Skip to main content
Top

2024 | OriginalPaper | Chapter

Carbon Nanotubes for Metal-Ion Batteries

Authors : Yathavan Subramanian, Anitha Dhanasekaran, Lukman Ahmed Omeiza, Abul K. Azad

Published in: NanoCarbon: A Wonder Material for Energy Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon nanotubes (CNTs) have shown great potential for improving the performance of metal-ion batteries, which are widely used for energy storage in various applications. The unique properties of CNTs, such as their high surface area, excellent electrical conductivity, and mechanical strength, make them ideal candidates for use in the electrodes and current collectors of metal-ion batteries. This chapter summarizes the recent progress in using CNTs for metal-ion batteries, including the synthesis and functionalization of CNTs, their integration into electrode materials, and their effects on the electrochemical performance of batteries. The challenges and opportunities associated with using CNTs in metal-ion batteries are also discussed. Overall, this chapter provides a comprehensive overview of the current state-of-the-art CNT-based metal-ion batteries and identifies future research directions in this rapidly growing field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Omeiza, L.A., Abdalla, A.M., Wei, B., Dhanasekaran, A., Subramanian, Y., Afroze, S., Reza, M.S., Bakar, S.A., Azad, A.K.: Nanostructured Electrocatalysts for advanced applications in fuel cells. Energies 16, 1876 (2023)CrossRef Omeiza, L.A., Abdalla, A.M., Wei, B., Dhanasekaran, A., Subramanian, Y., Afroze, S., Reza, M.S., Bakar, S.A., Azad, A.K.: Nanostructured Electrocatalysts for advanced applications in fuel cells. Energies 16, 1876 (2023)CrossRef
2.
go back to reference Dhanasekaran, A., Subramanian, Y., Omeiza, L.A., Raj, V., Yassin, H.P.H.M., SA, M.A., Azad, A.K.: Computational fluid dynamics for protonic ceramic fuel cell stack modeling: a brief review. Energies 16, 208 (2023) Dhanasekaran, A., Subramanian, Y., Omeiza, L.A., Raj, V., Yassin, H.P.H.M., SA, M.A., Azad, A.K.: Computational fluid dynamics for protonic ceramic fuel cell stack modeling: a brief review. Energies 16, 208 (2023)
3.
go back to reference Subramanian, Y., Dhanasekaran, A., Omeiza, L.A., Somalu, M.R., Azad, A.K.: A review on heteroanionic-based materials for photocatalysis applications. Catalysts 13, 173 (2023)CrossRef Subramanian, Y., Dhanasekaran, A., Omeiza, L.A., Somalu, M.R., Azad, A.K.: A review on heteroanionic-based materials for photocatalysis applications. Catalysts 13, 173 (2023)CrossRef
4.
go back to reference Abdalla, A.M., Abdullah, M.F., Dawood, M.K., Bo Wei, Y., Subramanian, A.T., Azad, S., Nourin, S.A., Taweekun, J., Azad, A.K.: Innovative lithium-ion battery recycling: sustainable process for recovery of critical materials from lithium-ion batteries. J. Energy Storage 67, 107551 (2023)CrossRef Abdalla, A.M., Abdullah, M.F., Dawood, M.K., Bo Wei, Y., Subramanian, A.T., Azad, S., Nourin, S.A., Taweekun, J., Azad, A.K.: Innovative lithium-ion battery recycling: sustainable process for recovery of critical materials from lithium-ion batteries. J. Energy Storage 67, 107551 (2023)CrossRef
5.
go back to reference Verma, J., Kumar, D.: Metal-ion batteries for electric vehicles: current state of the technology, issues and future perspectives. Nanoscale Adv. 3(12), 3384–3394 (2021)CrossRefPubMedPubMedCentral Verma, J., Kumar, D.: Metal-ion batteries for electric vehicles: current state of the technology, issues and future perspectives. Nanoscale Adv. 3(12), 3384–3394 (2021)CrossRefPubMedPubMedCentral
6.
