Skip to main content
Top

2024 | OriginalPaper | Chapter

Carbon Nanotubes for Antimicrobial and Antiviral Applications: Immunological Aspects, Developments, and Challenges

Authors : Adil M. Allahverdiyev, Sedanur Keleş, Buşra Akgül, Jahid Alakbarli, Malahat Baghırova, Emrah Ş. Abamor

Published in: Nanoparticles in Modern Antimicrobial and Antiviral Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microbial infections, such as multidrug-resistant infections that represent a serious risk to public health, have drastically increased on a global scale. Therefore, the development of novel antimicrobial agents is urgently needed for the treatment of these infections. Nowadays, nanotechnology offers advances in science across a wide range of industries, including medicine, genetics, and infectious diseases. The interaction of nanomaterials with microorganisms is quickly transforming the field of bioengineering by providing benefits for both therapeutic and diagnostic uses. Different organic and inorganic nanoparticles have special physical characteristics that are advantageous for the development of various antiviral and antibacterial agents. Especially, organic nanomaterials have a greater advantage over others due to their biodegradability and biocompatibility. Carbon nanomaterials, such as graphene/graphene oxide, fullerenes, carbon nanotubes, and their nanocomposites, have antibacterial properties. However, their antibacterial properties depend on their structure, functional groups, and some other factors. Considering their potent antiviral and antibacterial properties, functionalized carbon nanotubes show considerable potential in the combat against microbial infections. Carbon nanotubes can play a significant role in the deactivation of microorganisms because of their small size and the ability to pierce bacterial cell walls. They can be single-walled and multi-walled, depending on their number of carbon layers. On the other hand, functionalized carbon nanotubes showed better antimicrobial properties. The recent developments in the antimicrobial and antiviral effects of carbon nanotubes and their nanocomposites are examined in the present chapter. Thereby, in order to shed light on the potential of these nanostructures, we summarize the most significant immunological aspects of diverse viral and microbial infections and discuss key developments and difficulties while using carbon nanotubes for prevention, diagnosis, and treatment of these infections.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aasi, A., Aghaei, S. M., Moore, M. D., & Panchapakesan, B. (2020). Pt-, Rh-, Ru-, and Cu-single-wall carbon nanotubes are exceptional candidates for design of anti-viral surfaces: A theoretical study. International Journal of Molecular Sciences, 21(15), 5211.PubMedPubMedCentralCrossRef Aasi, A., Aghaei, S. M., Moore, M. D., & Panchapakesan, B. (2020). Pt-, Rh-, Ru-, and Cu-single-wall carbon nanotubes are exceptional candidates for design of anti-viral surfaces: A theoretical study. International Journal of Molecular Sciences, 21(15), 5211.PubMedPubMedCentralCrossRef
go back to reference Abid, S. A., Muneer, A. A., Al-Kadmy, I. M., Sattar, A. A., Beshbishy, A. M., Batiha, G. E. S., & Hetta, H. F. (2021). Biosensors as a future diagnostic approach for COVID-19. Life Sciences, 273, 119117.PubMedPubMedCentralCrossRef Abid, S. A., Muneer, A. A., Al-Kadmy, I. M., Sattar, A. A., Beshbishy, A. M., Batiha, G. E. S., & Hetta, H. F. (2021). Biosensors as a future diagnostic approach for COVID-19. Life Sciences, 273, 119117.PubMedPubMedCentralCrossRef
go back to reference Banerjee, I., Douaisi, M. P., Mondal, D., & Kane, R. S. (2012). Light-activated nanotube–porphyrin conjugates as effective antiviral agents. Nanotechnology, 23(10), 105101.PubMedCrossRef Banerjee, I., Douaisi, M. P., Mondal, D., & Kane, R. S. (2012). Light-activated nanotube–porphyrin conjugates as effective antiviral agents. Nanotechnology, 23(10), 105101.PubMedCrossRef
go back to reference Banihashemi, K., Sobouti, B., Mehregan, I., Bakhtiari, R., & Amirmozafari, N. (2020). The construction of carbon nanotubes containing an anti-bacterial chemical component and its effect on MDR and XDR isolates of pseudomonas aeruginosa. Reports of Biochemistry & Molecular Biology, 9(1), 89. www.RBMB.netCrossRef Banihashemi, K., Sobouti, B., Mehregan, I., Bakhtiari, R., & Amirmozafari, N. (2020). The construction of carbon nanotubes containing an anti-bacterial chemical component and its effect on MDR and XDR isolates of pseudomonas aeruginosa. Reports of Biochemistry & Molecular Biology, 9(1), 89. www.​RBMB.​netCrossRef
go back to reference Boyoglu, S., Adiani, L., Boyoglu, C., Mishra, M., Rangari, V., Dennis, V., & Singh, S. R. (2010). CNTs and Silver coated CNTs provide immune responses against RSV. Boyoglu, S., Adiani, L., Boyoglu, C., Mishra, M., Rangari, V., Dennis, V., & Singh, S. R. (2010). CNTs and Silver coated CNTs provide immune responses against RSV.
