Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

7. Carbon Nanotube/semiconductor van der Waals Heterojunction Solar Cells

Author : Yanjie Su

Published in: High-Performance Carbon-Based Optoelectronic Nanodevices

Publisher: Springer Singapore

Abstract

Unique one-dimensional structure and excellent diameter-depended optoelectrical properties make CNTs have great potential for novel high-performance photovoltaic applications. Among them, van der Waals heterojunction (vdW) solar cells have been demonstrated by combining the excellent optical and electrical properties of CNTs with the photoelectric properties of bulk semiconductors since 2007. Owing to simple device structure and easy fabrication process, these vdW heterojunction solar cells have received more and more attentions in the past ten years with the development of high-quality CNTs (conducting type, chirality and purity, etc.). Especially, the sharply atomic interface can remarkably reduce the recombination probability of charge carriers, and the carrier separation efficiency can be improved by changing the diameter and doping states of CNTs. Meanwhile, High transparency and high carrier mobility of thin CNT film also make it to be beneficial to collect the photo-generated carriers. In this chapter, the work mechanism of CNT/semiconductor vdW heterojunctions are firstly introduced when semiconducting or metallic CNTs are used, and some key parameters of solar cells are also introduced. Then, we mainly introduce the state-of-the-art research progress about the vdW heterojunction solar cells, which consist of bulk semiconductor (Si and GaAs) and CNTs with different wall number. Several key technologies have been optimized to improve the photovoltaic performance of CNT/Si vdW heterojunction solar cells, such as high-quality CNT film, Fermi level controlling, and interface engineering, and so on. Finally, the current challenges and future perspectives of highly efficient vdW heterojunction solar cells have also been discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Green MA, Dunlop ED, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X (2020). Solar cell efficiency tables (version 56). Prog Photovoltaics Res Appl, 28(7): 629–638. CrossRef Green MA, Dunlop ED, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X (2020). Solar cell efficiency tables (version 56). Prog Photovoltaics Res Appl, 28(7): 629–638. CrossRef
2.
go back to reference Hu L, Hecht DS, Gruner G (2010). Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev, 110(10), 5790–5844. CrossRef Hu L, Hecht DS, Gruner G (2010). Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev, 110(10), 5790–5844. CrossRef
3.
go back to reference Cai B, Su Y, Tao Z, Hu J, Zou C, Yang Z, Zhang Y (2018). Highly sensitive broadband single-walled carbon nanotube photodetectors enhanced by separated graphene nanosheets. Adv Optical Mater, 6(23): 1800791. CrossRef Cai B, Su Y, Tao Z, Hu J, Zou C, Yang Z, Zhang Y (2018). Highly sensitive broadband single-walled carbon nanotube photodetectors enhanced by separated graphene nanosheets. Adv Optical Mater, 6(23): 1800791. CrossRef
4.
go back to reference Li XM, Lv Z, Zhu HW (2015). Carbon/silicon heterojunction solar cells: state of the art and prospects. Adv Mater 27: 6549–6574. CrossRef Li XM, Lv Z, Zhu HW (2015). Carbon/silicon heterojunction solar cells: state of the art and prospects. Adv Mater 27: 6549–6574. CrossRef
5.
go back to reference Classen A, Einsiedler L, Heumueller T, Graf A, Brohmann M, Berger F, Kahmann S, Richter M, Matt GJ, Forberich K, Zaumseil J, Brabec, CJ (2019). Absence of charge transfer state enables very low VOC losses in SWCNT: fullerene solar cells. Adv Energy Mater, 9(1), 1801913. CrossRef Classen A, Einsiedler L, Heumueller T, Graf A, Brohmann M, Berger F, Kahmann S, Richter M, Matt GJ, Forberich K, Zaumseil J, Brabec, CJ (2019). Absence of charge transfer state enables very low VOC losses in SWCNT: fullerene solar cells. Adv Energy Mater, 9(1), 1801913. CrossRef
6.
go back to reference Habisreutinger SN, Nicholas RJ, Snaith HJ (2017). Carbon nanotubes in perovskite solar cells. Adv Energy Mater, 7(10), 1601839. CrossRef Habisreutinger SN, Nicholas RJ, Snaith HJ (2017). Carbon nanotubes in perovskite solar cells. Adv Energy Mater, 7(10), 1601839. CrossRef
7.
