2018 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
Published in:
Carbon
Everything when miniaturized to the sub-100 nanometer scale, has new properties, regardless of what it is said Chad Mirkin, Professor of Chemistry (and materials science, engineering, medicine, biomedical engineering, and chemical and biological engineering) at Northwestern University, Chicago, IL. Indeed, nanoscale materials are used from sunscreen to chemical catalysis to antibacterial agents from the mundane to life-saving. Researchers are developing nanoscale assays to screen cancer, and detect infections and genes [1–8].
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1.
go back to reference C. Gerber, H.P. Lang, How the doors to the nanoworld opened. Nat. Technol. 1(1), 3–5 (2006) C. Gerber, H.P. Lang, How the doors to the nanoworld opened. Nat. Technol.
1(1), 3–5 (2006)
2.
go back to reference R.A. Vega, C.K.F. Shen, D. Maspoch, J.G. Robach, R.A. Lamb, C.A. Mirkin, Monitoring single cell infectivity from virus-particle nanoarrays fabricated by parallel dip-pen nanolithography. Small 3, 1482 (2007) CrossRef R.A. Vega, C.K.F. Shen, D. Maspoch, J.G. Robach, R.A. Lamb, C.A. Mirkin, Monitoring single cell infectivity from virus-particle nanoarrays fabricated by parallel dip-pen nanolithography. Small
3, 1482 (2007)
CrossRef
3.
go back to reference I. Bulbaugh, V. Blog, Engineered virus builds carbon nanotubes, Real Clear Sci. (2011) I. Bulbaugh, V. Blog, Engineered virus builds carbon nanotubes, Real Clear Sci. (2011)
4.
go back to reference Y.J. Lee et al., Fabricating genetically engineered high Poer lithium ion batteries using mutiple virus genes. Science 324(5930), 1050 (2009) Y.J. Lee et al., Fabricating genetically engineered high Poer lithium ion batteries using mutiple virus genes. Science
324(5930), 1050 (2009)
5.
go back to reference X. Dang et al., Researchers harness viruses to build solar cells. Nat. Technol. 6, 377 (2007) X. Dang et al., Researchers harness viruses to build solar cells. Nat. Technol.
6, 377 (2007)
6.
go back to reference J. Xiao, X. Pan, S. Guo, P. Ran, X. Bao, Towards fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc. 137(1), 477 (2015) CrossRef J. Xiao, X. Pan, S. Guo, P. Ran, X. Bao, Towards fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc.
137(1), 477 (2015)
CrossRef
7.
go back to reference D. K. Yee, C. Georgia (eds.), Nanobiomaterials: Developments and Applications (CRC Press, Boca Raton, 2013) D. K. Yee, C. Georgia (eds.),
Nanobiomaterials: Developments and Applications (CRC Press, Boca Raton, 2013)
8.
go back to reference S. Kang, M. Pinault, L.D. Pfefferle, M. Elimelech, Single walled VCarbonnanotubes exhibit strong antimicrobial activity. Langmuir 23, 8670 (2007) CrossRef S. Kang, M. Pinault, L.D. Pfefferle, M. Elimelech, Single walled VCarbonnanotubes exhibit strong antimicrobial activity. Langmuir
23, 8670 (2007)
CrossRef
9.
go back to reference M.S. Islam, Nanoscale materials and devices for future communication networks. IEEE Comm. Mag. 48(96), 112 (2010) CrossRef M.S. Islam, Nanoscale materials and devices for future communication networks. IEEE Comm. Mag.
48(96), 112 (2010)
CrossRef
10.
go back to reference J. Liu, Y. Lu, A calorimetric lead biosensor using DNA zyme directed assembly of gold nano particles. J. Am. Chem. Soc. 125, 6642 (2003) CrossRef J. Liu, Y. Lu, A calorimetric lead biosensor using DNA zyme directed assembly of gold nano particles. J. Am. Chem. Soc.
125, 6642 (2003)
CrossRef
11.
go back to reference S. Das et al., Designs for ultra-tiny special purpose nanoelectronic circuits. IEEE Trans. On Circuits and Syst. 54(11), 2528 (2007) CrossRef S. Das et al., Designs for ultra-tiny special purpose nanoelectronic circuits. IEEE Trans. On Circuits and Syst.
54(11), 2528 (2007)
CrossRef
12.
go back to reference R. Boyle, 7 amazing ways nanotechnology is changing the world, Science, (2012) R. Boyle, 7 amazing ways nanotechnology is changing the world, Science, (2012)
13.
go back to reference G.L. Hornyak, H.F. Tibals, J. Dutta, J.J. Moore, Introduction to Nanoscience and Nanotechnology (CRC Press, Boca Raton, 2008) G.L. Hornyak, H.F. Tibals, J. Dutta, J.J. Moore,
Introduction to Nanoscience and Nanotechnology (CRC Press, Boca Raton, 2008)
14.
go back to reference C. Binns, Introduction to Nanoscience and Nanotechnology (Wiley, Oxford, 2010) CrossRef C. Binns,
Introduction to Nanoscience and Nanotechnology (Wiley, Oxford, 2010)
CrossRef
15.
go back to reference M.C. Roco, Nanotechnology’s future. Sci. Am. 295(2), 21 (2006.) and also The future of national nanotechnology initiative, NSF, Nov. 7, (2003) and OECD Information Technology Outlook Ch-7, p-264 (2004) CrossRef M.C. Roco, Nanotechnology’s future. Sci. Am.
295(2), 21 (2006.) and also The future of national nanotechnology initiative, NSF, Nov. 7, (2003) and OECD Information Technology Outlook Ch-7, p-264 (2004)
CrossRef
16.
go back to reference M.C. Roco, National Nanotechnology Initiative – Past, Present, Future, in Handbook on Nanoscience Engineering and Technology, 2nd edn. (Taylor and Francis, Oxford, 2007), pp. 3.1–3.26 M.C. Roco,
National Nanotechnology Initiative – Past, Present, Future, in Handbook on Nanoscience Engineering and Technology, 2nd edn. (Taylor and Francis, Oxford, 2007), pp. 3.1–3.26
17.
go back to reference J.M. Bonard, H. Kind, T. Stockli, L.O. Nilsson, Field emission from carbon nanotubes: the first five years. Solid State Electron. 45, 893 (2001) CrossRef J.M. Bonard, H. Kind, T. Stockli, L.O. Nilsson, Field emission from carbon nanotubes: the first five years. Solid State Electron.