go back to reference Subramanian, Y., Dhanasekaran, A., Omeiza, L.A., Raj, V., Yassin, H., Somalu, M.R., Afroze, S., Azad, A.K.: A review on applications of carbon nanotubes-based metal-sulfide composite anode materials (CNTs/MS) for sodium (Na)-ion batteries. Emergent Mater. (2023).https://doi.org/10.1007/s42247-023-00501-3 Subramanian, Y., Dhanasekaran, A., Omeiza, L.A., Raj, V., Yassin, H., Somalu, M.R., Afroze, S., Azad, A.K.: A review on applications of carbon nanotubes-based metal-sulfide composite anode materials (CNTs/MS) for sodium (Na)-ion batteries. Emergent Mater. (2023).https://​doi.​org/​10.​1007/​s42247-023-00501-3
7.
go back to reference Chai, Y., Du, Y., Li, L., Wang, N.: Dual metal oxides interconnected by carbon nanotubes for high-capacity Li- and Na-ion batteries. Nanotechnology 31, 215402 (2020)CrossRefPubMed Chai, Y., Du, Y., Li, L., Wang, N.: Dual metal oxides interconnected by carbon nanotubes for high-capacity Li- and Na-ion batteries. Nanotechnology 31, 215402 (2020)CrossRefPubMed
8.
go back to reference De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)CrossRefPubMed De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)CrossRefPubMed
9.
go back to reference Vijaya Kumar Saroja, A.P., Muruganathan, M., Muthusamy, K., Mizuta, H., Sundara, R.: Enhanced sodium ion storage in interlayer expanded multiwall carbon nanotubes. Nano Letters 18(9), 5688–5696 (2018) Vijaya Kumar Saroja, A.P., Muruganathan, M., Muthusamy, K., Mizuta, H., Sundara, R.: Enhanced sodium ion storage in interlayer expanded multiwall carbon nanotubes. Nano Letters 18(9), 5688–5696 (2018)
10.
go back to reference Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)CrossRef Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)CrossRef
11.
go back to reference Ban, C., Wu, Z., Gillaspie, D.T., Chen, L., Yan, Y., Blackburn, J.L., Dillon, A.C.: Nanostructured Fe3O4/SWNT electrode: binder-free and high-rate li-ion anode. Adv. Mater. 22(20), E145–E149 (2010)CrossRefPubMed Ban, C., Wu, Z., Gillaspie, D.T., Chen, L., Yan, Y., Blackburn, J.L., Dillon, A.C.: Nanostructured Fe3O4/SWNT electrode: binder-free and high-rate li-ion anode. Adv. Mater. 22(20), E145–E149 (2010)CrossRefPubMed
12.
go back to reference Wang, Y., Zeng, H.C., Lee, J.Y.: Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18(5), 645–649 (2006)CrossRef Wang, Y., Zeng, H.C., Lee, J.Y.: Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18(5), 645–649 (2006)CrossRef
13.
go back to reference Luo, B., Hu, Y., Zhu, X., Qiu, T., Zhi, L., Xiao, M., Zhang, H., Zou, M., Cao, A., Wang, L.: Controllable growth of SnS2 nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. J. Mater. Chem. A 6(4), 1462–1472 (2018)CrossRef Luo, B., Hu, Y., Zhu, X., Qiu, T., Zhi, L., Xiao, M., Zhang, H., Zou, M., Cao, A., Wang, L.: Controllable growth of SnS2 nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. J. Mater. Chem. A 6(4), 1462–1472 (2018)CrossRef
14.
go back to reference Chu, Z., Yue, C.: Core–shell structured Na3V2(PO4)3/C nanocrystals embedded in multi-walled carbon nanotubes: a high-performance cathode for sodium-ion batteries. Solid State Ionics 287, 36–41 (2016)CrossRef Chu, Z., Yue, C.: Core–shell structured Na3V2(PO4)3/C nanocrystals embedded in multi-walled carbon nanotubes: a high-performance cathode for sodium-ion batteries. Solid State Ionics 287, 36–41 (2016)CrossRef
15.