go back to reference Wei J, Jia Y, Shu Q, Gu Z, Wang K, Zhuang D, Zhang G, Wang Z, Luo J, Cao A, Wu D (2007). Double-walled carbon nanotube solar cells. Nano Lett 7(8): 2317–2321. CrossRef Wei J, Jia Y, Shu Q, Gu Z, Wang K, Zhuang D, Zhang G, Wang Z, Luo J, Cao A, Wu D (2007). Double-walled carbon nanotube solar cells. Nano Lett 7(8): 2317–2321. CrossRef
8.
go back to reference Tune DD, Flavel BS (2018). Advances in carbon nanotube–silicon heterojunction solar cells. Adv Energy Mater, 8(15): 1703241. CrossRef Tune DD, Flavel BS (2018). Advances in carbon nanotube–silicon heterojunction solar cells. Adv Energy Mater, 8(15): 1703241. CrossRef
9.
go back to reference K Cui, AS Anisimov, T Chiba, S Fujii, H Kataura, AG Nasibulin, S Chiashi, EI Kauppinen, S Maruyama (2014). Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. J Mater Chem A, 2: 11311–11318. CrossRef K Cui, AS Anisimov, T Chiba, S Fujii, H Kataura, AG Nasibulin, S Chiashi, EI Kauppinen, S Maruyama (2014). Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. J Mater Chem A, 2: 11311–11318. CrossRef
10.
go back to reference Tune DD, Mallik N, Fornasier H, Flavel BS (2020). Breakthrough carbon nanotube-silicon heterojunction solar cells. Adv Energy Mater, 10(1): 1903261. CrossRef Tune DD, Mallik N, Fornasier H, Flavel BS (2020). Breakthrough carbon nanotube-silicon heterojunction solar cells. Adv Energy Mater, 10(1): 1903261. CrossRef
11.
go back to reference Xu W, Wu S, Li X, Zou M, Yang L, Zhang Z, Wei J, Hu S, Li Y, Cao A (2016). High-efficiency large-area carbon nanotube-silicon solar cells. Adv Energy Mater, 6(12): 1600095. CrossRef Xu W, Wu S, Li X, Zou M, Yang L, Zhang Z, Wei J, Hu S, Li Y, Cao A (2016). High-efficiency large-area carbon nanotube-silicon solar cells. Adv Energy Mater, 6(12): 1600095. CrossRef
12.
go back to reference Zhao X, Wu H, Yang L, Wu Y, Sun Y, Shang Y, Cao A (2019). High efficiency CNT-Si heterojunction solar cells by dry gas doping. Carbon, 147: 164–171. CrossRef Zhao X, Wu H, Yang L, Wu Y, Sun Y, Shang Y, Cao A (2019). High efficiency CNT-Si heterojunction solar cells by dry gas doping. Carbon, 147: 164–171. CrossRef
13.
go back to reference Jia Y, Wei J, Wang K, Cao A, Shu Q, Gui X, Zhu Y, Zhuang D, Zhang G, Ma B, Wang L (2008). Nanotube-silicon heterojunction solar cells. Adv Mater, 20(23): 4594–4598. CrossRef Jia Y, Wei J, Wang K, Cao A, Shu Q, Gui X, Zhu Y, Zhuang D, Zhang G, Ma B, Wang L (2008). Nanotube-silicon heterojunction solar cells. Adv Mater, 20(23): 4594–4598. CrossRef
14.
go back to reference Jia Y, Li PX, Gui XC, Wei JQ, Wang KL, Zhu HW, Wu DH, Zhang LH, Cao AY, Xu Y (2011). Encapsulated carbon nanotube-oxide-silicon solar cells with stable 10% efficiency. Appl Phys Lett, 98: 133115. Jia Y, Li PX, Gui XC, Wei JQ, Wang KL, Zhu HW, Wu DH, Zhang LH, Cao AY, Xu Y (2011). Encapsulated carbon nanotube-oxide-silicon solar cells with stable 10% efficiency. Appl Phys Lett, 98: 133115.