45, 893 (2001)
CrossRef
18.
go back to reference M. Daenen, R.D. de Fouw, B. Hamers, P.G.A. Janssen, K. SSchouteden, M.A.J. Veld, The Wondrous World of Carbon Nanotubes. A Review of Current Carbon Nanotube Technologies (Endhoven University of Technology, Eindhoven, 2003), p. 93 M. Daenen, R.D. de Fouw, B. Hamers, P.G.A. Janssen, K. SSchouteden, M.A.J. Veld,
The Wondrous World of Carbon Nanotubes. A Review of Current Carbon Nanotube Technologies (Endhoven University of Technology, Eindhoven, 2003), p. 93
19.
go back to reference T.W. Odom, J.L. Huang, C.M. Lieber, Single walled carbon nanotubes: from fundamental studies to new device concepts. Ann. N. Y. Acad. Sci. 960, 203 (2002) CrossRef T.W. Odom, J.L. Huang, C.M. Lieber, Single walled carbon nanotubes: from fundamental studies to new device concepts. Ann. N. Y. Acad. Sci.
960, 203 (2002)
CrossRef
20.
go back to reference E.G. Rakov, Chemistry of carbon nanotubes, in Carbon Nanomaterials ed. by Y. Gogotsi (CRC Press, Boca Raton, 2006), p. 78 E.G. Rakov, Chemistry of carbon nanotubes, in
Carbon Nanomaterials ed. by Y. Gogotsi (CRC Press, Boca Raton, 2006), p. 78
21.
go back to reference E.N. Ganesh, Single walled and multiple walled carbon nanotubes structure, synthesis, and applications. Int. J. Innov. Technol. Explorating Eng. (IJITEE) 2(4), 34 (2013) E.N. Ganesh, Single walled and multiple walled carbon nanotubes structure, synthesis, and applications. Int. J. Innov. Technol. Explorating Eng. (IJITEE)
2(4), 34 (2013)
22.
go back to reference T.W. Odom, H. Jin-Lin, P. Kim, C.M. Lieber, Atomic structure and electronic properties single walled carbon nanotubes. Nature 391, 62 (1998) CrossRef T.W. Odom, H. Jin-Lin, P. Kim, C.M. Lieber, Atomic structure and electronic properties single walled carbon nanotubes. Nature
391, 62 (1998)
CrossRef
23.
go back to reference R. Matel et al., Ambipolar electrical transport in semiconducting single wall carbon nanotubes. Phys. Rev. Lett. 87, 256805 (2001) CrossRef R. Matel et al., Ambipolar electrical transport in semiconducting single wall carbon nanotubes. Phys. Rev. Lett.
87, 256805 (2001)
CrossRef
24.
go back to reference R.J. Chen et al., Molecular photodesorption from single walled carbon nanotubes. Appl. Phys. Lett. 79, 2258 (2001) CrossRef R.J. Chen et al., Molecular photodesorption from single walled carbon nanotubes. Appl. Phys. Lett.
79, 2258 (2001)
CrossRef
25.
go back to reference Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, Growth of single walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105, 11424 (2001) CrossRef Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, Growth of single walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B
105, 11424 (2001)
CrossRef
26.
go back to reference J. Kong, H.T. Soh, A. Cassell, C.F. Quate, H. Dai, Synthesis of single walled carbon nanotubes on patterned silicon wafers. Nature 395, 878 (1998) CrossRef J. Kong, H.T. Soh, A. Cassell, C.F. Quate, H. Dai, Synthesis of single walled carbon nanotubes on patterned silicon wafers. Nature
395, 878 (1998)
CrossRef
27.
go back to reference M.S. Dresselhaus, G. Dresseihaus, R. Saito, Physics of carbon nanotubes. Carbon 33(7), 883 (1995) CrossRef M.S. Dresselhaus, G. Dresseihaus, R. Saito, Physics of carbon nanotubes. Carbon
33(7), 883 (1995)
CrossRef
28.
go back to reference M.S. Dresselhaus et al., Nanowires and nanotubes. Mater. Sci. Eng. C 23, 129 (2003) CrossRef M.S. Dresselhaus et al., Nanowires and nanotubes. Mater. Sci. Eng. C
23, 129 (2003)
CrossRef
29.
go back to reference T. Brown, H. Lemay, B. Bursten, Chemistry, The Central Science, 8th edn. (Prantice Hall, Upper Saddle River, 2002) T. Brown, H. Lemay, B. Bursten,
Chemistry, The Central Science, 8th edn. (Prantice Hall, Upper Saddle River, 2002)
30.
go back to reference R. Saito, G. Dresselhaus, M. Dresselhaus, Electronic structure of double-layer graphene tubes. J. Appl. Phys. 73(2), 494 (1993) CrossRef R. Saito, G. Dresselhaus, M. Dresselhaus, Electronic structure of double-layer graphene tubes. J. Appl. Phys.
73(2), 494 (1993)
CrossRef
31.
go back to reference H. Frohlich, Theory of superconductivity state.1. The ground state at the absolute zero temperature. Phys. Ther. Rev. 79, 845 (1952) MATH H. Frohlich, Theory of superconductivity state.1. The ground state at the absolute zero temperature. Phys. Ther. Rev.
79, 845 (1952)
MATH
32.
go back to reference J. Bardeen, N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Ther. Rev. 108(5), 1175 (1957.) and also W. Shi, et al., superconductivity in bundles of double wall carbon nanotubes, Nature Sci. Repts., -2 Article No. 625, (2012), and M. Ferrier, Appl. Phys. D, 43, 374003 (2010) MATHMathSciNet J. Bardeen, N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Ther. Rev.
108(5), 1175 (1957.) and also W. Shi, et al., superconductivity in bundles of double wall carbon nanotubes, Nature Sci. Repts., -2 Article No. 625, (2012), and M. Ferrier, Appl. Phys. D,
43, 374003 (2010)
MATHMathSciNet
33.
go back to reference J.P. Issi et al., Electronic properties of carbon nanotubes: experimental results. Carbon 33, 941 (1995) CrossRef J.P. Issi et al., Electronic properties of carbon nanotubes: experimental results. Carbon
33, 941 (1995)
CrossRef
34.
go back to reference L. Langer et al., Electrical resistance of a carbon nanotube bundle. J. Mat. Res. 9(4), 927 (1994) CrossRef L. Langer et al., Electrical resistance of a carbon nanotube bundle. J. Mat. Res.
