Skip to main content
Top

2024 | OriginalPaper | Chapter

Carbon Nanotubes for Metal-Sulfur Batteries

Authors : Qingxue Lai, Jing Zheng

Published in: NanoCarbon: A Wonder Material for Energy Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Metal-sulfur (M-S) batteries with high theoretical energy densities and acceptable production costs have placed great expectations on the large-scale energy storage applications in the post-Li-ion battery (LIBs) era. However, the serious shuttle effect of polysulfides and high-reactivity metal anodes with unstable stripping/plating electrochemistry significantly limited their performance and applications. This chapter briefly introduces the working principle and challenges of M-S batteries as well as the structures and manipulation of carbon nanotubes (CNTs). Emphatically, the important progress and mechanism of CNTs-based materials in addressing the above-mentioned issues via acting as efficient hosts of S cathode and metal anode, as well as functionalized interlayers and artificial solid electrolyte interphase (SEI) film, are summarized. Finally, a few key points that need to be particularly concerned are proposed. These breakthroughs are believed to promote the understanding of the fundamental electrochemistry in M-S batteries as well as accelerate their rational design, development, and commercialization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gao, Y., Guo, Q., Zhang, Q., Cui, Y., Zheng, Z.: Fibrous materials for flexible Li–S battery. Adv. Energy Mater. 11, 2002580 (2021)CrossRef Gao, Y., Guo, Q., Zhang, Q., Cui, Y., Zheng, Z.: Fibrous materials for flexible Li–S battery. Adv. Energy Mater. 11, 2002580 (2021)CrossRef
2.
go back to reference Lim, W., Kim, S., Jo, C., Lee, J.: A Comprehensive review of materials with catalytic effects in Li–S batteries: enhanced redox kinetics. Angew. Chem. Int. Ed. 58, 18746–18757 (2019)CrossRef Lim, W., Kim, S., Jo, C., Lee, J.: A Comprehensive review of materials with catalytic effects in Li–S batteries: enhanced redox kinetics. Angew. Chem. Int. Ed. 58, 18746–18757 (2019)CrossRef
3.
go back to reference Ye, H., Li, Y.: Room-temperature metal–sulfur batteries: What can we learn from lithium–sulfur? InfoMat. 4, e12291 (2022)CrossRef Ye, H., Li, Y.: Room-temperature metal–sulfur batteries: What can we learn from lithium–sulfur? InfoMat. 4, e12291 (2022)CrossRef
5.
go back to reference De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013) De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)
6.
go back to reference Glukhova, O.E., Shmygin, D.S.: The electrical conductivity of CNT/graphene composites: a new method for accelerating transmission function calculations. Beilstein J. Nanotech. 9, 1254–1262 (2018)CrossRef Glukhova, O.E., Shmygin, D.S.: The electrical conductivity of CNT/graphene composites: a new method for accelerating transmission function calculations. Beilstein J. Nanotech. 9, 1254–1262 (2018)CrossRef
7.
go back to reference Zhu, Y., Li, L., Zhang, C., Casillas, G., Sun, Z., Yan, Z., Ruan, G., Peng, Z., Raji, A.-R.O., Kittrell, C., Hauge, R.H., Tour, J.M.: A seamless three-dimensional carbon nanotube graphene hybrid material. Nat. Commun. 3, 1225 (2012)CrossRefPubMed Zhu, Y., Li, L., Zhang, C., Casillas, G., Sun, Z., Yan, Z., Ruan, G., Peng, Z., Raji, A.-R.O., Kittrell, C., Hauge, R.H., Tour, J.M.: A seamless three-dimensional carbon nanotube graphene hybrid material. Nat. Commun. 3, 1225 (2012)CrossRefPubMed
8.
go back to reference Thostenson, E.T., Ren, Z., Chou, T.-W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)CrossRef Thostenson, E.T., Ren, Z., Chou, T.-W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)CrossRef
9.
go back to reference Wei, J., Lv, R., Guo, N., Wang, H., Bai, X., Mathkar, A., Kang, F., Zhu, H., Wang, K., Wu, D., Vajtai, R., Ajayan, P.M.: Preparation of highly oxidized nitrogen-doped carbon nanotubes. Nanotechnology 23, 155601 (2012)CrossRefPubMed Wei, J., Lv, R., Guo, N., Wang, H., Bai, X., Mathkar, A., Kang, F., Zhu, H., Wang, K., Wu, D., Vajtai, R., Ajayan, P.M.: Preparation of highly oxidized nitrogen-doped carbon nanotubes. Nanotechnology 23, 155601 (2012)CrossRefPubMed
10.