15.
go back to reference Di JT, Yong ZZ, Zheng XH, Sun BQ, Li QW (2013). Aligned carbon nanotubes for high-efficiency Schottky solar cells. Small, 9(8): 1367–1372. CrossRef Di JT, Yong ZZ, Zheng XH, Sun BQ, Li QW (2013). Aligned carbon nanotubes for high-efficiency Schottky solar cells. Small, 9(8): 1367–1372. CrossRef
16.
go back to reference X Gan, RT Lv, JF Bai, ZX Zhang, JQ Wei, ZH Huang, HW Zhu, FY Kang, M Terrones (2015). Efficient photovoltaic conversion of graphene–carbon nanotube hybrid films grown from solid precursors. 2D Mater, 2: 034003. X Gan, RT Lv, JF Bai, ZX Zhang, JQ Wei, ZH Huang, HW Zhu, FY Kang, M Terrones (2015). Efficient photovoltaic conversion of graphene–carbon nanotube hybrid films grown from solid precursors. 2D Mater, 2: 034003.
17.
go back to reference Fan Q, Zhang Q, Zhou W, Xia X, Yang F, Zhang N, Xiao S, Li K, Gu X, Xiao Z, Chen H, Wang Y, Liu H, Zhou W, Xie S (2017). Novel approach to enhance efficiency of hybrid silicon-based solar cells via synergistic effects of polymer and carbon nanotube composite film. Nano Energy, 33: 436–444. CrossRef Fan Q, Zhang Q, Zhou W, Xia X, Yang F, Zhang N, Xiao S, Li K, Gu X, Xiao Z, Chen H, Wang Y, Liu H, Zhou W, Xie S (2017). Novel approach to enhance efficiency of hybrid silicon-based solar cells via synergistic effects of polymer and carbon nanotube composite film. Nano Energy, 33: 436–444. CrossRef
18.
go back to reference Wu H, Zhao X, Sun Y, Yang L, Zou M, Zhang H, Wu Y, Dai L, Shang Y, Cao A (2019). Improving carbon nanotube-silicon solar cells by solution processable metal chlorides. Solar RRL, 3(8): 1900147. CrossRef Wu H, Zhao X, Sun Y, Yang L, Zou M, Zhang H, Wu Y, Dai L, Shang Y, Cao A (2019). Improving carbon nanotube-silicon solar cells by solution processable metal chlorides. Solar RRL, 3(8): 1900147. CrossRef
19.
go back to reference Wu H, Zhao X, Wu Y, Ji Q, Dai L, Shang Y, Cao A (2020). Improving CNT-Si solar cells by metal chloride-to-oxide transformation. Nano Res, 13(2): 543–550. CrossRef Wu H, Zhao X, Wu Y, Ji Q, Dai L, Shang Y, Cao A (2020). Improving CNT-Si solar cells by metal chloride-to-oxide transformation. Nano Res, 13(2): 543–550. CrossRef
20.
go back to reference E Shi, L Zhang, Z Li, P Li, Y Shang, Y Jia, J Wei, K Wang, H Zhu, D Wu, S Zhang, A Cao (2012). TiO 2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci Rep, 2: 884. CrossRef E Shi, L Zhang, Z Li, P Li, Y Shang, Y Jia, J Wei, K Wang, H Zhu, D Wu, S Zhang, A Cao (2012). TiO 2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci Rep, 2: 884. CrossRef
21.
go back to reference Li ZR, Kunets VP, Saini V, Xu Y, Dervishi E, Salamo GJ, Biris AR, Biris AS (2009). Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions. ACS Nano, 3(6): 1407–1414. CrossRef Li ZR, Kunets VP, Saini V, Xu Y, Dervishi E, Salamo GJ, Biris AR, Biris AS (2009). Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions. ACS Nano, 3(6): 1407–1414. CrossRef
22.
go back to reference Harris JM, Headrick RJ, Semler MR, Fagan JA, Pasquali M, Hobbie EK (2016). Impact of SWCNT processing on nanotube-silicon heterojunctions. Nanoscale, 8(15): 7969–7977. CrossRef Harris JM, Headrick RJ, Semler MR, Fagan JA, Pasquali M, Hobbie EK (2016). Impact of SWCNT processing on nanotube-silicon heterojunctions. Nanoscale, 8(15): 7969–7977. CrossRef
23.
go back to reference Chen J, Tune DD, Ge K, Li H, Flavel BS (2020). Front and back-junction carbon nanotube-silicon solar cells with an industrial architecture. Adv Funct Mater, 30(17): 2000484. CrossRef Chen J, Tune DD, Ge K, Li H, Flavel BS (2020). Front and back-junction carbon nanotube-silicon solar cells with an industrial architecture. Adv Funct Mater, 30(17): 2000484. CrossRef
24.