go back to reference Li, X., Zhuang, C., Xu, J., Li, L., Xu, T., Dai, S., Xinchang, W., Xinjian, L., Wang, Y.: Rational construction of K0.5V2O5 nanobelts/CNTs flexible cathode for multi-functional potassium-ion batteries. Nanoscale 13(17), 8199–8209 (2021) Li, X., Zhuang, C., Xu, J., Li, L., Xu, T., Dai, S., Xinchang, W., Xinjian, L., Wang, Y.: Rational construction of K0.5V2O5 nanobelts/CNTs flexible cathode for multi-functional potassium-ion batteries. Nanoscale 13(17), 8199–8209 (2021)
16.
go back to reference Zhang, K., Lee, T.H., Cha, J.H., Jang, H.W., Shokouhimehr, M., Choi, J.-W.: Properties of CoS2/CNT as a cathode material of rechargeable aluminum-ion batteries. Electron. Mater. Lett. 15, 727–732 (2019)CrossRef Zhang, K., Lee, T.H., Cha, J.H., Jang, H.W., Shokouhimehr, M., Choi, J.-W.: Properties of CoS2/CNT as a cathode material of rechargeable aluminum-ion batteries. Electron. Mater. Lett. 15, 727–732 (2019)CrossRef
17.
go back to reference Ventrapragada, L.K., Creager, S.E., Rao, A.M., Podila, R.: Carbon nanotubes coated paper as current collectors for secondary li-ion batteries. Nanotechnol. Rev. 8(1), 18–23 (2019)CrossRef Ventrapragada, L.K., Creager, S.E., Rao, A.M., Podila, R.: Carbon nanotubes coated paper as current collectors for secondary li-ion batteries. Nanotechnol. Rev. 8(1), 18–23 (2019)CrossRef
18.
go back to reference Wang, C., Takei, K., Takahashi, T., Javey, A.: Carbon nanotube electronics—moving forward. Chem. Soc. Rev. 42(7), 2592–2609 (2013)CrossRefPubMed Wang, C., Takei, K., Takahashi, T., Javey, A.: Carbon nanotube electronics—moving forward. Chem. Soc. Rev. 42(7), 2592–2609 (2013)CrossRefPubMed
20.
go back to reference Zou, J., Sun, X., Li, R., He, Q.: Pre-embedding lithium to build a composite SnO2@Li/MWCNTs anode. J. Electron. Mater. 49, 1017–1023 (2019)CrossRef Zou, J., Sun, X., Li, R., He, Q.: Pre-embedding lithium to build a composite SnO2@Li/MWCNTs anode. J. Electron. Mater. 49, 1017–1023 (2019)CrossRef
21.
go back to reference Li, Y., Zhang, J., Chen, Q., Xia, X., Chen, M.: Emerging of heterostructure materials in energy storage: a review. Adv. Mater. 33(27), 2100855 (2021)CrossRef Li, Y., Zhang, J., Chen, Q., Xia, X., Chen, M.: Emerging of heterostructure materials in energy storage: a review. Adv. Mater. 33(27), 2100855 (2021)CrossRef
22.
go back to reference Zhu, J., Chen, X., Wang, X., Zuo, X., Li, J.: Disc-shaped Li4−xKxTi5O12 derived from MIL-125(Ti) as an anode material with high performance for lithium-ion batteries. J. Electron. Mater. 50(7), 4066–4074 (2021)CrossRef Zhu, J., Chen, X., Wang, X., Zuo, X., Li, J.: Disc-shaped Li4−xKxTi5O12 derived from MIL-125(Ti) as an anode material with high performance for lithium-ion batteries. J. Electron. Mater. 50(7), 4066–4074 (2021)CrossRef
23.
go back to reference Masarapu, C., Subramanian, V., Zhu, H., Wei, B.: Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li Ion batteries. Adv. Func. Mater. 19(7), 1008–1014 (2009)CrossRef Masarapu, C., Subramanian, V., Zhu, H., Wei, B.: Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li Ion batteries. Adv. Func. Mater. 19(7), 1008–1014 (2009)CrossRef
24.