9(4), 927 (1994)
CrossRef
35.
go back to reference S. Iijima, Helical microtubes of graphite carbon. Nature 56, 354 (1991) S. Iijima, Helical microtubes of graphite carbon. Nature
56, 354 (1991)
36.
go back to reference W. Kratschmer, L.D. Lamb, F. Fostiropoulos, D. Huffman, Solid C60 in the form of carbon. Nature 354, 347 (1990) W. Kratschmer, L.D. Lamb, F. Fostiropoulos, D. Huffman, Solid C60 in the form of carbon. Nature
354, 347 (1990)
37.
go back to reference S. Iijima, T. Ichihaschi, Single shell carbon nanotubes, of 1 nm diameter. Nature 603, 363 (1993) S. Iijima, T. Ichihaschi, Single shell carbon nanotubes, of 1 nm diameter. Nature
603, 363 (1993)
38.
go back to reference D.S. Bethune et al., Cobalt crystallized growth of carbon nanotubes with single atomic layer walls. Nature 605, 304 (1993) D.S. Bethune et al., Cobalt crystallized growth of carbon nanotubes with single atomic layer walls. Nature
605, 304 (1993)
39.
go back to reference C. Journet et al., Large scale production of single-walled carbon nanotubes by electric arc technique. Nature 388, 756 (1997) CrossRef C. Journet et al., Large scale production of single-walled carbon nanotubes by electric arc technique. Nature
388, 756 (1997)
CrossRef
40.
go back to reference Z. Shi et al., Mass production of single-walled carbon nanotubes by arc discharge method. Carbon 37, 1449 (1999) CrossRef Z. Shi et al., Mass production of single-walled carbon nanotubes by arc discharge method. Carbon
37, 1449 (1999)
CrossRef
41.
go back to reference A.V. Krestinin et al., Perspectives of single-walled carbon nanotube production in arc discharge process. Euras. Chem. Tech. J. 5, 7 (2003) CrossRef A.V. Krestinin et al., Perspectives of single-walled carbon nanotube production in arc discharge process. Euras. Chem. Tech. J.
5, 7 (2003)
CrossRef
42.
go back to reference M. Yadasaka, T. Komatsu, T. Ichihashi, S. Lijima, Single wall carbon nanotube formation by laser ablation using double targets of carbon and metal. Chem. Phys. Lett. 278, 102 (1997) CrossRef M. Yadasaka, T. Komatsu, T. Ichihashi, S. Lijima, Single wall carbon nanotube formation by laser ablation using double targets of carbon and metal. Chem. Phys. Lett.
278, 102 (1997)
CrossRef
43.
go back to reference D.T. Colbert, R.E. Smalley, Past, present, and future of fullerene nanotubes: Bucky tubes in Perspective of Fullerene Nanotechnoloegy, ed. by E. Osawa (Kluwer, Dordrecht, 2002), pp. 3–10 D.T. Colbert, R.E. Smalley, Past, present, and future of fullerene nanotubes: Bucky tubes in
Perspective of Fullerene Nanotechnoloegy, ed. by E. Osawa (Kluwer, Dordrecht, 2002), pp. 3–10
44.
go back to reference W.K. Maser, A.M. Benito, M.T. Martinez, Production of carbon nanotubes: the light approach, by focused solar radiation. Carbon 40, 1685 (2002) CrossRef W.K. Maser, A.M. Benito, M.T. Martinez, Production of carbon nanotubes: the light approach, by focused solar radiation. Carbon
40, 1685 (2002)
CrossRef
45.
go back to reference D. Laplaze et al., Carbon nanotubes: the solar approach. Carbon 36, 685 (1998) CrossRef D. Laplaze et al., Carbon nanotubes: the solar approach. Carbon
36, 685 (1998)
CrossRef
46.
go back to reference M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes Synthesis, Structure, Properties, and Applications (Springer, Berlin, 2000), p. 23 M.S. Dresselhaus, G. Dresselhaus, P. Avouris,
Carbon Nanotubes Synthesis, Structure, Properties, and Applications (Springer, Berlin, 2000), p. 23
47.
go back to reference T.W. Ebbesen, Seamless cylindrical shells of graphite carbon have novel and electronic properties that suggest new high strength, fibers, submicroscopic test tubes, and perhaps semiconductor materials. Phys. Today 49, 26 (1996) CrossRef T.W. Ebbesen, Seamless cylindrical shells of graphite carbon have novel and electronic properties that suggest new high strength, fibers, submicroscopic test tubes, and perhaps semiconductor materials. Phys. Today
49, 26 (1996)
CrossRef
48.
go back to reference T.W. Ebbesen, P.M. Ajayan, Large scale synthesis of carbon nanotubes. Nature 358, 220 (1992) CrossRef T.W. Ebbesen, P.M. Ajayan, Large scale synthesis of carbon nanotubes. Nature
358, 220 (1992)
CrossRef
49.
go back to reference D.T. Colbert, J. Zhan, S.M. Mcclure, P. Nikolaev, Z. Chen, J.H. Hafner, D.W. Owens, P.G. Kotula, C.B. Carter, J.H. Weaver, A.G. Rinzler, R.E. Smalley, Growth and sintering of fullerene nanotubes. Science 266, 1218 (1994) CrossRef D.T. Colbert, J. Zhan, S.M. Mcclure, P. Nikolaev, Z. Chen, J.H. Hafner, D.W. Owens, P.G. Kotula, C.B. Carter, J.H. Weaver, A.G. Rinzler, R.E. Smalley, Growth and sintering of fullerene nanotubes. Science
266, 1218 (1994)
CrossRef
50.
go back to reference S. Iijima, T. Ichihashi, Single shell carbon nanotubes, of 1 nm diameter. Nature 363, 603 (1993) CrossRef S. Iijima, T. Ichihashi, Single shell carbon nanotubes, of 1 nm diameter. Nature
363, 603 (1993)
CrossRef
51.
go back to reference D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt catalyzed growth of carbon nanotubes with single atomic layer. Nature 363, 605–607 (1993) CrossRef D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt catalyzed growth of carbon nanotubes with single atomic layer. Nature
363, 605–607 (1993)
CrossRef
52.
go back to reference Y. Ando, S. Iijima, Preparation of carbon nanotubes by arc-discharge evaporation. Jpn. J. Appl. Phys., Part 2 32, 107 (1993) CrossRef Y. Ando, S. Iijima, Preparation of carbon nanotubes by arc-discharge evaporation. Jpn. J. Appl. Phys., Part 2
32, 107 (1993)
CrossRef
53.
go back to reference Y. Ando, Preparation of carbon nanotubes. Fuller. Sci. Technol. 2, 173–180 (1994) CrossRef Y. Ando, Preparation of carbon nanotubes. Fuller. Sci. Technol.
2, 173–180 (1994)
CrossRef
54.
go back to reference M. Wang, X.L. Zhao, M. Ohkohchi, Y. Ando, Carbon nanotube grown on the surface of cathode depositing by arch discharge. Fuller. Sci. Technol. 4, 1027 (1996) CrossRef M. Wang, X.L. Zhao, M. Ohkohchi, Y. Ando, Carbon nanotube grown on the surface of cathode depositing by arch discharge. Fuller. Sci. Technol.