go back to reference Cajero-Zul, L. R., López-Dellamary, F. A., Gómez-Salazar, S., Vázquez-Lepe, M., Vera-Graziano, R., Torres-Vitela, M. R., Olea-Rodríguez, M. A., & Nuño-Donlucas, S. M. (2019). Evaluation of the resistance to bacterial growth of star-shaped poly(ε-caprolactone)-co-poly(ethylene glycol) grafted onto functionalized carbon nanotubes nanocomposites. Journal of Biomaterials Science. Polymer Edition, 30(3), 163–189. https://doi.org/10.1080/09205063.2018.1558487CrossRefPubMed Cajero-Zul, L. R., López-Dellamary, F. A., Gómez-Salazar, S., Vázquez-Lepe, M., Vera-Graziano, R., Torres-Vitela, M. R., Olea-Rodríguez, M. A., & Nuño-Donlucas, S. M. (2019). Evaluation of the resistance to bacterial growth of star-shaped poly(ε-caprolactone)-co-poly(ethylene glycol) grafted onto functionalized carbon nanotubes nanocomposites. Journal of Biomaterials Science. Polymer Edition, 30(3), 163–189. https://​doi.​org/​10.​1080/​09205063.​2018.​1558487CrossRefPubMed
go back to reference Cascella, M., Rajnik, M., Aleem, A., Dulebohn, S., & Di Napoli, R. (2023). Features, evaluation, and treatment of coronavirus (COVID-19). StatPearls. Cascella, M., Rajnik, M., Aleem, A., Dulebohn, S., & Di Napoli, R. (2023). Features, evaluation, and treatment of coronavirus (COVID-19). StatPearls.
go back to reference Chaudhari, A. A., Joshi, S., Vig, K., Sahu, R., Dixit, S., Baganizi, R., Dennis, V. A., Singh, S. R., & Pillai, S. (2019). A three-dimensional human skin model to evaluate the inhibition of Staphylococcus aureus by antimicrobial peptide-functionalized silver carbon nanotubes. Journal of Biomaterials Applications, 33(7), 924–934. https://doi.org/10.1177/0885328218814984CrossRefPubMed Chaudhari, A. A., Joshi, S., Vig, K., Sahu, R., Dixit, S., Baganizi, R., Dennis, V. A., Singh, S. R., & Pillai, S. (2019). A three-dimensional human skin model to evaluate the inhibition of Staphylococcus aureus by antimicrobial peptide-functionalized silver carbon nanotubes. Journal of Biomaterials Applications, 33(7), 924–934. https://​doi.​org/​10.​1177/​0885328218814984​CrossRefPubMed
go back to reference Chen, H., Zheng, X., Nicholas, J., Humes, S. T., Loeb, J. C., Robinson, S. E., ... & Sabo-Attwood, T. (2017). Single-walled carbon nanotubes modulate pulmonary immune responses and increase pandemic influenza a virus titers in mice. Virology journal, 14, 1–15. Chen, H., Zheng, X., Nicholas, J., Humes, S. T., Loeb, J. C., Robinson, S. E., ... & Sabo-Attwood, T. (2017). Single-walled carbon nanotubes modulate pulmonary immune responses and increase pandemic influenza a virus titers in mice. Virology journal, 14, 1–15.
go back to reference Darnell, M. E., Subbarao, K., Feinstone, S. M., & Taylor, D. R. (2004). Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. Journal of Virological Methods, 121(1), 85–91.PubMedPubMedCentralCrossRef Darnell, M. E., Subbarao, K., Feinstone, S. M., & Taylor, D. R. (2004). Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. Journal of Virological Methods, 121(1), 85–91.PubMedPubMedCentralCrossRef
go back to reference Delves, P. J., Martin, S. J., Burton, D. R., & Roitt, I. M. (2017). Roitt’s essential immunology (13th ed.). John Wiley & Sons. Delves, P. J., Martin, S. J., Burton, D. R., & Roitt, I. M. (2017). Roitt’s essential immunology (13th ed.). John Wiley & Sons.
go back to reference Gacem, A., Modi, S., Yadav, V. K., Islam, S., Patel, A., Dawane, V., Jameel, M., Inwati, G. K., Piplode, S., Solanki, V. S., & Basnet, A. (2022). Recent advances in methods for synthesis of carbon nanotubes and carbon nanocomposite and their emerging applications: A descriptive review. Journal of Nanomaterials, 2022, 1. https://doi.org/10.1155/2022/7238602CrossRef Gacem, A., Modi, S., Yadav, V. K., Islam, S., Patel, A., Dawane, V., Jameel, M., Inwati, G. K., Piplode, S., Solanki, V. S., & Basnet, A. (2022). Recent advances in methods for synthesis of carbon nanotubes and carbon nanocomposite and their emerging applications: A descriptive review. Journal of Nanomaterials, 2022, 1. https://​doi.​org/​10.​1155/​2022/​7238602CrossRef
go back to reference Guo, Z. R., Zhao, Z., Zhang, C., Jia, Y. J., Qiu, D. K., Zhu, B., & Wang, G. X. (2020). Carbon nanotubes-loaded subunit vaccine can increase protective immunity against rhabdovirus infections of largemouth bass (Micropterus Salmoides). Fish & Shellfish Immunology, 99, 548–554.CrossRef Guo, Z. R., Zhao, Z., Zhang, C., Jia, Y. J., Qiu, D. K., Zhu, B., & Wang, G. X. (2020). Carbon nanotubes-loaded subunit vaccine can increase protective immunity against rhabdovirus infections of largemouth bass (Micropterus Salmoides). Fish & Shellfish Immunology, 99, 548–554.CrossRef
go back to reference Gupta, I., Azizighannad, S., Farinas, E. T., & Mitra, S. (2021). Antiviral properties of select carbon nanostructures and their functionalized analogs. Materials Today Communications, 29, 102743. Gupta, I., Azizighannad, S., Farinas, E. T., & Mitra, S. (2021). Antiviral properties of select carbon nanostructures and their functionalized analogs. Materials Today Communications, 29, 102743.