go back to reference Jung Y, Li XK, Rajan NK, Taylor AD, Reed MA (2013). Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells. Nano Lett, 13: 95–99. CrossRef Jung Y, Li XK, Rajan NK, Taylor AD, Reed MA (2013). Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells. Nano Lett, 13: 95–99. CrossRef
25.
go back to reference Cui KH, Chiba T, Omiya S, Thurakitseree T, Zhao P, Fujii S, Kataura H, Einarsson E, Chiashi S, Maruyama S (2013). Self-assembled microhoneycomb network of single-walled carbon nanotubes for solar cells. J Phys Chem, Lett 4: 2571–2576. CrossRef Cui KH, Chiba T, Omiya S, Thurakitseree T, Zhao P, Fujii S, Kataura H, Einarsson E, Chiashi S, Maruyama S (2013). Self-assembled microhoneycomb network of single-walled carbon nanotubes for solar cells. J Phys Chem, Lett 4: 2571–2576. CrossRef
26.
go back to reference Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri, S Ohno Y, Matsuda K (2014). Fabrication of single-walled carbon nanotube/Si heterojunction solar cells with high photovoltaic performance. ACS Photonics, 1: 360–364. CrossRef Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri, S Ohno Y, Matsuda K (2014). Fabrication of single-walled carbon nanotube/Si heterojunction solar cells with high photovoltaic performance. ACS Photonics, 1: 360–364. CrossRef
27.
go back to reference Li X, Jung Y, Sakimoto K, Goh TH, Reed MA, Taylor AD (2013). Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells. Energy Environ Sci, 6: 879–887. CrossRef Li X, Jung Y, Sakimoto K, Goh TH, Reed MA, Taylor AD (2013). Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells. Energy Environ Sci, 6: 879–887. CrossRef
28.
go back to reference Bat-Erdene M, Batmunkh M, Tawfik SA, Fronzi M, Ford MJ, Shearer CJ, Yu L, Dadkhah M, Gascooke JR, Gibson CT, Shapter JG (2017). Efficiency enhancement of single-walled carbon nanotube-silicon heterojunction solar cells using microwave-exfoliated few-layer black phosphorus. Adv Funct Mater, 27(48): 1704488. CrossRef Bat-Erdene M, Batmunkh M, Tawfik SA, Fronzi M, Ford MJ, Shearer CJ, Yu L, Dadkhah M, Gascooke JR, Gibson CT, Shapter JG (2017). Efficiency enhancement of single-walled carbon nanotube-silicon heterojunction solar cells using microwave-exfoliated few-layer black phosphorus. Adv Funct Mater, 27(48): 1704488. CrossRef
29.
go back to reference Yu L, Batmunkh M, Grace T, Dadkhah M, Shearer C, Shapter J (2017). Application of a hole transporting organic interlayer in graphene oxide/single walled carbon nanotube-silicon heterojunction solar cells. J Mater Chem A, 5(18): 8624–8634. CrossRef Yu L, Batmunkh M, Grace T, Dadkhah M, Shearer C, Shapter J (2017). Application of a hole transporting organic interlayer in graphene oxide/single walled carbon nanotube-silicon heterojunction solar cells. J Mater Chem A, 5(18): 8624–8634. CrossRef
30.
go back to reference Alekseeva AA, Rajanna PM, Anisimov AS, Sergeev O, Bereznev S, Nasibulin AG (2018). Synergistic effect of single-walled carbon nanotubes and PEDOT:PSS in thin film amorphous silicon hybrid colar cell. Phys Status Solidi B, 255: 1700557. CrossRef Alekseeva AA, Rajanna PM, Anisimov AS, Sergeev O, Bereznev S, Nasibulin AG (2018). Synergistic effect of single-walled carbon nanotubes and PEDOT:PSS in thin film amorphous silicon hybrid colar cell. Phys Status Solidi B, 255: 1700557. CrossRef
31.