go back to reference Correa-Duarte, M.A., Kosiorek, A., Kandulski, W., Giersig, M., Liz-Marzán, L.M.: Layer-by-layer assembly of multiwall carbon nanotubes on spherical colloids. Chem. Mater. 17, 3268–3272 (2005)CrossRef Correa-Duarte, M.A., Kosiorek, A., Kandulski, W., Giersig, M., Liz-Marzán, L.M.: Layer-by-layer assembly of multiwall carbon nanotubes on spherical colloids. Chem. Mater. 17, 3268–3272 (2005)CrossRef
11.
go back to reference Foroughi, J., Spinks, G.M., Antiohos, D., Mirabedini, A., Gambhir, S., Wallace, G.G., Ghorbani, S.R., Peleckis, G., Kozlov, M.E., Lima, M.D., Baughman, R.H.: Highly conductive carbon nanotube-graphene hybrid yarn. Adv. Funct. Mater. 24, 5859–5865 (2014)CrossRef Foroughi, J., Spinks, G.M., Antiohos, D., Mirabedini, A., Gambhir, S., Wallace, G.G., Ghorbani, S.R., Peleckis, G., Kozlov, M.E., Lima, M.D., Baughman, R.H.: Highly conductive carbon nanotube-graphene hybrid yarn. Adv. Funct. Mater. 24, 5859–5865 (2014)CrossRef
12.
go back to reference Gong, K., Du, F., Xia, Z., Durstock, M., Dai, L.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009) Gong, K., Du, F., Xia, Z., Durstock, M., Dai, L.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009)
13.
go back to reference Wang, W., Yang, K., Gaillard, J., Bandaru, P.R., Rao, A.M.: Rational synthesis of helically coiled carbon nanowires and nanotubes through the use of tin and indium catalysts. Adv. Mater. 20, 179–182 (2008)CrossRef Wang, W., Yang, K., Gaillard, J., Bandaru, P.R., Rao, A.M.: Rational synthesis of helically coiled carbon nanowires and nanotubes through the use of tin and indium catalysts. Adv. Mater. 20, 179–182 (2008)CrossRef
14.
go back to reference Tian, G.-L., Zhao, M.-Q., Yu, D., Kong, X.-Y., Huang, J.-Q., Zhang, Q., Wei, F.: Nitrogen-doped graphene/carbon nanotube hybrids. In Situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction, Small 10, 2251–2259 (2014)PubMed Tian, G.-L., Zhao, M.-Q., Yu, D., Kong, X.-Y., Huang, J.-Q., Zhang, Q., Wei, F.: Nitrogen-doped graphene/carbon nanotube hybrids. In Situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction, Small 10, 2251–2259 (2014)PubMed
15.
go back to reference Du, F., Yu, D., Dai, L., Ganguli, S., Varshney, V., Roy, A.K.: Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance. Chem. Mater. 23, 4810–4816 (2011)CrossRef Du, F., Yu, D., Dai, L., Ganguli, S., Varshney, V., Roy, A.K.: Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance. Chem. Mater. 23, 4810–4816 (2011)CrossRef
16.
go back to reference Pan, X., Bao, X.: The effects of confinement inside carbon nanotubes on catalysis. Acc. Chem. Res. 44, 553–562 (2011)CrossRefPubMed Pan, X., Bao, X.: The effects of confinement inside carbon nanotubes on catalysis. Acc. Chem. Res. 44, 553–562 (2011)CrossRefPubMed
17.
go back to reference Bandaru, P.R., Daraio, C., Yang, K., Rao, A.M.: A plausible mechanism for the evolution of helical forms in nanostructure growth. J. Appl. Phys. 101, 094307 (2007) Bandaru, P.R., Daraio, C., Yang, K., Rao, A.M.: A plausible mechanism for the evolution of helical forms in nanostructure growth. J. Appl. Phys. 101, 094307 (2007)
18.