go back to reference Gupta, I., Azizighannad, S., Farinas, E. T., & Mitra, S. (2022). Synergistic Antiviral Effects of Metal Oxides and Carbon Nanotubes. International Journal of Molecular Sciences, 23(19), 11957. Gupta, I., Azizighannad, S., Farinas, E. T., & Mitra, S. (2022). Synergistic Antiviral Effects of Metal Oxides and Carbon Nanotubes. International Journal of Molecular Sciences, 23(19), 11957.
go back to reference Hassan, H. A. F. M., Diebold, S. S., Smyth, L. A., Walters, A. A., Lombardi, G., & Al-Jamal, K. T. (2019). Application of carbon nanotubes in cancer vaccines: Achievements, challenges and chances. Journal of Controlled Release, 297, 79–90.PubMedCrossRef Hassan, H. A. F. M., Diebold, S. S., Smyth, L. A., Walters, A. A., Lombardi, G., & Al-Jamal, K. T. (2019). Application of carbon nanotubes in cancer vaccines: Achievements, challenges and chances. Journal of Controlled Release, 297, 79–90.PubMedCrossRef
go back to reference Hassan, A. A., Mansour, M. K., El Ahl, R. M. S., El Hamaky, A. M., & Oraby, N. H. (2020). Toxic and beneficial effects of carbon nanomaterials on human and animal health. In Carbon nanomaterials for agri-food and environmental applications (pp. 535–555). Elsevier.CrossRef Hassan, A. A., Mansour, M. K., El Ahl, R. M. S., El Hamaky, A. M., & Oraby, N. H. (2020). Toxic and beneficial effects of carbon nanomaterials on human and animal health. In Carbon nanomaterials for agri-food and environmental applications (pp. 535–555). Elsevier.CrossRef
go back to reference He, H., Pham-Huy, L. A., Dramou, P., Xiao, D., Zuo, P., & Pham-Huy, C. (2013). Carbon nanotubes: applications in pharmacy and medicine. BioMed research international, 2013. He, H., Pham-Huy, L. A., Dramou, P., Xiao, D., Zuo, P., & Pham-Huy, C. (2013). Carbon nanotubes: applications in pharmacy and medicine. BioMed research international, 2013.
go back to reference Hetta, H. F., Ramadan, Y. N., Al-Harbi, A. I., Ahmed, A., Battah, B., Abd Ellah, N. H., Zanetti, S., & Donadu, M. G. (2023). Nanotechnology as a promising approach to combat multidrug resistant bacteria: A comprehensive review and future perspectives. Biomedicines, 11(2). https://doi.org/10.3390/BIOMEDICINES11020413 Hetta, H. F., Ramadan, Y. N., Al-Harbi, A. I., Ahmed, A., Battah, B., Abd Ellah, N. H., Zanetti, S., & Donadu, M. G. (2023). Nanotechnology as a promising approach to combat multidrug resistant bacteria: A comprehensive review and future perspectives. Biomedicines, 11(2). https://​doi.​org/​10.​3390/​BIOMEDICINES1102​0413
go back to reference Hu, F., Li, Y., Wang, Q., Wang, G., Zhu, B., Wang, Y., et al. (2020). Carbon nanotube-based DNA vaccine against koi herpesvirus given by intramuscular injection. Fish & Shellfish Immunology, 98, 810–818.CrossRef Hu, F., Li, Y., Wang, Q., Wang, G., Zhu, B., Wang, Y., et al. (2020). Carbon nanotube-based DNA vaccine against koi herpesvirus given by intramuscular injection. Fish & Shellfish Immunology, 98, 810–818.CrossRef
go back to reference Hussain, S., Ji, Z., Taylor, A. J., DeGraff, L. M., George, M., Tucker, C. J., et al. (2016). Multiwalled carbon nanotube functionalization with high molecular weight hyaluronan significantly reduces pulmonary injury. ACS Nano, 10(8), 7675–7688.PubMedPubMedCentralCrossRef Hussain, S., Ji, Z., Taylor, A. J., DeGraff, L. M., George, M., Tucker, C. J., et al. (2016). Multiwalled carbon nanotube functionalization with high molecular weight hyaluronan significantly reduces pulmonary injury. ACS Nano, 10(8), 7675–7688.PubMedPubMedCentralCrossRef
go back to reference Jain, K. K. (2012). Advances in use of functionalized carbon nanotubes for drug design and discovery. Expert opinion on drug discovery, 7(11), 1029–1037. Jain, K. K. (2012). Advances in use of functionalized carbon nanotubes for drug design and discovery. Expert opinion on drug discovery, 7(11), 1029–1037.