4, 1027 (1996)
CrossRef
55.
go back to reference Y. Ando, X. Zhao, M. Ohkohchi, Production of petal like graphite sheets by hydrogen arc-discharge. Carbon 35, 153 (1997) CrossRef Y. Ando, X. Zhao, M. Ohkohchi, Production of petal like graphite sheets by hydrogen arc-discharge. Carbon
35, 153 (1997)
CrossRef
56.
go back to reference X. Zhao, M. Ohkohchi, M. Wang, S. Iijima, T. Ichihashi, Y. Ando, Preparation of high grade carbon nanotubesby hydrogen discharge. Carbon 35, 775 (1997) CrossRef X. Zhao, M. Ohkohchi, M. Wang, S. Iijima, T. Ichihashi, Y. Ando, Preparation of high grade carbon nanotubesby hydrogen discharge. Carbon
35, 775 (1997)
CrossRef
57.
go back to reference X.K. Wang, X.W. Lin, V.P. Dravid, J.B. Ketterson, R.P.H. Chang, Carbon nanotube synthesized in a hydrogen arc-discharge. Appl. Phys. Lett. 66, 2430 (1995) CrossRef X.K. Wang, X.W. Lin, V.P. Dravid, J.B. Ketterson, R.P.H. Chang, Carbon nanotube synthesized in a hydrogen arc-discharge. Appl. Phys. Lett.
66, 2430 (1995)
CrossRef
58.
go back to reference Y. Ando, X.L. Zhao, M. Ohkohchi, Song of purified carbonnanotubes. Jpn. J. Appl. Phys., Part 2 37, 61 (1998) CrossRef Y. Ando, X.L. Zhao, M. Ohkohchi, Song of purified carbonnanotubes. Jpn. J. Appl. Phys., Part 2
37, 61 (1998)
CrossRef
59.
go back to reference Y. Tai, K. Inukai, T. Osaki, M. Tazawa, J. Murakami, S. Tanemura, Y. Ando, Identification of compounds produced through contact arc vaporization of graphite under CH 4 ambience. Chem. Phys. Lett. 224, 118 (1994) CrossRef Y. Tai, K. Inukai, T. Osaki, M. Tazawa, J. Murakami, S. Tanemura, Y. Ando, Identification of compounds produced through contact arc vaporization of graphite under CH
4 ambience. Chem. Phys. Lett.
224, 118 (1994)
CrossRef
60.
go back to reference Y. Jiang et al., Influence of NH 3 atmosphere on the growth and structure of carbon nanotubes synthesized by arc-discharge method. Inorg. Mater. 45, 1237 (2009) CrossRef Y. Jiang et al., Influence of NH
3 atmosphere on the growth and structure of carbon nanotubes synthesized by arc-discharge method. Inorg. Mater.
45, 1237 (2009)
CrossRef
61.
go back to reference N. Parkansky et al., Single pulse arc production of carbon nanotubes in ambient air. J. Phys. D. Appl. Phys. 37(19), 2715 (2004) CrossRef N. Parkansky et al., Single pulse arc production of carbon nanotubes in ambient air. J. Phys. D. Appl. Phys.
37(19), 2715 (2004)
CrossRef
62.
go back to reference J. Prasek et al., Methods of carbon nanotubes synthesis—Review. J. Mater. Chem. 21, 15872 (2011.) Royal Soc. Chem Pub CrossRef J. Prasek et al., Methods of carbon nanotubes synthesis—Review. J. Mater. Chem.
21, 15872 (2011.) Royal Soc. Chem Pub
CrossRef
63.
go back to reference T.K. Gupta, Copper Connect Technology (Springer, NY, 2009) T.K. Gupta,
Copper Connect Technology (Springer, NY, 2009)
64.
go back to reference D. Dokin, M.K. Zuraw, Principles of Chemical Vapor Deposition (Kluwer, Norwell, 2003) CrossRef D. Dokin, M.K. Zuraw,
Principles of Chemical Vapor Deposition (Kluwer, Norwell, 2003)
CrossRef
65.
go back to reference H.O. Pierson, Hand Book of Chemical Vapor Deposition, 2nd edn. (Elsevier, Amsterdam, 1991) H.O. Pierson,
Hand Book of Chemical Vapor Deposition, 2nd edn. (Elsevier, Amsterdam, 1991)
66.
go back to reference M. Hitchman, K. Jensen, Chemical Vapor Deposition (Elsevier, Amsterdam, 1993) M. Hitchman, K. Jensen,
Chemical Vapor Deposition (Elsevier, Amsterdam, 1993)
67.
go back to reference E. Flahaut, C. Laurent, A. Peigney, Catalytic CVD synthesis of double and tripple walled carbon nanotubes by the control of the catalyst preparation. Carbon 43, 375 (2005) CrossRef E. Flahaut, C. Laurent, A. Peigney, Catalytic CVD synthesis of double and tripple walled carbon nanotubes by the control of the catalyst preparation. Carbon
43, 375 (2005)
CrossRef
68.
go back to reference X. Xiang, L. Zhang, H.I. Hima, F. Li, D.G. Evans, Co-based catalysts from co/Fe/al layered double hydroxides for the preparation of carbon nanotubes. Appl.Clay Sci. 42, 405 (2009.) and also K. Hata et al., Water assisted highly efficient synthesis of impurity free sinle walled carbon nanotube synthesis, Science 306(5700), 1362 (2004) CrossRef X. Xiang, L. Zhang, H.I. Hima, F. Li, D.G. Evans, Co-based catalysts from co/Fe/al layered double hydroxides for the preparation of carbon nanotubes. Appl.Clay Sci.
42, 405 (2009.) and also K. Hata et al., Water assisted highly efficient synthesis of impurity free sinle walled carbon nanotube synthesis, Science
306(5700), 1362 (2004)
CrossRef
69.
go back to reference S.C. Lyu, B.C. Liu, C.J. Lee, H.K. Kang, C.W. Wang, C.Y. Park, High quality double walled carbon nanotubes produced by catalytic decomposition of benzene. Chem. Mater. 15, 3951 (2003) CrossRef S.C. Lyu, B.C. Liu, C.J. Lee, H.K. Kang, C.W. Wang, C.Y. Park, High quality double walled carbon nanotubes produced by catalytic decomposition of benzene. Chem. Mater.
15, 3951 (2003)
CrossRef
70.
go back to reference S.M. Kim, L. Ganglof, Growth of carbon nanotubes (CNTs) on metallic by diffusion plasma enhanced chemical vapor deposition. Phys. E (Amsterdam, Neth.) 41, 1763 (2009) CrossRef S.M. Kim, L. Ganglof, Growth of carbon nanotubes (CNTs) on metallic by diffusion plasma enhanced chemical vapor deposition. Phys. E (Amsterdam, Neth.)