go back to reference Zhou, Z., Gao, X., Yan, J., Song, D., Morinaga, M.: Enhanced lithium absorption in single-walled carbon nanotubes by boron doping. J. Phys. Chem. B 108(26), 9023–9026 (2004)CrossRef Zhou, Z., Gao, X., Yan, J., Song, D., Morinaga, M.: Enhanced lithium absorption in single-walled carbon nanotubes by boron doping. J. Phys. Chem. B 108(26), 9023–9026 (2004)CrossRef
25.
go back to reference Yang, Z., Li, Z., Wu, H., Simard, B.: Effects of doped copper on electrochemical performance of the raw carbon nanotubes anode. Mater. Lett. 57(21), 3160–3166 (2003)CrossRef Yang, Z., Li, Z., Wu, H., Simard, B.: Effects of doped copper on electrochemical performance of the raw carbon nanotubes anode. Mater. Lett. 57(21), 3160–3166 (2003)CrossRef
26.
go back to reference Chen, Y., Li, X., Park, K., Song, J., Hong, J., Zhou, L., Yiu-Wing, M., Haitao, H., Goodenough, J.B.: Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for li-ion batteries. J. Am. Chem. Soc. 135(44), 16280–16283 (2013)CrossRefPubMed Chen, Y., Li, X., Park, K., Song, J., Hong, J., Zhou, L., Yiu-Wing, M., Haitao, H., Goodenough, J.B.: Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for li-ion batteries. J. Am. Chem. Soc. 135(44), 16280–16283 (2013)CrossRefPubMed
27.
go back to reference Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.-M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496–499 (2000)CrossRefPubMed Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.-M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496–499 (2000)CrossRefPubMed
28.
go back to reference Li, J., Tang, S., Lu, L., Zeng, H.C.: Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc. 129(30), 9401–9409 (2007)CrossRefPubMed Li, J., Tang, S., Lu, L., Zeng, H.C.: Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc. 129(30), 9401–9409 (2007)CrossRefPubMed
29.
go back to reference Sun, X., Zhang, L.: Outstanding Li-storage performance of LiFePO4 @MWCNTs cathode material with 3D network structure for lithium-ion batteries. J. Phys. Chem. Solids 116, 216–221 (2018)CrossRef Sun, X., Zhang, L.: Outstanding Li-storage performance of LiFePO4 @MWCNTs cathode material with 3D network structure for lithium-ion batteries. J. Phys. Chem. Solids 116, 216–221 (2018)CrossRef
30.
go back to reference Xia, H., Ragavendran, K.R., Xie, J., Lu, L.: Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries. J. Power Sources 212, 28–34 (2012)CrossRef Xia, H., Ragavendran, K.R., Xie, J., Lu, L.: Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries. J. Power Sources 212, 28–34 (2012)CrossRef
31.
go back to reference Wei, W., Guo, L., Qiu, X., Qu, P., Xu, M., Guo, L.: Porous micro-spherical LiFePO4/CNT nanocomposite for high-performance Li-ion battery cathode material. RSC Adv. 5(47), 37830–37836 (2015)CrossRef Wei, W., Guo, L., Qiu, X., Qu, P., Xu, M., Guo, L.: Porous micro-spherical LiFePO4/CNT nanocomposite for high-performance Li-ion battery cathode material. RSC Adv. 5(47), 37830–37836 (2015)CrossRef
32.
go back to reference Yabuuchi, N., Komaba, S.: Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries. Sci. Technol. Adv. Mater. 15(4), 043501 (2014)CrossRefPubMedPubMedCentral Yabuuchi, N., Komaba, S.: Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries. Sci. Technol. Adv. Mater. 15(4), 043501 (2014)CrossRefPubMedPubMedCentral
33.
go back to reference Hwang, J.-Y., Myung, S.-T., Sun, Y.-K.: Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017)CrossRefPubMed Hwang, J.-Y., Myung, S.-T., Sun, Y.-K.: Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017)CrossRefPubMed
34.
go back to reference Yin, X., Samrat, S., Shanshan, S., Qiu, A.H., Hongbin, Z., Liuming, Y., Yufeng, Z., Jiujun, Z.: Recent progress in advanced organic electrode materials for sodium‐ion batteries: synthesis, mechanisms, challenges and perspectives. Adv. Functional Mater., 1908445 (2020) Yin, X., Samrat, S., Shanshan, S., Qiu, A.H., Hongbin, Z., Liuming, Y., Yufeng, Z., Jiujun, Z.: Recent progress in advanced organic electrode materials for sodium‐ion batteries: synthesis, mechanisms, challenges and perspectives. Adv. Functional Mater., 1908445 (2020)
35.