go back to reference Zhu, X., Li, Y., Li, R., Tu, K., Li, J., Xie, Z., Lei, J., Liu, D., Qu, D.: Self-assembled N-doped carbon with a tube-in-tube nanostructure for lithium-sulfur batteries. J. Colloid Interface Sci. 559, 244–253 (2020)CrossRefPubMed Zhu, X., Li, Y., Li, R., Tu, K., Li, J., Xie, Z., Lei, J., Liu, D., Qu, D.: Self-assembled N-doped carbon with a tube-in-tube nanostructure for lithium-sulfur batteries. J. Colloid Interface Sci. 559, 244–253 (2020)CrossRefPubMed
19.
go back to reference Xin, S., Yin, Y.-X., Guo, Y.-G., Wan, L.-J.: A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 26, 1261–1265 (2014)CrossRefPubMed Xin, S., Yin, Y.-X., Guo, Y.-G., Wan, L.-J.: A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 26, 1261–1265 (2014)CrossRefPubMed
20.
go back to reference Gueon, D., Hwang, J.T., Yang, S.B., Cho, E., Sohn, K., Yang, D.-K., Moon, J.H.: Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes. ACS Nano 12, 226–233 (2018)CrossRefPubMed Gueon, D., Hwang, J.T., Yang, S.B., Cho, E., Sohn, K., Yang, D.-K., Moon, J.H.: Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes. ACS Nano 12, 226–233 (2018)CrossRefPubMed
21.
go back to reference He, J., Chen, Y., Lv, W., Wen, K., Xu, C., Zhang, W., Qin, W., He, W.: Three-dimensional CNT/graphene–Li2S aerogel as freestanding cathode for high-performance Li–S batteries. ACS Energy Lett. 1, 820–826 (2016)CrossRef He, J., Chen, Y., Lv, W., Wen, K., Xu, C., Zhang, W., Qin, W., He, W.: Three-dimensional CNT/graphene–Li2S aerogel as freestanding cathode for high-performance Li–S batteries. ACS Energy Lett. 1, 820–826 (2016)CrossRef
22.
go back to reference Fujimori, T., Morelos-Gómez, A., Zhu, Z., Muramatsu, H., Futamura, R., Urita, K., Terrones, M., Hayashi, T., Endo, M., Young Hong, S., Chul Choi, Y., Tománek, D., Kaneko, K.: Conducting linear chains of sulphur inside carbon nanotubes. Nat. Commun. 4, 2162 (2013) Fujimori, T., Morelos-Gómez, A., Zhu, Z., Muramatsu, H., Futamura, R., Urita, K., Terrones, M., Hayashi, T., Endo, M., Young Hong, S., Chul Choi, Y., Tománek, D., Kaneko, K.: Conducting linear chains of sulphur inside carbon nanotubes. Nat. Commun. 4, 2162 (2013)
23.
go back to reference Fu, C., Oviedo, M.B., Zhu, Y., von Wald Cresce, A., Xu, K., Li, G., Itkis, M.E., Haddon, R.C., Chi, M., Han, Y., Wong, B.M., Guo, J.: Confined lithium–sulfur reactions in narrow-diameter carbon nanotubes reveal enhanced electrochemical reactivity. ACS Nano. 12, 9775–9784 (2018) Fu, C., Oviedo, M.B., Zhu, Y., von Wald Cresce, A., Xu, K., Li, G., Itkis, M.E., Haddon, R.C., Chi, M., Han, Y., Wong, B.M., Guo, J.: Confined lithium–sulfur reactions in narrow-diameter carbon nanotubes reveal enhanced electrochemical reactivity. ACS Nano. 12, 9775–9784 (2018)
24.
go back to reference Yang, C.-P., Yin, Y.-X., Guo, Y.-G., Wan, L.-J.: Electrochemical (De)Lithiation of 1D sulfur chains in Li–S batteries: a model system study. J. Am. Chem. Soc. 137, 2215–2218 (2015)CrossRefPubMed Yang, C.-P., Yin, Y.-X., Guo, Y.-G., Wan, L.-J.: Electrochemical (De)Lithiation of 1D sulfur chains in Li–S batteries: a model system study. J. Am. Chem. Soc. 137, 2215–2218 (2015)CrossRefPubMed
25.
go back to reference Bhardwaj, R.K., Gomes, R., Bhattacharyya, A.J.: Probing the polysulfide confinement in two different sulfur hosts for a Mg|S battery employing operando Raman and Ex-Situ UV–visible spectroscopy. J. Phys. Chem. Lett. 13, 1159–1164 (2022)CrossRefPubMed Bhardwaj, R.K., Gomes, R., Bhattacharyya, A.J.: Probing the polysulfide confinement in two different sulfur hosts for a Mg|S battery employing operando Raman and Ex-Situ UV–visible spectroscopy. J. Phys. Chem. Lett. 13, 1159–1164 (2022)CrossRefPubMed
26.