go back to reference Jeong, S., González-Grandío, E., Navarro, N., Pinals, R. L., Ledesma, F., Yang, D., & Landry, M. P. (2021). Extraction of viral nucleic acids with carbon nanotubes increases SARS-CoV-2 quantitative reverse transcription polymerase chain reaction detection sensitivity. ACS Nano, 15(6), 10309–10317.PubMedPubMedCentralCrossRef Jeong, S., González-Grandío, E., Navarro, N., Pinals, R. L., Ledesma, F., Yang, D., & Landry, M. P. (2021). Extraction of viral nucleic acids with carbon nanotubes increases SARS-CoV-2 quantitative reverse transcription polymerase chain reaction detection sensitivity. ACS Nano, 15(6), 10309–10317.PubMedPubMedCentralCrossRef
go back to reference Kandhola, G., Park, S., Lim, J. W., Chivers, C., Song, Y. H., Chung, J. H., Kim, J., & Kim, J. W. (2023). Nanomaterial-based scaffolds for tissue engineering applications: A review on graphene, carbon nanotubes and nanocellulose. Tissue Engineering and Regenerative Medicine, 2023, 1–23. https://doi.org/10.1007/S13770-023-00530-3CrossRef Kandhola, G., Park, S., Lim, J. W., Chivers, C., Song, Y. H., Chung, J. H., Kim, J., & Kim, J. W. (2023). Nanomaterial-based scaffolds for tissue engineering applications: A review on graphene, carbon nanotubes and nanocellulose. Tissue Engineering and Regenerative Medicine, 2023, 1–23. https://​doi.​org/​10.​1007/​S13770-023-00530-3CrossRef
go back to reference Khalatbary, M., Sayadi, M. H., Hajiani, M., Nowrouzi, M., & Homaeigohar, S. (2022). Green, sustainable synthesis of γ-Fe2O3/MWCNT/Ag Nano-composites using the Viscum album leaf extract and waste car tire for removal of sulfamethazine and bacteria from wastewater streams. Nanomaterials, 12(16). https://doi.org/10.3390/NANO12162798 Khalatbary, M., Sayadi, M. H., Hajiani, M., Nowrouzi, M., & Homaeigohar, S. (2022). Green, sustainable synthesis of γ-Fe2O3/MWCNT/Ag Nano-composites using the Viscum album leaf extract and waste car tire for removal of sulfamethazine and bacteria from wastewater streams. Nanomaterials, 12(16). https://​doi.​org/​10.​3390/​NANO12162798
go back to reference Kim, S. Y., Lee, J. C., Seo, G., Woo, J. H., Lee, M., Nam, J., et al. (2022). Computational method-based optimization of carbon nanotube thin-film Immunosensor for rapid detection of SARS-CoV-2 virus. Small Science, 2(2), 2100111.PubMedCrossRef Kim, S. Y., Lee, J. C., Seo, G., Woo, J. H., Lee, M., Nam, J., et al. (2022). Computational method-based optimization of carbon nanotube thin-film Immunosensor for rapid detection of SARS-CoV-2 virus. Small Science, 2(2), 2100111.PubMedCrossRef
go back to reference Laganà, P., Visalli, G., Facciolà, A., Ciarello, M. P., Laganà, A., Iannazzo, D., & Di Pietro, A. (2021). Is the antibacterial activity of multi-walled carbon nanotubes (Mwcnts) related to antibiotic resistance? An assessment in clinical isolates. International Journal of Environmental Research and Public Health, 18(17). https://doi.org/10.3390/IJERPH18179310 Laganà, P., Visalli, G., Facciolà, A., Ciarello, M. P., Laganà, A., Iannazzo, D., & Di Pietro, A. (2021). Is the antibacterial activity of multi-walled carbon nanotubes (Mwcnts) related to antibiotic resistance? An assessment in clinical isolates. International Journal of Environmental Research and Public Health, 18(17). https://​doi.​org/​10.​3390/​IJERPH18179310
go back to reference Lee, S., Nam, J. S., Han, J., Zhang, Q., Kauppinen, E. I., & Jeon, I. (2021). Carbon nanotube mask filters and their hydrophobic barrier and hyperthermic antiviral effects on SARS-CoV-2. ACS Applied Nano Materials, 4(8), 8135–8144.PubMedCrossRef Lee, S., Nam, J. S., Han, J., Zhang, Q., Kauppinen, E. I., & Jeon, I. (2021). Carbon nanotube mask filters and their hydrophobic barrier and hyperthermic antiviral effects on SARS-CoV-2. ACS Applied Nano Materials, 4(8), 8135–8144.PubMedCrossRef
go back to reference Leung, N. H., Chu, D. K., Shiu, E. Y., Chan, K. H., McDevitt, J. J., Hau, B. J., et al. (2020). Respiratory virus shedding in exhaled breath and efficacy of face masks. Nature Medicine, 26(5), 676–680.PubMedPubMedCentralCrossRef Leung, N. H., Chu, D. K., Shiu, E. Y., Chan, K. H., McDevitt, J. J., Hau, B. J., et al. (2020). Respiratory virus shedding in exhaled breath and efficacy of face masks. Nature Medicine, 26(5), 676–680.PubMedPubMedCentralCrossRef
go back to reference Li, G., Fan, Y., Lai, Y., Han, T., Li, Z., Zhou, P., et al. (2020). Coronavirus infections and immune responses. Journal of Medical Virology, 92(4), 424–432.PubMedPubMedCentralCrossRef Li, G., Fan, Y., Lai, Y., Han, T., Li, Z., Zhou, P., et al. (2020). Coronavirus infections and immune responses. Journal of Medical Virology, 92(4), 424–432.PubMedPubMedCentralCrossRef
go back to reference Liu, S., Wei, L., Hao, L., Fang, N., Chang, M. W., Xu, R., Yang, Y., & Chen, Y. (2009). Sharper and faster “nano darts” kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano, 3(12), 3891–3902. https://doi.org/10.1021/NN901252RCrossRefPubMed Liu, S., Wei, L., Hao, L., Fang, N., Chang, M. W., Xu, R., Yang, Y., & Chen, Y. (2009). Sharper and faster “nano darts” kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano, 3(12), 3891–3902. https://​doi.​org/​10.​1021/​NN901252RCrossRefPubMed
go back to reference Luanpitpong, S., Wang, L., & Rojanasakul, Y. (2014). The effects of carbon nanotubes on lung and dermal cellular behaviors. Nanomedicine, 9(6), 895–912.PubMedCrossRef Luanpitpong, S., Wang, L., & Rojanasakul, Y. (2014). The effects of carbon nanotubes on lung and dermal cellular behaviors. Nanomedicine, 9(6), 895–912.PubMedCrossRef
go back to reference Luksiene, Z. (2005). New approach to inactivation of harmful and pathogenic microorganisms by photosensitization. Food Technology and Biotechnology, 43(4), 411–418. Luksiene, Z. (2005). New approach to inactivation of harmful and pathogenic microorganisms by photosensitization. Food Technology and Biotechnology, 43(4), 411–418.