go back to reference Masquelier, C., Croguennec, L.: Polyanionic (Phosphates, silicates, Sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113(8), 6552–6591 (2013)CrossRefPubMed Masquelier, C., Croguennec, L.: Polyanionic (Phosphates, silicates, Sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113(8), 6552–6591 (2013)CrossRefPubMed
36.
go back to reference Luo, X.-F., Yang, C.-H., Peng, Y.-Y., Pu, N.-W., Ger, M.-D., Hsieh, C.-T., Chang, J.-K.: Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries. J. Mater. Chem. A 3(19), 10320–10326 (2015)CrossRef Luo, X.-F., Yang, C.-H., Peng, Y.-Y., Pu, N.-W., Ger, M.-D., Hsieh, C.-T., Chang, J.-K.: Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries. J. Mater. Chem. A 3(19), 10320–10326 (2015)CrossRef
37.
go back to reference Longoni, G., Wang, J.E., Jung, Y.H., Kim, D.K., Mari, C.M., Ruffo, R.: The Na2 FeP2O7 -carbon nanotubes composite as high rate cathode material for sodium ion batteries. J. Power Sources 302, 61–69 (2016)CrossRef Longoni, G., Wang, J.E., Jung, Y.H., Kim, D.K., Mari, C.M., Ruffo, R.: The Na2 FeP2O7 -carbon nanotubes composite as high rate cathode material for sodium ion batteries. J. Power Sources 302, 61–69 (2016)CrossRef
38.
go back to reference Liu, Y., Xu, Y., Han, X., Pellegrinelli, C., Zhu, Y., Zhu, H., … Hu, L.: Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes. Nano Lett. 12(11), 5664–5668 (2012) Liu, Y., Xu, Y., Han, X., Pellegrinelli, C., Zhu, Y., Zhu, H., … Hu, L.: Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes. Nano Lett. 12(11), 5664–5668 (2012)
39.
go back to reference Xu, S., Zhang, S., Zhang, J., Tan, T., Liu, Y.: A maize-like FePO4@MCNT nanowire composite for sodium-ion batteries via a microemulsion technique. J. Mater. Chem. A 2(20), 7221–7228 (2014)CrossRef Xu, S., Zhang, S., Zhang, J., Tan, T., Liu, Y.: A maize-like FePO4@MCNT nanowire composite for sodium-ion batteries via a microemulsion technique. J. Mater. Chem. A 2(20), 7221–7228 (2014)CrossRef
40.
go back to reference Zhou, Gangyong, Miao, Y.E., Wei, Z., Mo, L.L., Lai, F., Wu, Y., Ma, J., Liu, T.: Bioinspired micro/nanofluidic ion transport channels for organic cathodes in high-rate and ultrastable lithium/sodium-ion batteries. Adv. Functional Mater., 1804629 (2018) Zhou, Gangyong, Miao, Y.E., Wei, Z., Mo, L.L., Lai, F., Wu, Y., Ma, J., Liu, T.: Bioinspired micro/nanofluidic ion transport channels for organic cathodes in high-rate and ultrastable lithium/sodium-ion batteries. Adv. Functional Mater., 1804629 (2018)
41.
42.
go back to reference Jian, Z., Liu, P., Li, F., Chen, M., Zhou, H.: Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. J. Mater. Chem. A 2(34), 13805 (2014)CrossRef Jian, Z., Liu, P., Li, F., Chen, M., Zhou, H.: Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. J. Mater. Chem. A 2(34), 13805 (2014)CrossRef
43.