41, 1763 (2009)
CrossRef
71.
go back to reference H. Wang, J.J. Moore, Different growth mechanisms of vertical carbon nanotubes by r-f or dc plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol., B: Nanometer Struct. Process. Meas. Phenom. 28, 1081 (2010) CrossRef H. Wang, J.J. Moore, Different growth mechanisms of vertical carbon nanotubes by r-f or dc plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol., B: Nanometer Struct. Process. Meas. Phenom.
28, 1081 (2010)
CrossRef
72.
go back to reference M. Chhowala et al., Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90, 5308 (2001) CrossRef M. Chhowala et al., Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys.
90, 5308 (2001)
CrossRef
73.
go back to reference Y. Hayashi, T. Negishi, S. Nishino, Growth of well aligned carbon nanotubes on nickel by hot filament assisted dc plasma chemical vapor deposition. J. Vac. Sci. Technol. A 19, 1796 (2001) CrossRef Y. Hayashi, T. Negishi, S. Nishino, Growth of well aligned carbon nanotubes on nickel by hot filament assisted dc plasma chemical vapor deposition. J. Vac. Sci. Technol. A
19, 1796 (2001)
CrossRef
74.
go back to reference Y. Kojima et al., Growth of high quality carbon nanotubes by grid-inserted plasma enhanced chemical vapor deposition for field emitters. Jp. J. Appl. Phys. 44, 2600 (2005) CrossRef Y. Kojima et al., Growth of high quality carbon nanotubes by grid-inserted plasma enhanced chemical vapor deposition for field emitters. Jp. J. Appl. Phys.
44, 2600 (2005)
CrossRef
75.
go back to reference G. Sato, T. Kato, W. Oohara, R. Hatakeyama, Production and application of reactive plasmas using helicon wave discharge in very low magnetic field. Thin Solid Films 506, 550 (2006) CrossRef G. Sato, T. Kato, W. Oohara, R. Hatakeyama, Production and application of reactive plasmas using helicon wave discharge in very low magnetic field. Thin Solid Films
506, 550 (2006)
CrossRef
76.
go back to reference T. Hirao et al., Formation of vertically aligned carbon nanotubes by dual-RF-plasma chemical vapor deposition. Jp. J. Appl. Phys. 40, 1631 (2001) CrossRef T. Hirao et al., Formation of vertically aligned carbon nanotubes by dual-RF-plasma chemical vapor deposition. Jp. J. Appl. Phys.
40, 1631 (2001)
CrossRef
77.
go back to reference J.D. Ferguson, G. Arikan, D.S. Dale, A.R. Woll, J.D. Brock, Measurements of surface diffusivity and coarsening during pulse laser deposition. Phys. Rev. Lett. 103(25), 256103 (2009) CrossRef J.D. Ferguson, G. Arikan, D.S. Dale, A.R. Woll, J.D. Brock, Measurements of surface diffusivity and coarsening during pulse laser deposition. Phys. Rev. Lett.
103(25), 256103 (2009)
CrossRef
78.
go back to reference D.B. Chrisey, G.K. Hubler, Pulse Laser Deposition of Thin Films (Wiley, NY, 1994) D.B. Chrisey, G.K. Hubler,
Pulse Laser Deposition of Thin Films (Wiley, NY, 1994)
79.
go back to reference T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49 (1995) CrossRef T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett.
243, 49 (1995)
CrossRef
80.
go back to reference F. Bonaccorso, C. Bongiorno, B. Fazio, P.G. Gucciardi, et al., Pulsed laser deposition of multi-walled carbon nanotubes thin films. Appl. Sci. Surf. 254, 1260 (2007) CrossRef F. Bonaccorso, C. Bongiorno, B. Fazio, P.G. Gucciardi, et al., Pulsed laser deposition of multi-walled carbon nanotubes thin films. Appl. Sci. Surf.
254, 1260 (2007)
CrossRef
81.
go back to reference L.L. Lebel, B. Aissa, M.A. El Khakani, D. Therriault, Preparation and mechanical characterization of laser ablated single-walled carbon nanotubes/polyurethane nanocomposite microbeams. Compos. Sci. Technol. 70, 518 (2010) CrossRef L.L. Lebel, B. Aissa, M.A. El Khakani, D. Therriault, Preparation and mechanical characterization of laser ablated single-walled carbon nanotubes/polyurethane nanocomposite microbeams. Compos. Sci. Technol.
70, 518 (2010)
CrossRef
82.
go back to reference J.P. Gore, A. Sane, Flame synthesis of carbon nanotubes, in Carbon Nanotubes—Synthesis, Characterization, Application, ed. by S. Yellampalli (INTECH, Indianapolis, 2011) J.P. Gore, A. Sane, Flame synthesis of carbon nanotubes, in
Carbon Nanotubes—Synthesis, Characterization, Application, ed. by S. Yellampalli (INTECH, Indianapolis, 2011)
83.
go back to reference R.L. Vander Wall, L.J. Hall, G.M. Berger, Optimization of flame synthesis for carbon nanotubes using supported catalyst. J. Phys. Chem. B 106(51), 13122–13132 (2002) CrossRef R.L. Vander Wall, L.J. Hall, G.M. Berger, Optimization of flame synthesis for carbon nanotubes using supported catalyst. J. Phys. Chem. B
106(51), 13122–13132 (2002)
CrossRef
84.
go back to reference P. Gopinath, J. Gore, Chemical kinetic considearations for post flame symthesis of carbon nanotubes in pre-mixed flames using a support catalyst. Combust. Flame 151(3), 542–550 (2007) CrossRef P. Gopinath, J. Gore, Chemical kinetic considearations for post flame symthesis of carbon nanotubes in pre-mixed flames using a support catalyst. Combust. Flame
151(3), 542–550 (2007)
CrossRef
85.
go back to reference I. Khatri et al., Synthesis and characterization of carbon nanotubes via ultrasonic spray pyrolysis method on zeolite. Thin Solid Films 518(23), 6756 (2010) CrossRef I. Khatri et al., Synthesis and characterization of carbon nanotubes via ultrasonic spray pyrolysis method on zeolite. Thin Solid Films
518(23), 6756 (2010)
CrossRef
86.
go back to reference I. Khatri et al., Synthesis of single walled carbon nanotubes by ultrasonic spray pyrolysis method. Diam. Relat. Mater. 18, 319 (2009) CrossRef I. Khatri et al., Synthesis of single walled carbon nanotubes by ultrasonic spray pyrolysis method. Diam. Relat. Mater.