go back to reference Hu XG, Hou PX, Liu C, Zhang F, Liu G, Cheng HM (2018). Small-bundle single-wall carbon nanotubes for high-efficiency silicon heterojunction solar cells. Nano Energy, 50: 521–527. CrossRef Hu XG, Hou PX, Liu C, Zhang F, Liu G, Cheng HM (2018). Small-bundle single-wall carbon nanotubes for high-efficiency silicon heterojunction solar cells. Nano Energy, 50: 521–527. CrossRef
32.
go back to reference Hu XG, Hou PX, Wu JB, Li X, Luan J, Liu C, Liu G, Cheng HM (2020). High-efficiency and stable silicon heterojunction solar cells with lightly fluorinated single-wall carbon nanotube films. Nano Energy, 69: 104442. Hu XG, Hou PX, Wu JB, Li X, Luan J, Liu C, Liu G, Cheng HM (2020). High-efficiency and stable silicon heterojunction solar cells with lightly fluorinated single-wall carbon nanotube films. Nano Energy, 69: 104442.
33.
go back to reference Alzahly S, Yu L, Shearer CJ, Gibson CT, Shapter JG (2018). Efficiency improvement using molybdenum disulphide interlayers in single-wall carbon nanotube/silicon solar cells. Mater, 11(4): 639. CrossRef Alzahly S, Yu L, Shearer CJ, Gibson CT, Shapter JG (2018). Efficiency improvement using molybdenum disulphide interlayers in single-wall carbon nanotube/silicon solar cells. Mater, 11(4): 639. CrossRef
34.
go back to reference Tune DD, Hennrich F, Dehm S, Klein MF, Glaser K, Colsmann A, Shapter JG, Lemmer U, Kappes MM, Krupke R, Flavel BS (2013). The role of nanotubes in carbon nanotube-silicon solar cells. Adv Energy Mater, 3(8): 1091–1097. CrossRef Tune DD, Hennrich F, Dehm S, Klein MF, Glaser K, Colsmann A, Shapter JG, Lemmer U, Kappes MM, Krupke R, Flavel BS (2013). The role of nanotubes in carbon nanotube-silicon solar cells. Adv Energy Mater, 3(8): 1091–1097. CrossRef
35.
go back to reference Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard (2004). Transparent, conductive carbon nanotube films. Science, 305(5688), 1273–1276. CrossRef Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard (2004). Transparent, conductive carbon nanotube films. Science, 305(5688), 1273–1276. CrossRef
36.
go back to reference Shi Z, Chen X, Wang X, Zhang T, Jin J (2011). Fabrication of superstrong ultrathin free-standing single-walled carbon nanotube films via a wet process. Adv Funct Mater, 21(22), 4358–4363. CrossRef Shi Z, Chen X, Wang X, Zhang T, Jin J (2011). Fabrication of superstrong ultrathin free-standing single-walled carbon nanotube films via a wet process. Adv Funct Mater, 21(22), 4358–4363. CrossRef
37.
go back to reference Gilshteyn EP, Romanov SA, Kopylova DS, Savostyanov GV, Anisimov AS, Glukhova OE, Nasibulin AG (2019). Mechanically tunable single-walled carbon nanotube films as a universal material for transparent and stretchable electronics. ACS Appl. Mater. Interfaces, 11(30), 27327–27334. CrossRef Gilshteyn EP, Romanov SA, Kopylova DS, Savostyanov GV, Anisimov AS, Glukhova OE, Nasibulin AG (2019). Mechanically tunable single-walled carbon nanotube films as a universal material for transparent and stretchable electronics. ACS Appl. Mater. Interfaces, 11(30), 27327–27334. CrossRef
38.
go back to reference Walker JS, Fagan JA, Biacchi AJ, Kuehl VA, Searles TA, Hight Walker AR, Rice WD (2019). Global alignment of solution-based single-wall carbon nanotube films via machine-vision controlled filtration. Nano Lett, 2019, 19(10): 7256–7264. Walker JS, Fagan JA, Biacchi AJ, Kuehl VA, Searles TA, Hight Walker AR, Rice WD (2019). Global alignment of solution-based single-wall carbon nanotube films via machine-vision controlled filtration. Nano Lett, 2019, 19(10): 7256–7264.