go back to reference Tao, F., Liu, Y., Ren, X., Jiang, A., Wei, H., Zhai, X., Wang, F., Stock, H.R., Wen, S., Ren, F.: Carbon nanotube-based nanomaterials for high-performance sodium-ion batteries: recent advances and perspectives. J. Alloy. Compd. 873, 159742 (2021)CrossRef Tao, F., Liu, Y., Ren, X., Jiang, A., Wei, H., Zhai, X., Wang, F., Stock, H.R., Wen, S., Ren, F.: Carbon nanotube-based nanomaterials for high-performance sodium-ion batteries: recent advances and perspectives. J. Alloy. Compd. 873, 159742 (2021)CrossRef
44.
go back to reference Chen, Yuanyuan, Hu, X., Evanko, B., Sun, X., Li, X., Hou, T., Cai, S., Zheng, C., Hu, W., Stucky, G.D.: High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries. Nano Energy 46, 117–127 (2018) Chen, Yuanyuan, Hu, X., Evanko, B., Sun, X., Li, X., Hou, T., Cai, S., Zheng, C., Hu, W., Stucky, G.D.: High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries. Nano Energy 46, 117–127 (2018)
45.
go back to reference Wu, X., Chen, Y., Xing, Z., Lam, C.W.K., Pang, S., Zhang, W., Ju, Z.: Advanced carbon‐based anodes for potassium‐ion batteries. Adv. Energy Mater., 1900343 (2019) Wu, X., Chen, Y., Xing, Z., Lam, C.W.K., Pang, S., Zhang, W., Ju, Z.: Advanced carbon‐based anodes for potassium‐ion batteries. Adv. Energy Mater., 1900343 (2019)
46.
go back to reference Yuan, X., Zhu, B., Feng, J., Wang, C., Cai, X., Qin, R.: Biomass bone-derived, N/P-doped hierarchical hard carbon for high-energy potassium-ion batteries. Mater. Res. Bull. 139, 111282 (2021)CrossRef Yuan, X., Zhu, B., Feng, J., Wang, C., Cai, X., Qin, R.: Biomass bone-derived, N/P-doped hierarchical hard carbon for high-energy potassium-ion batteries. Mater. Res. Bull. 139, 111282 (2021)CrossRef
47.
go back to reference Wu, Kuan, Cao, X., Li, M., Lei, B., Zhan, J., Wu, M.: Bottom-Up synthesis of MoS2/CNTs hollow polyhedron with 1T/2H hybrid phase for superior potassium-ion storage. Small, 2004178 (2020) Wu, Kuan, Cao, X., Li, M., Lei, B., Zhan, J., Wu, M.: Bottom-Up synthesis of MoS2/CNTs hollow polyhedron with 1T/2H hybrid phase for superior potassium-ion storage. Small, 2004178 (2020)
48.
go back to reference Selvakumaran, D., Pan, A., Liang, S., Cao, G.: A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A 7, 18209–18236 (2019)CrossRef Selvakumaran, D., Pan, A., Liang, S., Cao, G.: A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A 7, 18209–18236 (2019)CrossRef
49.
go back to reference Zhang, Xuefeng, Jiao, S., Tu, J., Song, W.L., Xiao, X., Li, S., Wang, M. et al.: Rechargeable ultrahigh-capacity tellurium-aluminum batteries. Energy Environ. Sci. 12, 1918–1927 (2019) Zhang, Xuefeng, Jiao, S., Tu, J., Song, W.L., Xiao, X., Li, S., Wang, M. et al.: Rechargeable ultrahigh-capacity tellurium-aluminum batteries. Energy Environ. Sci. 12, 1918–1927 (2019)
50.
go back to reference Elia, G.A., Kravchyk, K.V., Kovalenko, M.V., Chacón, J., Holland, A., Wills, R.G.A.: An overview and prospective on Al and Al-ion battery technologies. J. Power Sources 481, 228870 (2021)CrossRef Elia, G.A., Kravchyk, K.V., Kovalenko, M.V., Chacón, J., Holland, A., Wills, R.G.A.: An overview and prospective on Al and Al-ion battery technologies. J. Power Sources 481, 228870 (2021)CrossRef
Metadata
Title
Carbon Nanotubes for Metal-Ion Batteries
Authors
Yathavan Subramanian
Anitha Dhanasekaran
Lukman Ahmed Omeiza
Abul K. Azad
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9931-6_6