go back to reference Madigan, M., Bender, K., Buckley, D., Sattley, W. M., & Stahl, D. (2019). Brock biology of microorganisms 15th edition (2019) (pp. 261–427). Pearson. Madigan, M., Bender, K., Buckley, D., Sattley, W. M., & Stahl, D. (2019). Brock biology of microorganisms 15th edition (2019) (pp. 261–427). Pearson.
go back to reference Maruyama, K., Haniu, H., Saito, N., Matsuda, Y., Tsukahara, T., Kobayashi, S., et al. (2015). Endocytosis of multiwalled carbon nanotubes in bronchial epithelial and mesothelial cells. BioMed Research International. Maruyama, K., Haniu, H., Saito, N., Matsuda, Y., Tsukahara, T., Kobayashi, S., et al. (2015). Endocytosis of multiwalled carbon nanotubes in bronchial epithelial and mesothelial cells. BioMed Research International.
go back to reference Masoumeh, A. M., Hamideh, R. N., Pardis, S., & Ali, K. N. R. (2022). Improving antibacterial activity of methicillin by conjugation to functionalized single-wall carbon nanotubes against MRSA. International Journal of Peptide Research and Therapeutics, 28(3). https://doi.org/10.1007/S10989-022-10377-2 Masoumeh, A. M., Hamideh, R. N., Pardis, S., & Ali, K. N. R. (2022). Improving antibacterial activity of methicillin by conjugation to functionalized single-wall carbon nanotubes against MRSA. International Journal of Peptide Research and Therapeutics, 28(3). https://​doi.​org/​10.​1007/​S10989-022-10377-2
go back to reference Mokhtarzadeh, A., Eivazzadeh-Keihan, R., Pashazadeh, P., Hejazi, M., Gharaatifar, N., Hasanzadeh, M., et al. (2017). Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends in Analytical Chemistry, 97, 445–457.PubMedCrossRef Mokhtarzadeh, A., Eivazzadeh-Keihan, R., Pashazadeh, P., Hejazi, M., Gharaatifar, N., Hasanzadeh, M., et al. (2017). Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends in Analytical Chemistry, 97, 445–457.PubMedCrossRef
go back to reference Mondal, T., Konda, P., Das, K., Kumar, K., & Bag, S. (2022). Evaluation of cytocompatibility as assessed by genomic stability of canine induced pluripotent stem cells propagated on carbon nanotube substrates. Indian Journal of Animal Research, 56(6), 649–654. https://doi.org/10.18805/IJAR.B-4853CrossRef Mondal, T., Konda, P., Das, K., Kumar, K., & Bag, S. (2022). Evaluation of cytocompatibility as assessed by genomic stability of canine induced pluripotent stem cells propagated on carbon nanotube substrates. Indian Journal of Animal Research, 56(6), 649–654. https://​doi.​org/​10.​18805/​IJAR.​B-4853CrossRef
go back to reference Mostafa, A. M., Mwafy, E. A., Awwad, N. S., & Ibrahium, H. A. (2021). Synthesis of multi-walled carbon nanotubes decorated with silver metallic nanoparticles as a catalytic degradable material via pulsed laser ablation in liquid media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626, 126992. https://doi.org/10.1016/J.COLSURFA.2021.126992CrossRef Mostafa, A. M., Mwafy, E. A., Awwad, N. S., & Ibrahium, H. A. (2021). Synthesis of multi-walled carbon nanotubes decorated with silver metallic nanoparticles as a catalytic degradable material via pulsed laser ablation in liquid media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626, 126992. https://​doi.​org/​10.​1016/​J.​COLSURFA.​2021.​126992CrossRef
go back to reference Msemburi, W., Karlinsky, A., Knutson, V., Aleshin-Guendel, S., Chatterji, S., & Wakefield, J. (2023). The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature, 613(7942), 130–137.PubMedCrossRef Msemburi, W., Karlinsky, A., Knutson, V., Aleshin-Guendel, S., Chatterji, S., & Wakefield, J. (2023). The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature, 613(7942), 130–137.PubMedCrossRef
go back to reference Mycroft-West, C., Su, D., Elli, S., Li, Y., Guimond, S., Miller, G., et al. (2020). 2019 koronavirüs (SARS-CoV-2) yüzey proteini (Spike) S1 Reseptör Bağlama Alanı, heparin bağlanması üzerine konformasyonel değişikliğe uğrar. BioRxiv, 2020–2002. Mycroft-West, C., Su, D., Elli, S., Li, Y., Guimond, S., Miller, G., et al. (2020). 2019 koronavirüs (SARS-CoV-2) yüzey proteini (Spike) S1 Reseptör Bağlama Alanı, heparin bağlanması üzerine konformasyonel değişikliğe uğrar. BioRxiv, 2020–2002.