39.
go back to reference Kaskela A, Nasibulin AG, Timmermans MY, Aitchison B, Papadimitratos A, Tian Y, Zhu Z, Jiang H, Brown DP, Zakhidov A, Kauppinen EI (2010). Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett, 10(11), 4349–4355. CrossRef Kaskela A, Nasibulin AG, Timmermans MY, Aitchison B, Papadimitratos A, Tian Y, Zhu Z, Jiang H, Brown DP, Zakhidov A, Kauppinen EI (2010). Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett, 10(11), 4349–4355. CrossRef
40.
go back to reference Tsapenko AP, Goldt AE, Shulga E, Popov ZI, Maslakov KI, Anisimov AS, Sorokin PB, Nasibulin AG (2018). Highly conductive and transparent films of HAuCl 4-doped single-walled carbon nanotubes for flexible applications. Carbon, 130, 448–457. CrossRef Tsapenko AP, Goldt AE, Shulga E, Popov ZI, Maslakov KI, Anisimov AS, Sorokin PB, Nasibulin AG (2018). Highly conductive and transparent films of HAuCl 4-doped single-walled carbon nanotubes for flexible applications. Carbon, 130, 448–457. CrossRef
41.
go back to reference Jiang S, Hou PX, Liu C, Cheng HM (2019). High-performance single-wall carbon nanotube transparent conductive films. J Mater Sci Tech, 35(11), 2447–2462. CrossRef Jiang S, Hou PX, Liu C, Cheng HM (2019). High-performance single-wall carbon nanotube transparent conductive films. J Mater Sci Tech, 35(11), 2447–2462. CrossRef
42.
go back to reference Harris JM, Semler MR, May S, Fagan JA, Hobbie EK (2015). Nature of record efficiency fluid-processed nanotube-silicon heterojunctions. J Phys Chem C, 119(19): 10295–10303. CrossRef Harris JM, Semler MR, May S, Fagan JA, Hobbie EK (2015). Nature of record efficiency fluid-processed nanotube-silicon heterojunctions. J Phys Chem C, 119(19): 10295–10303. CrossRef
43.
go back to reference Li XK, Jung Y, Huang JS, Goh T, Taylor AD (2014). Device area scale-up and improvement of SWNT/Si solar cells using silver nanowires. Adv Energy Mater, 4, 1400186. CrossRef Li XK, Jung Y, Huang JS, Goh T, Taylor AD (2014). Device area scale-up and improvement of SWNT/Si solar cells using silver nanowires. Adv Energy Mater, 4, 1400186. CrossRef
44.
go back to reference Jia Y, Cao AY, Bai X, Li Z, Zhang LH, Guo N, Wei JQ, Wang KL, Zhu HW, Wu DH, Ajayan PM (2011). Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett, 11(5): 1901–1905. CrossRef Jia Y, Cao AY, Bai X, Li Z, Zhang LH, Guo N, Wei JQ, Wang KL, Zhu HW, Wu DH, Ajayan PM (2011). Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett, 11(5): 1901–1905. CrossRef
45.
go back to reference Cui K, Qian Y, Jeon I, Anisimov A, Matsuo Y, Kauppinen EI, Maruyama S (2017). Scalable and solid-state redox functionalization of transparent single-walled carbon nanotube films for highly efficient and stable solar cells. Adv Energy Mater, 7(18): 1700449. CrossRef Cui K, Qian Y, Jeon I, Anisimov A, Matsuo Y, Kauppinen EI, Maruyama S (2017). Scalable and solid-state redox functionalization of transparent single-walled carbon nanotube films for highly efficient and stable solar cells. Adv Energy Mater, 7(18): 1700449. CrossRef
46.
go back to reference Qian Y, Jeon I, Ho YL, Lee C, Jeong S, Delacou C, Seo S, Anisimov A, Kaupinnen EI, Matsuo Y, Kang Y (2020). Multifunctional effect of p-doping, antireflection, and encapsulation by polymeric acid for high efficiency and stable carbon nanotube-based silicon solar cells. Adv Energy Mater, 10(1): 1902389. CrossRef Qian Y, Jeon I, Ho YL, Lee C, Jeong S, Delacou C, Seo S, Anisimov A, Kaupinnen EI, Matsuo Y, Kang Y (2020). Multifunctional effect of p-doping, antireflection, and encapsulation by polymeric acid for high efficiency and stable carbon nanotube-based silicon solar cells. Adv Energy Mater, 10(1): 1902389. CrossRef
47.
