) Living battery-biofuel cells operating in vivo in clams. Energy Environ Sci 5:8891–8895CrossRef Szczupak A, Halámek J, Halámková L, Bocharova V, Alfonta L, Katz E (2012) Living battery-biofuel cells operating in vivo in clams. Energy Environ Sci 5:8891–8895CrossRef
54.
go back to reference Falk M, Andoralov V, Blum Z, Sotres J, Suyatin DB, Ruzgas T, Arnebrant T, Shleev S (2012) Biofuel cell as a power source for electronic contact lenses. Biosens Bioelectron 37:38–45CrossRef Falk M, Andoralov V, Blum Z, Sotres J, Suyatin DB, Ruzgas T, Arnebrant T, Shleev S (2012) Biofuel cell as a power source for electronic contact lenses. Biosens Bioelectron 37:38–45CrossRef
55.
go back to reference Reid RC, Minteer SD, Gale BK (2015) Contact lens biofuel cell tested in a synthetic tear solution. Biosens Bioelectron 68:142–148CrossRef Reid RC, Minteer SD, Gale BK (2015) Contact lens biofuel cell tested in a synthetic tear solution. Biosens Bioelectron 68:142–148CrossRef
56.
go back to reference Ogawa Y, Kato K, Miyake T, Nagamine K, Ofuji T, Yoshino S, Nishizawa M (2015) Organic transdermal iontophoresis patch with built-in biofuel cell. Adv Healthcare Mater 4:506–510CrossRef Ogawa Y, Kato K, Miyake T, Nagamine K, Ofuji T, Yoshino S, Nishizawa M (2015) Organic transdermal iontophoresis patch with built-in biofuel cell. Adv Healthcare Mater 4:506–510CrossRef
57.
go back to reference Kai H, Yamauchi T, Ogawa Y, Tsubota A, Magome T, Miyake T, Yamasaki K, Nishizawa M (2017) Accelerated wound healing on skin by electrical stimulation with a bioelectric plaster. Adv Healthcare Mater 6:1700465–1700470CrossRef Kai H, Yamauchi T, Ogawa Y, Tsubota A, Magome T, Miyake T, Yamasaki K, Nishizawa M (2017) Accelerated wound healing on skin by electrical stimulation with a bioelectric plaster. Adv Healthcare Mater 6:1700465–1700470CrossRef
58.
go back to reference Miyake T, Haneda K, Nagai N, Yatagawa Y, Ohnami H, Yoshino S, Abe T, Nishizawa M (2011) Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms. Energy Environ Sci 4:5008–5012CrossRef Miyake T, Haneda K, Nagai N, Yatagawa Y, Ohnami H, Yoshino S, Abe T, Nishizawa M (2011) Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms. Energy Environ Sci 4:5008–5012CrossRef
59.
go back to reference Saluja S, Kasha PC, Paturi J, Anderson C, Morris R, Banga AK (2013) A novel electronic skin patch for delivery and pharmacokinetic evaluation of donepezil following transdermal iontophoresis. Int J Pharm 453:395–399CrossRef Saluja S, Kasha PC, Paturi J, Anderson C, Morris R, Banga AK (2013) A novel electronic skin patch for delivery and pharmacokinetic evaluation of donepezil following transdermal iontophoresis. Int J Pharm 453:395–399CrossRef
60.
go back to reference Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321CrossRef Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321CrossRef
61.
go back to reference Zhao M (2009) Electrical fields in wound healing—an overriding signal that directs cell migration. Semin Cell Dev Biol 20:674–682CrossRef Zhao M (2009) Electrical fields in wound healing—an overriding signal that directs cell migration. Semin Cell Dev Biol 20:674–682CrossRef
62.
go back to reference Kloth LC (2005) Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int J Lower Extrem Wounds 4:23–44CrossRef Kloth LC (2005) Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int J Lower Extrem Wounds 4:23–44CrossRef
Metadata
Title
Carbon Nanotube-Based Enzymatic Biofuel Cells
Author
Matsuhiko Nishizawa
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-92917-0_15