go back to reference Navanietha Krishnaraj, R., Chandran, S., Pal, P., & Berchmans, S. (2014). Hesaplamalı moleküler yaklaşım kullanılarak karbon nanotüplerin antiretroviral aktivitesi üzerine araştırmalar. Kombinatoryal Kimya ve Yüksek Verimli Tarama, 17(6), 531–535. Navanietha Krishnaraj, R., Chandran, S., Pal, P., & Berchmans, S. (2014). Hesaplamalı moleküler yaklaşım kullanılarak karbon nanotüplerin antiretroviral aktivitesi üzerine araştırmalar. Kombinatoryal Kimya ve Yüksek Verimli Tarama, 17(6), 531–535.
go back to reference Nurazzi, N. M., Asyraf, M. R. M., Khalina, A., Abdullah, N., Sabaruddin, F. A., Kamarudin, S. H., Ahmad, S., Mahat, A. M., Lee, C. L., Aisyah, H. A., Norrrahim, M. N. F., Ilyas, R. A., Harussani, M. M., Ishak, M. R., & Sapuan, S. M. (2021). Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview. Polymers, 13(7), 1047. https://doi.org/10.3390/POLYM13071047CrossRef Nurazzi, N. M., Asyraf, M. R. M., Khalina, A., Abdullah, N., Sabaruddin, F. A., Kamarudin, S. H., Ahmad, S., Mahat, A. M., Lee, C. L., Aisyah, H. A., Norrrahim, M. N. F., Ilyas, R. A., Harussani, M. M., Ishak, M. R., & Sapuan, S. M. (2021). Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview. Polymers, 13(7), 1047. https://​doi.​org/​10.​3390/​POLYM13071047CrossRef
go back to reference Pacurari, M., Qian, Y., Fu, W., Schwegler-Berry, D., Ding, M., Castranova, V., & Guo, N. L. (2012). Cell permeability, migration, and reactive oxygen species induced by multiwalled carbon nanotubes in human microvascular endothelial cells. Journal of Toxicology and Environmental Health, Part A, 75(2), 112–128.PubMedCrossRef Pacurari, M., Qian, Y., Fu, W., Schwegler-Berry, D., Ding, M., Castranova, V., & Guo, N. L. (2012). Cell permeability, migration, and reactive oxygen species induced by multiwalled carbon nanotubes in human microvascular endothelial cells. Journal of Toxicology and Environmental Health, Part A, 75(2), 112–128.PubMedCrossRef
go back to reference Patel, V., Joshi, U., Joshi, A., Upadhyay, T. K., Al-Keridis, L. A., & Saeed, M. (2023). Cytotoxicity analysis for the hydroxyl functionalized MWCNT reinforced PMMA nanocomposites in oral squamous carcinoma (KB) cells. Polymers, 15(5). https://doi.org/10.3390/POLYM15051192 Patel, V., Joshi, U., Joshi, A., Upadhyay, T. K., Al-Keridis, L. A., & Saeed, M. (2023). Cytotoxicity analysis for the hydroxyl functionalized MWCNT reinforced PMMA nanocomposites in oral squamous carcinoma (KB) cells. Polymers, 15(5). https://​doi.​org/​10.​3390/​POLYM15051192
go back to reference Perumal, V., & Hashim, U. (2014). Advances in biosensors: Principle, architecture and applications. Journal of Applied Biomedicine, 12(1), 1–15.CrossRef Perumal, V., & Hashim, U. (2014). Advances in biosensors: Principle, architecture and applications. Journal of Applied Biomedicine, 12(1), 1–15.CrossRef
go back to reference Rahamathulla, M., Bhosale, R. R., Osmani, R. A., Mahima, K. C., Johnson, A. P., Hani, U., et al. (2021). Carbon nanotubes: Current perspectives on diverse applications in targeted drug delivery and therapies. Materials, 14(21), 6707.PubMedPubMedCentralCrossRef Rahamathulla, M., Bhosale, R. R., Osmani, R. A., Mahima, K. C., Johnson, A. P., Hani, U., et al. (2021). Carbon nanotubes: Current perspectives on diverse applications in targeted drug delivery and therapies. Materials, 14(21), 6707.PubMedPubMedCentralCrossRef
go back to reference Rashid, M. H. O., & Ralph, S. F. (2017). Carbon nanotube membranes: Synthesis, properties, and future filtration applications. Nanomaterials, 7(5), 99.PubMedPubMedCentralCrossRef Rashid, M. H. O., & Ralph, S. F. (2017). Carbon nanotube membranes: Synthesis, properties, and future filtration applications. Nanomaterials, 7(5), 99.PubMedPubMedCentralCrossRef
go back to reference Sanpui, P., Zheng, X., Loeb, J. C., Bisesi, J. H., Jr., Khan, I. A., Afrooz, A. R. M., et al. (2014). Single-walled carbon nanotubes increase pandemic influenza A H1N1 virus infectivity of lung epithelial cells. Particle and Fibre Toxicology, 11(1), 1–15.CrossRef Sanpui, P., Zheng, X., Loeb, J. C., Bisesi, J. H., Jr., Khan, I. A., Afrooz, A. R. M., et al. (2014). Single-walled carbon nanotubes increase pandemic influenza A H1N1 virus infectivity of lung epithelial cells. Particle and Fibre Toxicology, 11(1), 1–15.CrossRef
go back to reference Scott, K., & Yu, E. H. (Eds.). (2015). Microbial electrochemical and fuel cells: Fundamentals and applications. Woodhead Publishing. Scott, K., & Yu, E. H. (Eds.). (2015). Microbial electrochemical and fuel cells: Fundamentals and applications. Woodhead Publishing.