go back to reference Tune DD, Flavel BS, Quinton JS, Ellis AV, Shapter JG (2013). Single-walled carbon nanotube/polyaniline/n-silicon solar cells: Fabrication, characterization, and performance measurements. ChemSusChem, 6(2): 320–327. CrossRef Tune DD, Flavel BS, Quinton JS, Ellis AV, Shapter JG (2013). Single-walled carbon nanotube/polyaniline/n-silicon solar cells: Fabrication, characterization, and performance measurements. ChemSusChem, 6(2): 320–327. CrossRef
48.
go back to reference Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Ohno Y, Matsuda K (2015). Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat Commun, 6(1), 6305. CrossRef Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Ohno Y, Matsuda K (2015). Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat Commun, 6(1), 6305. CrossRef
49.
go back to reference Hu X, Hou PX, Liu C, Cheng HM (2019). Carbon nanotube/silicon heterojunctions for photovoltaic applications. Nano Mater Sci, 1(3): 156–172. CrossRef Hu X, Hou PX, Liu C, Cheng HM (2019). Carbon nanotube/silicon heterojunctions for photovoltaic applications. Nano Mater Sci, 1(3): 156–172. CrossRef
50.
go back to reference Huo TT, Yin H, Zhou DY, Sun LJ, Tian T, Wei H, Hu NT, Yang Z, Zhang YF, Su YJ (2020). A self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions. ACS Sustainable Chem Eng, 8(41): 15532–15539. CrossRef Huo TT, Yin H, Zhou DY, Sun LJ, Tian T, Wei H, Hu NT, Yang Z, Zhang YF, Su YJ (2020). A self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions. ACS Sustainable Chem Eng, 8(41): 15532–15539. CrossRef
51.
go back to reference Liang CW, Roth S (2008). Electrical and optical transport of GaAs/carbon nanotube heterojunctions. Nano Lett, 8(7): 1809-1812. CrossRef Liang CW, Roth S (2008). Electrical and optical transport of GaAs/carbon nanotube heterojunctions. Nano Lett, 8(7): 1809-1812. CrossRef
52.
go back to reference Li H, Loke WK, Zhang Q, Yoon SF (2010). Physical device modeling of carbon nanotube/GaAs photovoltaic cells. Appl Phys Lett, 96 (4): 043501. Li H, Loke WK, Zhang Q, Yoon SF (2010). Physical device modeling of carbon nanotube/GaAs photovoltaic cells. Appl Phys Lett, 96 (4): 043501.
53.
go back to reference Khadije K, Asgari A, Movla H, Mottaghizadeh A, Najafabadi HA (2011). Effects of interface recombination on the performance of SWCNT\GaAs heterojunction solar cell. Procedia Eng, 8: 275–279. CrossRef Khadije K, Asgari A, Movla H, Mottaghizadeh A, Najafabadi HA (2011). Effects of interface recombination on the performance of SWCNT\GaAs heterojunction solar cell. Procedia Eng, 8: 275–279. CrossRef
54.
go back to reference Movla H, Ghaffari S, Rezaei E (2016). A numerical study on the influence of interface recombination on performance of carbon nanotube/GaAs solar cells. Opt Quant Electron, 48(8): 390. CrossRef Movla H, Ghaffari S, Rezaei E (2016). A numerical study on the influence of interface recombination on performance of carbon nanotube/GaAs solar cells. Opt Quant Electron, 48(8): 390. CrossRef
55.
go back to reference Mitin DM, Bolshakov AD, Neplokh V, Mozharov AM, Raudik SA, Fedorov VV, Shugurov KY, Mikhailovskii VY, Rajanna PM, Fedorov FS, Nasibulin AG, Mukhin IS (2020). Novel design strategy for GaAs-based solar cell by application of single-walled carbon nanotubes topmost layer. Energy Sci Eng, 8(8), 2938–2945. CrossRef Mitin DM, Bolshakov AD, Neplokh V, Mozharov AM, Raudik SA, Fedorov VV, Shugurov KY, Mikhailovskii VY, Rajanna PM, Fedorov FS, Nasibulin AG, Mukhin IS (2020). Novel design strategy for GaAs-based solar cell by application of single-walled carbon nanotubes topmost layer. Energy Sci Eng, 8(8), 2938–2945. CrossRef
Metadata
Title
Carbon Nanotube/semiconductor van der Waals Heterojunction Solar Cells
Author
Yanjie Su
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-5497-8_7