18, 319 (2009)
CrossRef
87.
go back to reference G. Kucukayan et al., An experimental and theoretical examination of the effect of sulfur on the pyrotically grown carbon nanotubes from sucrose based solid state precursors. Carbon 49, 508 (2011) CrossRef G. Kucukayan et al., An experimental and theoretical examination of the effect of sulfur on the pyrotically grown carbon nanotubes from sucrose based solid state precursors. Carbon
49, 508 (2011)
CrossRef
88.
go back to reference J.P. Camarena et al., Molecular assembly of multiwall carbon nanotubes with amino crown ether: Synthesis and characterization. J. Nanosci. Nanotechnol. 11, 5539 (2011) CrossRef J.P. Camarena et al., Molecular assembly of multiwall carbon nanotubes with amino crown ether: Synthesis and characterization. J. Nanosci. Nanotechnol.
11, 5539 (2011)
CrossRef
89.
go back to reference Y.H. Kuang, K.Z. Li, H.J. Li, Z.W. Xu, Y.J. Wang, A solid state hybrid method to Synthsize straight carbon nanotubes by pyrolysis of two metal Phthalocyamines. Chinese J. Inorg. Chem. 26(6), 951 (2009) Y.H. Kuang, K.Z. Li, H.J. Li, Z.W. Xu, Y.J. Wang, A solid state hybrid method to Synthsize straight carbon nanotubes by pyrolysis of two metal Phthalocyamines. Chinese J. Inorg. Chem.
26(6), 951 (2009)
90.
go back to reference J. Prasek et al., Chemical vapor depositions of carbon nanotubes synthesis, Chapter-7, in Applications of Carbon Nanotubes ed. by A.K. Mishra (Nova, Hauppauge, 2013) J. Prasek et al., Chemical vapor depositions of carbon nanotubes synthesis, Chapter-7, in
Applications of Carbon Nanotubes ed. by A.K. Mishra (Nova, Hauppauge, 2013)
91.
go back to reference P. Nikolaev et al., Gas phase catalytic growth of single walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91 (1999) CrossRef P. Nikolaev et al., Gas phase catalytic growth of single walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett.
313, 91 (1999)
CrossRef
92.
go back to reference M. Kumar, Y. Ando, Gigas growth of carbon nanotubes. Def. Sci. J. 58, 496 (2008) CrossRef M. Kumar, Y. Ando, Gigas growth of carbon nanotubes. Def. Sci. J.
58, 496 (2008)
CrossRef
93.
go back to reference M. Endo, T. Hayashi, Y.A. Kim, M. Terrones, M.S. Dresselhaus, Applications of carbon nanotubes in the twenty first century. Phil. Trans. R. Soc. Lon. A 352, 2223 (2004) CrossRef M. Endo, T. Hayashi, Y.A. Kim, M. Terrones, M.S. Dresselhaus, Applications of carbon nanotubes in the twenty first century. Phil. Trans. R. Soc. Lon. A
352, 2223 (2004)
CrossRef
94.
go back to reference H. Cheng, C. Liu, Y.Y. Fan, F. Li, H.T. Cong, L.L. He, M. Liu, Synthesis and hydrogen storage of carbon nano fibers and single-walled carbon nanotubes. Appl. Phys. Lett. 72, 3282 (1998) CrossRef H. Cheng, C. Liu, Y.Y. Fan, F. Li, H.T. Cong, L.L. He, M. Liu, Synthesis and hydrogen storage of carbon nano fibers and single-walled carbon nanotubes. Appl. Phys. Lett.
72, 3282 (1998)
CrossRef
95.
go back to reference J. Haruyama, I. Takesue, N. Kobayashi, et al., Superconductivity in early end-bonded multiwalled carbon nanotubes. Phys. Rev. Lett. 5, 96 (2006) J. Haruyama, I. Takesue, N. Kobayashi, et al., Superconductivity in early end-bonded multiwalled carbon nanotubes. Phys. Rev. Lett.
5, 96 (2006)
96.
go back to reference M. Tinkam, Introduction to Superconductivty (McGraw Hill, 1996) M. Tinkam,
Introduction to Superconductivty (McGraw Hill, 1996)
97.
go back to reference E. Yasuda et al., Carbon Alloys: Novel Concept to Develop Carbon Science and Technology (Elsevier, NY, 2003) E. Yasuda et al.,
Carbon Alloys: Novel Concept to Develop Carbon Science and Technology (Elsevier, NY, 2003)
98.
go back to reference W. Shi et al., Superconductivity in bundles of double-walled carbon nanotubes, nature nanotubes. Sci. Rep. 2, 625 (2012) CrossRef W. Shi et al., Superconductivity in bundles of double-walled carbon nanotubes, nature nanotubes. Sci. Rep.
2, 625 (2012)
CrossRef
99.
go back to reference P.F. Sullivan, G. Seidel, Staedy state ac-temperature calorimetry. Phys. Ther. Rev. 173, 679 (1968) P.F. Sullivan, G. Seidel, Staedy state ac-temperature calorimetry. Phys. Ther. Rev.
173, 679 (1968)
100.
go back to reference Y. Wang, C. Senatore, V. Abacherli, D. Uglietti, R. Flukiger, Specific heat of Nb 3Sn wires. Supercond. Sci. Technol. 19, 263 (2006) CrossRef Y. Wang, C. Senatore, V. Abacherli, D. Uglietti, R. Flukiger, Specific heat of Nb
3Sn wires. Supercond. Sci. Technol.
19, 263 (2006)
CrossRef
101.
go back to reference P.L. McEuen, M.S. Fuhrer, H. Park, Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78 (2002) CrossRef P.L. McEuen, M.S. Fuhrer, H. Park, Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol.
1, 78 (2002)
CrossRef
102.
go back to reference J. Haruyama, Superconductivity in carbon nanotubes, Chapter-33, in Carbon Nanotubes, ed. by J.M. Marulanda (Rijeka, 2010) J. Haruyama, Superconductivity in carbon nanotubes, Chapter-33, in
Carbon Nanotubes, ed. by J.M. Marulanda (Rijeka, 2010)
103.
go back to reference I. Takesue, J. Haruyama, N. Kobayashi, S. Chiashi, S. Maruyama, T. Sugai, H. Shinohara, Superconductivity in entirely end-bonded multi-walled carbon nanotubes. Phys. Rev. Lett. 96, 057001 (2006) CrossRef I. Takesue, J. Haruyama, N. Kobayashi, S. Chiashi, S. Maruyama, T. Sugai, H. Shinohara, Superconductivity in entirely end-bonded multi-walled carbon nanotubes. Phys. Rev. Lett.