go back to reference Ma, L., Zhuang, H.L., Wei, S., Hendrickson, K.E., Kim, M.S., Cohn, G., Hennig, R.G., Archer, L.A.: Enhanced Li–S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano 10, 1050–1059 (2016)CrossRefPubMed Ma, L., Zhuang, H.L., Wei, S., Hendrickson, K.E., Kim, M.S., Cohn, G., Hennig, R.G., Archer, L.A.: Enhanced Li–S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano 10, 1050–1059 (2016)CrossRefPubMed
27.
go back to reference Gomes, R., Bhattacharyya, A.J.: Carbon nanotube-templated covalent organic framework nanosheets as an efficient sulfur host for room-temperature metal-sulfur batteries. ACS Sustain. Chem. Eng. 8, 5946–5953 (2020)CrossRef Gomes, R., Bhattacharyya, A.J.: Carbon nanotube-templated covalent organic framework nanosheets as an efficient sulfur host for room-temperature metal-sulfur batteries. ACS Sustain. Chem. Eng. 8, 5946–5953 (2020)CrossRef
28.
go back to reference Yan, Z., Xiao, J., Lai, W., Wang, L., Gebert, F., Wang, Y., Gu, Q., Liu, H., Chou, S.-L., Liu, H., Dou, S.-X.: Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries. Nat. Commun. 10, 4793 (2019)CrossRefPubMedPubMedCentral Yan, Z., Xiao, J., Lai, W., Wang, L., Gebert, F., Wang, Y., Gu, Q., Liu, H., Chou, S.-L., Liu, H., Dou, S.-X.: Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries. Nat. Commun. 10, 4793 (2019)CrossRefPubMedPubMedCentral
29.
go back to reference Wang, Z., Yan, Y., Zhang, Y., Chen, Y., Peng, X., Wang, X., Zhao, W., Qin, C., Liu, Q., Liu, X., Chen, Z.: Single‐atomic Co‐B2N2 sites anchored on carbon nanotube arrays promote lithium polysulfide conversion in lithium–sulfur batteries. Carbon Energy. 5, e306 (2023) Wang, Z., Yan, Y., Zhang, Y., Chen, Y., Peng, X., Wang, X., Zhao, W., Qin, C., Liu, Q., Liu, X., Chen, Z.: Single‐atomic Co‐B2N2 sites anchored on carbon nanotube arrays promote lithium polysulfide conversion in lithium–sulfur batteries. Carbon Energy. 5, e306 (2023)
30.
go back to reference Shao, Q., Xu, L., Guo, D., Su, Y., Chen, J.: Atomic level design of single iron atom embedded mesoporous hollow carbon spheres as multi-effect nanoreactors for advanced lithium–sulfur batteries. J. Mater. Chem. A. 8, 23772–23783 (2020)CrossRef Shao, Q., Xu, L., Guo, D., Su, Y., Chen, J.: Atomic level design of single iron atom embedded mesoporous hollow carbon spheres as multi-effect nanoreactors for advanced lithium–sulfur batteries. J. Mater. Chem. A. 8, 23772–23783 (2020)CrossRef
31.
go back to reference Li, Y., Chen, G., Mou, J., Liu, Y., Xue, S., Tan, T., Zhong, W., Deng, Q., Li, T., Hu, J., Yang, C., Huang, K., Liu, M.: Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium–sulfur batteries. Energy Storage Mater. 28, 196–204 (2020)CrossRef Li, Y., Chen, G., Mou, J., Liu, Y., Xue, S., Tan, T., Zhong, W., Deng, Q., Li, T., Hu, J., Yang, C., Huang, K., Liu, M.: Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium–sulfur batteries. Energy Storage Mater. 28, 196–204 (2020)CrossRef
32.
go back to reference Fan, L., Li, M., Li, X., Xiao, W., Chen, Z., Lu, J.: Interlayer material selection for lithium-sulfur batteries. Joule. 3, 361–386 (2019)CrossRef Fan, L., Li, M., Li, X., Xiao, W., Chen, Z., Lu, J.: Interlayer material selection for lithium-sulfur batteries. Joule. 3, 361–386 (2019)CrossRef
33.