go back to reference Shao, W., Shurin, M. R., Wheeler, S. E., He, X., & Star, A. (2021). Rapid detection of SARS-CoV-2 antigens using high-purity semiconducting single-walled carbon nanotube-based field-effect transistors. ACS Applied Materials & Interfaces, 13(8), 10321–10327.CrossRef Shao, W., Shurin, M. R., Wheeler, S. E., He, X., & Star, A. (2021). Rapid detection of SARS-CoV-2 antigens using high-purity semiconducting single-walled carbon nanotube-based field-effect transistors. ACS Applied Materials & Interfaces, 13(8), 10321–10327.CrossRef
go back to reference Shvedova, A. A., Kisin, E. R., Mercer, R., Murray, A. R., Johnson, V. J., Potapovich, A. I., Tyurina, Y. Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D., Hubbs, A. F., Antonini, J., Evans, D. E., Ku, B. K., Ramsey, D., Maynard, A., Kagan, V. E., Castranova, V., & Baron, P. (2005). Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. American Journal of Physiology – Lung Cellular and Molecular Physiology, 289, 33–35. https://doi.org/10.1152/AJPLUNG.00084.2005CrossRef Shvedova, A. A., Kisin, E. R., Mercer, R., Murray, A. R., Johnson, V. J., Potapovich, A. I., Tyurina, Y. Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D., Hubbs, A. F., Antonini, J., Evans, D. E., Ku, B. K., Ramsey, D., Maynard, A., Kagan, V. E., Castranova, V., & Baron, P. (2005). Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. American Journal of Physiology – Lung Cellular and Molecular Physiology, 289, 33–35. https://​doi.​org/​10.​1152/​AJPLUNG.​00084.​2005CrossRef
go back to reference Simon-Deckers, A., Loo, S., Mayne-L’Hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., Gouget, B., & Carriere, M. (2009). Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environmental Science & Technology, 43(21), 8423–8429. https://doi.org/10.1021/ES9016975CrossRef Simon-Deckers, A., Loo, S., Mayne-L’Hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., Gouget, B., & Carriere, M. (2009). Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environmental Science & Technology, 43(21), 8423–8429. https://​doi.​org/​10.​1021/​ES9016975CrossRef
go back to reference Smyrlaki, I., Ekman, M., Lentini, A., Rufino de Sousa, N., Papanicolaou, N., Vondracek, M., et al. (2020). Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR. Nature Communications, 11(1), 4812.PubMedPubMedCentralCrossRef Smyrlaki, I., Ekman, M., Lentini, A., Rufino de Sousa, N., Papanicolaou, N., Vondracek, M., et al. (2020). Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR. Nature Communications, 11(1), 4812.PubMedPubMedCentralCrossRef
go back to reference Stegarescu, A., Lung, I., Ciorîță, A., Kacso, I., Opriș, O., Soran, M. L., & Soran, A. (2022). The antibacterial properties of nanocomposites based on carbon nanotubes and metal oxides functionalized with azithromycin and ciprofloxacin. Nanomaterials, 12(23). https://doi.org/10.3390/NANO12234115 Stegarescu, A., Lung, I., Ciorîță, A., Kacso, I., Opriș, O., Soran, M. L., & Soran, A. (2022). The antibacterial properties of nanocomposites based on carbon nanotubes and metal oxides functionalized with azithromycin and ciprofloxacin. Nanomaterials, 12(23). https://​doi.​org/​10.​3390/​NANO12234115
go back to reference Thanihaichelvan, M., Surendran, S. N., Kumanan, T., Sutharsini, U., Ravirajan, P., Valluvan, R., & Tharsika, T. (2022). Selective and electronic detection of COVID-19 (coronavirus) using carbon nanotube field effect transistor-based biosensor: A proof-of-concept study. Materials Today: Proceedings, 49, 2546–2549.PubMed Thanihaichelvan, M., Surendran, S. N., Kumanan, T., Sutharsini, U., Ravirajan, P., Valluvan, R., & Tharsika, T. (2022). Selective and electronic detection of COVID-19 (coronavirus) using carbon nanotube field effect transistor-based biosensor: A proof-of-concept study. Materials Today: Proceedings, 49, 2546–2549.PubMed
go back to reference Thurnherr, T., Brandenberger, C., Fischer, K., Diener, L., Manser, P., Maeder-Althaus, X., Kaiser, J. P., Krug, H. F., Rothen-Rutishauser, B., & Wick, P. (2011). A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro. Toxicology Letters, 200(3), 176–186. https://doi.org/10.1016/J.TOXLET.2010.11.012CrossRefPubMed Thurnherr, T., Brandenberger, C., Fischer, K., Diener, L., Manser, P., Maeder-Althaus, X., Kaiser, J. P., Krug, H. F., Rothen-Rutishauser, B., & Wick, P. (2011). A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro. Toxicology Letters, 200(3), 176–186. https://​doi.​org/​10.​1016/​J.​TOXLET.​2010.​11.​012CrossRefPubMed
go back to reference Tortora, G. J., Funke, B. R., & Case, C. L. (2016). Microbiology: An introduction. Pearson. Tortora, G. J., Funke, B. R., & Case, C. L. (2016). Microbiology: An introduction. Pearson.