96, 057001 (2006)
CrossRef
104.
go back to reference R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 1579 (1992) CrossRef R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett.
60, 1579 (1992)
CrossRef
105.
go back to reference H. Katura et al., Optical properties of single walled carbon nanotubes. Synth. Met. 108, 2555 (1999) CrossRef H. Katura et al., Optical properties of single walled carbon nanotubes. Synth. Met.
108, 2555 (1999)
CrossRef
106.
go back to reference M. Bachilo et al., Structure-assigned optical spectra of single walled carbon nanotubes. Science 298, 2361 (2002) CrossRef M. Bachilo et al., Structure-assigned optical spectra of single walled carbon nanotubes. Science
298, 2361 (2002)
CrossRef
107.
go back to reference S. Botti, R. Ciardi, L. de Dominics, L.S. Asilyan, R. Fantoni, T. Marolo, DFWM measurements of third order succeptibility of single-wall carbon nanotubes grown without catalyst. Chem. Phys. Lett. 378, 117 (2003) CrossRef S. Botti, R. Ciardi, L. de Dominics, L.S. Asilyan, R. Fantoni, T. Marolo, DFWM measurements of third order succeptibility of single-wall carbon nanotubes grown without catalyst. Chem. Phys. Lett.
378, 117 (2003)
CrossRef
108.
go back to reference R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imerial College Press, London, 1998) MATHCrossRef R. Saito, G. Dresselhaus, M.S. Dresselhaus,
Physical Properties of Carbon Nanotubes (Imerial College Press, London, 1998)
MATHCrossRef
109.
go back to reference Y-C. Chen, Raman spectroscopy studies on Single-Walled Carbon Nanotubes (SWNTs) and SWNT/Ag Nanostructure, Ph.D. Thesis, The University of Manchester, Engineering and Physical Science, London, (2008) Y-C. Chen, Raman spectroscopy studies on Single-Walled Carbon Nanotubes (SWNTs) and SWNT/Ag Nanostructure, Ph.D. Thesis, The University of Manchester, Engineering and Physical Science, London, (2008)
110.
go back to reference B. Bendjemll, Electronic and optical properties of the excess purified SWCNTs produced by HIPCO. J. Nanoelectron. mater. 2, 173 (2009) B. Bendjemll, Electronic and optical properties of the excess purified SWCNTs produced by HIPCO. J. Nanoelectron. mater.
2, 173 (2009)
111.
go back to reference H. Kataura et al., Optical properties of single-wall carbon nanotube. Synth. Met. 103, 2555 (1999) CrossRef H. Kataura et al., Optical properties of single-wall carbon nanotube. Synth. Met.
103, 2555 (1999)
CrossRef
112.
go back to reference M.S. Bell et al., Carbon nanotube deposition br plasma enhanced CVD. Pure Appl. Chem. 76(6), 1117 (2006) M.S. Bell et al., Carbon nanotube deposition br plasma enhanced CVD. Pure Appl. Chem.
76(6), 1117 (2006)
113.
go back to reference L. Zhang et al., Four-probe charge transport measurements on individual vertically aligned carbon nano-fibers. Appl. Phys. Lett. 84, 3972 (2004) CrossRef L. Zhang et al., Four-probe charge transport measurements on individual vertically aligned carbon nano-fibers. Appl. Phys. Lett.
84, 3972 (2004)
CrossRef
114.
go back to reference E.J.H. Lee, L. Zhi, M. Burghard, K. Mullen, K. Kern, Electrical properties and photoconductivity of stacked graphene carbon nanotubes. Adv. Mater. 22, 1854 (2010) CrossRef E.J.H. Lee, L. Zhi, M. Burghard, K. Mullen, K. Kern, Electrical properties and photoconductivity of stacked graphene carbon nanotubes. Adv. Mater.
22, 1854 (2010)
CrossRef
115.
go back to reference T.K. Gupta, Effect of temperature on electrical conduction of carbon-black filled polyimide. IEEE Trans. On Comp. Hybrids. Manuf. Technol. 12, 696 (1989) CrossRef T.K. Gupta, Effect of temperature on electrical conduction of carbon-black filled polyimide. IEEE Trans. On Comp. Hybrids. Manuf. Technol.
12, 696 (1989)
CrossRef
116.
go back to reference N.F. Mott, Conduction in non-crystalline materials. Phil. Mag. 19, 835 (1969) CrossRef N.F. Mott, Conduction in non-crystalline materials. Phil. Mag.
19, 835 (1969)
CrossRef
117.
go back to reference R.J. Chen et al., Molecular desorption from single-walled carbon nanotubes. J. Appl. Phys. Lett. 79, 2258 (2001) CrossRef R.J. Chen et al., Molecular desorption from single-walled carbon nanotubes. J. Appl. Phys. Lett.
79, 2258 (2001)
CrossRef
118.
go back to reference Q. Zhao, Z. Gan, Q. Zhuang, Electrochemical sensors based on carbon nanotubes. Electroanalysis 14, 1609 (2002) CrossRef Q. Zhao, Z. Gan, Q. Zhuang, Electrochemical sensors based on carbon nanotubes. Electroanalysis
14, 1609 (2002)
CrossRef
119.
go back to reference M. Musameh, J. Wang, A. Merkoci, Y. Lin, Low potential stable NADH detection at carbon nanotube modified carbon electrodes. Electrochem. Commun. 4, 743 (2002) CrossRef M. Musameh, J. Wang, A. Merkoci, Y. Lin, Low potential stable NADH detection at carbon nanotube modified carbon electrodes. Electrochem. Commun.
4, 743 (2002)
CrossRef
120.
go back to reference J.J. Goodling et al., Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc. 125, 9006 (2003) CrossRef J.J. Goodling et al., Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc.
125, 9006 (2003)
CrossRef
121.
go back to reference X. Yu, D. Chattopadhyay, F. Papadimitrakopoulos, J.F. Rusling, Peroxidase activity of enzymes bound to the ends of single-wall carbonnano tube forest electrodes. Electrochem. Commun. 5, 408 (2003) CrossRef X. Yu, D. Chattopadhyay, F. Papadimitrakopoulos, J.F. Rusling, Peroxidase activity of enzymes bound to the ends of single-wall carbonnano tube forest electrodes. Electrochem. Commun.
5, 408 (2003)
CrossRef
122.
go back to reference J. Wang, Carbon nanotube based electrochemical biosensors: a review. Electroanalysis 17(1), 7 (2005) CrossRef J. Wang, Carbon nanotube based electrochemical biosensors: a review. Electroanalysis
17(1), 7 (2005)
CrossRef
123.
go back to reference F. Patolsky, Y. Weizmann, I. Willner, Long range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem. Int. Ed. 43, 2113 (2004) CrossRef F. Patolsky, Y. Weizmann, I. Willner, Long range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem. Int. Ed.
43, 2113 (2004)
CrossRef
124.
go back to reference V. Ambegaokar, B.L. Harpin, J.S. Langer, Hopping conductivity in disordered systems. Phys. Ther. Rev. B4, 2612 (1971) V. Ambegaokar, B.L. Harpin, J.S. Langer, Hopping conductivity in disordered systems. Phys. Ther. Rev.
B4, 2612 (1971)
125.
go back to reference J. Li et al., Carbon nanotubes sensors for gas and organic vapor detection. Nano Lett. 3(7), 929 (2003) CrossRef J. Li et al., Carbon nanotubes sensors for gas and organic vapor detection. Nano Lett.
3(7), 929 (2003)
CrossRef
126.
go back to reference Y. Wang, T.W. Yeow, A review of carbon nanotubes-based sensors, J. Sens. 2009, 24, article ID 493904, (2009) Y. Wang, T.W. Yeow, A review of carbon nanotubes-based sensors, J. Sens.
2009, 24, article ID 493904, (2009)
127.
go back to reference T. Someya, J. Small, P. Kim, J.C. Nuckkolls, J.T. Yardley, Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett. 3(7), 877 (2003) CrossRef T. Someya, J. Small, P. Kim, J.C. Nuckkolls, J.T. Yardley, Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett.
3(7), 877 (2003)
CrossRef
128.
go back to reference J. Cong et al., Nanotube molecular wires as chemical sensors. Science 287, 5453 (2000) J. Cong et al., Nanotube molecular wires as chemical sensors. Science
287, 5453 (2000)
129.
go back to reference S.M. Khamis, R.A. Jones, A.T.C. Johnson, G. Preti, J. Kwak, A. Gelperin, DNA-decorated carbon nanotube (DNA-NT) -based FETs as ultrasensitive chemical sensors: discrimination of homologues, structural isomers, and optical isomers. AIP Adv. 2(2), 022110 (2012) CrossRef S.M. Khamis, R.A. Jones, A.T.C. Johnson, G. Preti, J. Kwak, A. Gelperin, DNA-decorated carbon nanotube (DNA-NT) -based FETs as ultrasensitive chemical sensors: discrimination of homologues, structural isomers, and optical isomers. AIP Adv.
2(2), 022110 (2012)
CrossRef
130.
go back to reference A. Star et al., Label-free detection of DNA hybridization using carbon nanotube network field effect transistors. Proc. Natl. Acad. Sci. 103(4), 921 (2005) CrossRef A. Star et al., Label-free detection of DNA hybridization using carbon nanotube network field effect transistors. Proc. Natl. Acad. Sci.
103(4), 921 (2005)
CrossRef
131.
go back to reference A.A. Bhirde et al., Targeted killing cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3(2), 307 (2009) CrossRef A.A. Bhirde et al., Targeted killing cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano
3(2), 307 (2009)
CrossRef
132.
go back to reference N.W.S. Kam et al., Carbon nanotubes as multifunctional biological transporters and near infrared agents for selective cancer destruction. Nat. Acad. Sci. 102(33), 11600 (2005) CrossRef N.W.S. Kam et al., Carbon nanotubes as multifunctional biological transporters and near infrared agents for selective cancer destruction. Nat. Acad. Sci.
102(33), 11600 (2005)
CrossRef
133.
go back to reference B. Zhao et al., A bone mimic based on the self-assembly of hydroxyapatite on chemically functional single-walled carbon nanotubes. Chem. Mater. 17, 3235 (2005) CrossRef B. Zhao et al., A bone mimic based on the self-assembly of hydroxyapatite on chemically functional single-walled carbon nanotubes. Chem. Mater.
17, 3235 (2005)
CrossRef
134.
go back to reference M. Endo et al., Lithium secondary battery using vapor G carbon fibers as negative electrode and analysis of electrode mechanism by TEM observation. Trans. IEEJ pn.A. 115, 349 (1995) M. Endo et al., Lithium secondary battery using vapor G carbon fibers as negative electrode and analysis of electrode mechanism by TEM observation. Trans. IEEJ pn.A.
115, 349 (1995)
135.
go back to reference K. Takasumi et al., A modification in the preparation process of a carbon whisker for anode performance of lithium rechargable batteries. J. Power Sources 54, 425 (1999) K. Takasumi et al., A modification in the preparation process of a carbon whisker for anode performance of lithium rechargable batteries. J. Power Sources
54, 425 (1999)
136.
go back to reference P.J. Britto et al., Improved charge transfer at carbon nanotube electrodes. Adv. Mater. 11, 154 (1999) CrossRef P.J. Britto et al., Improved charge transfer at carbon nanotube electrodes. Adv. Mater.
11, 154 (1999)
CrossRef
137.
go back to reference L. Childress, R. Hanson, Diamond NV centers for quantum computing and quantum networks. MRS Bul. 38, 134 (2013) CrossRef L. Childress, R. Hanson, Diamond NV centers for quantum computing and quantum networks. MRS Bul.
38, 134 (2013)
CrossRef
138.
go back to reference H. Liu et al., Large scale single chirality separation of single wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2, 309 (2011) CrossRef H. Liu et al., Large scale single chirality separation of single wall carbon nanotubes by simple gel chromatography. Nat. Commun.
2, 309 (2011)
CrossRef
139.
go back to reference R. Rao et al., In situ evidence for chirality dependent growth rates of individual carbon nanotubes. Nat. Mater. 11, 213 (2012) CrossRef R. Rao et al., In situ evidence for chirality dependent growth rates of individual carbon nanotubes. Nat. Mater.
11, 213 (2012)
CrossRef
140.
go back to reference F. Feng et al., Templated symthesis of single-walled carbon nanotubes. ACC Chem. Res. 49(4), 606 (2016) CrossRef F. Feng et al., Templated symthesis of single-walled carbon nanotubes. ACC Chem. Res.
49(4), 606 (2016)
CrossRef
141.
go back to reference J. Zaumseil, Single-walled carbon nanotube networks for flexible and printed electronics. Semicond. Sci. Technol. 30(7), 074001 (2015) CrossRef J. Zaumseil, Single-walled carbon nanotube networks for flexible and printed electronics. Semicond. Sci. Technol.
30(7), 074001 (2015)
CrossRef
- Title
- Carbon Nanotube (CNT)
- DOI
- https://doi.org/10.1007/978-3-319-66405-7_8
- Author:
-
Tapan Gupta
- Publisher
- Springer International Publishing
- Sequence number
- 8
- Chapter number
- Chapter 8