go back to reference Ursini, C. L., Cavallo, D., Fresegna, A. M., Ciervo, A., Maiello, R., Buresti, G., Casciardi, S., Bellucci, S., & Iavicoli, S. (2014). Differences in cytotoxic, genotoxic, and inflammatory response of bronchial and alveolar human Lung epithelial cells to pristine and COOH-functionalized multiwalled carbon nanotubes. Research Article Differences in Cytotoxic, 2014. https://doi.org/10.1155/2014/359506 Ursini, C. L., Cavallo, D., Fresegna, A. M., Ciervo, A., Maiello, R., Buresti, G., Casciardi, S., Bellucci, S., & Iavicoli, S. (2014). Differences in cytotoxic, genotoxic, and inflammatory response of bronchial and alveolar human Lung epithelial cells to pristine and COOH-functionalized multiwalled carbon nanotubes. Research Article Differences in Cytotoxic, 2014. https://​doi.​org/​10.​1155/​2014/​359506
go back to reference Varghese, R., Salvi, S., Sood, P., Karsiya, J., & Kumar, D. (2022). Carbon nanotubes in COVID-19: A critical review and prospects. Colloid and Interface Science Communications, 46, 100544.PubMedCrossRef Varghese, R., Salvi, S., Sood, P., Karsiya, J., & Kumar, D. (2022). Carbon nanotubes in COVID-19: A critical review and prospects. Colloid and Interface Science Communications, 46, 100544.PubMedCrossRef
go back to reference Vecitis, C. D., Schnoor, M. H., Rahaman, M. S., Schiffman, J. D., & Elimelech, M. (2011). Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environmental Science & Technology, 45(8), 3672–3679.CrossRef Vecitis, C. D., Schnoor, M. H., Rahaman, M. S., Schiffman, J. D., & Elimelech, M. (2011). Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environmental Science & Technology, 45(8), 3672–3679.CrossRef
go back to reference Vidic, J., Manzano, M., Chang, C. M., & Jaffrezic-Renault, N. (2017). Advanced biosensors for detection of pathogens related to livestock and poultry. Veterinary Research, 48(1), 1–22.CrossRef Vidic, J., Manzano, M., Chang, C. M., & Jaffrezic-Renault, N. (2017). Advanced biosensors for detection of pathogens related to livestock and poultry. Veterinary Research, 48(1), 1–22.CrossRef
go back to reference Wasik, D., Mulchandani, A., & Yates, M. V. (2017). A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus. Biosensors and Bioelectronics, 91, 811–816.PubMedCrossRef Wasik, D., Mulchandani, A., & Yates, M. V. (2017). A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus. Biosensors and Bioelectronics, 91, 811–816.PubMedCrossRef
go back to reference Weiss, S. R., & Navas-Martin, S. (2005). Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiology and Molecular Biology Reviews, 69(4), 635–664.PubMedPubMedCentralCrossRef Weiss, S. R., & Navas-Martin, S. (2005). Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiology and Molecular Biology Reviews, 69(4), 635–664.PubMedPubMedCentralCrossRef
go back to reference Yang, J. (2020). Inhibition of SARS-CoV-2 replication by acidizing and RNA lyase-modified carbon nanotubes combined with photodynamic thermal effect. Journal of Exploratory Research in Pharmacology, 5(2), 18–23. Yang, J. (2020). Inhibition of SARS-CoV-2 replication by acidizing and RNA lyase-modified carbon nanotubes combined with photodynamic thermal effect. Journal of Exploratory Research in Pharmacology, 5(2), 18–23.
go back to reference Yang, N., Chen, X., Ren, T., Zhang, P., & Yang, D. (2015). Carbon nanotube based biosensors. Sensors and Actuators B: Chemical, 207, 690–715.CrossRef Yang, N., Chen, X., Ren, T., Zhang, P., & Yang, D. (2015). Carbon nanotube based biosensors. Sensors and Actuators B: Chemical, 207, 690–715.CrossRef
go back to reference Yu, H., Guan, F., Miller, H., Lei, J., & Liu, C. (2023). The role of SARS-CoV-2 nucleocapsid protein in antiviral immunity and vaccine development. Emerging Microbes & Infections, (just-accepted), 2164219. Yu, H., Guan, F., Miller, H., Lei, J., & Liu, C. (2023). The role of SARS-CoV-2 nucleocapsid protein in antiviral immunity and vaccine development. Emerging Microbes & Infections, (just-accepted), 2164219.
go back to reference Zhang, F., Wang, Z., Vijver, M. G., & Peijnenburg, W. J. (2021). Probing nano-QSAR to assess the interactions between carbon nanoparticles and a SARS-CoV-2 RNA fragment. Ecotoxicology and Environmental Safety, 219, 112357.PubMedPubMedCentralCrossRef Zhang, F., Wang, Z., Vijver, M. G., & Peijnenburg, W. J. (2021). Probing nano-QSAR to assess the interactions between carbon nanoparticles and a SARS-CoV-2 RNA fragment. Ecotoxicology and Environmental Safety, 219, 112357.PubMedPubMedCentralCrossRef
go back to reference Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020a). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382, 727–733.PubMedCrossRef Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020a). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382, 727–733.PubMedCrossRef
go back to reference Zhu, Y., Xu, J., Wang, Y., Chen, C., Gu, H., Chai, Y., & Wang, Y. (2020b). Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria. Nano Research, 13(2), 389–400. https://doi.org/10.1007/S12274-020-2621-3CrossRef Zhu, Y., Xu, J., Wang, Y., Chen, C., Gu, H., Chai, Y., & Wang, Y. (2020b). Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria. Nano Research, 13(2), 389–400. https://​doi.​org/​10.​1007/​S12274-020-2621-3CrossRef
Metadata
Title
Carbon Nanotubes for Antimicrobial and Antiviral Applications: Immunological Aspects, Developments, and Challenges
Authors
Adil M. Allahverdiyev
Sedanur Keleş
Buşra Akgül
Jahid Alakbarli
Malahat Baghırova
Emrah Ş. Abamor
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50093-0_15

Premium Partners