go back to reference Chang, C.-H., Chung, S.-H., Manthiram, A.: Effective stabilization of a high-loading sulfur cathode and a lithium-metal anode in Li–S batteries utilizing SWCNT-modulated separators. Small 12, 174–179 (2016)CrossRefPubMed Chang, C.-H., Chung, S.-H., Manthiram, A.: Effective stabilization of a high-loading sulfur cathode and a lithium-metal anode in Li–S batteries utilizing SWCNT-modulated separators. Small 12, 174–179 (2016)CrossRefPubMed
34.
go back to reference Yu, X., Manthiram, A.: Electrochemical energy storage with a reversible nonaqueous room-temperature aluminum-sulfur chemistry. Adv. Energy Mater. 7, 1700561 (2017)CrossRef Yu, X., Manthiram, A.: Electrochemical energy storage with a reversible nonaqueous room-temperature aluminum-sulfur chemistry. Adv. Energy Mater. 7, 1700561 (2017)CrossRef
35.
go back to reference Yang, B., Guo, D., Lin, P., Zhou, L., Li, J., Fang, G., Wang, J., Jin, H., Chen, X., Wang, S.: Hydroxylated multi-walled carbon nanotubes covalently modified with tris(hydroxypropyl) phosphine as a functional interlayer for advanced lithium-sulfur batteries. Angew. Chem. Int. Ed. 61, e202204327 (2022)CrossRef Yang, B., Guo, D., Lin, P., Zhou, L., Li, J., Fang, G., Wang, J., Jin, H., Chen, X., Wang, S.: Hydroxylated multi-walled carbon nanotubes covalently modified with tris(hydroxypropyl) phosphine as a functional interlayer for advanced lithium-sulfur batteries. Angew. Chem. Int. Ed. 61, e202204327 (2022)CrossRef
36.
go back to reference Huang, J.-Q., Xu, Z.-L., Abouali, S., Akbari Garakani, M., Kim, J.-K.: Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. Carbon 99, 624–632 (2016) Huang, J.-Q., Xu, Z.-L., Abouali, S., Akbari Garakani, M., Kim, J.-K.: Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. Carbon 99, 624–632 (2016)
37.
go back to reference Xu, J., Tang, W., Yang, C., Manke, I., Chen, N., Lai, F., Xu, T., An, S., Liu, H., Zhang, Z., Cao, Y., Wang, N., Zhao, S., Niu, D., Chen, R.: A Highly conductive COF@CNT electrocatalyst boosting polysulfide conversion for Li–S chemistry. ACS Energy Lett. 6, 3053–3062 (2021)CrossRef Xu, J., Tang, W., Yang, C., Manke, I., Chen, N., Lai, F., Xu, T., An, S., Liu, H., Zhang, Z., Cao, Y., Wang, N., Zhao, S., Niu, D., Chen, R.: A Highly conductive COF@CNT electrocatalyst boosting polysulfide conversion for Li–S chemistry. ACS Energy Lett. 6, 3053–3062 (2021)CrossRef
38.
go back to reference Zhang, F., Tang, Z., Zheng, L., Zhang, T., Xu, M., Xiao, H., Zhuang, H., Han, P., Gao, Q.: Edge-distributed iron single-atom moiety with efficient “trapping-conversion” for polysulfides driving high-performance of Li–S battery. Appl. Catal. B 334, 122876 (2023)CrossRef Zhang, F., Tang, Z., Zheng, L., Zhang, T., Xu, M., Xiao, H., Zhuang, H., Han, P., Gao, Q.: Edge-distributed iron single-atom moiety with efficient “trapping-conversion” for polysulfides driving high-performance of Li–S battery. Appl. Catal. B 334, 122876 (2023)CrossRef
39.
go back to reference Wang, N., Zhang, X., Ju, Z., Yu, X., Wang, Y., Du, Y., Bai, Z., Dou, S., Yu, G.: Thickness-independent scalable high-performance Li–S batteries with high areal sulfur loading via electron-enriched carbon framework. Nat. Commun. 12, 4519 (2021)CrossRefPubMedPubMedCentral Wang, N., Zhang, X., Ju, Z., Yu, X., Wang, Y., Du, Y., Bai, Z., Dou, S., Yu, G.: Thickness-independent scalable high-performance Li–S batteries with high areal sulfur loading via electron-enriched carbon framework. Nat. Commun. 12, 4519 (2021)CrossRefPubMedPubMedCentral
40.
go back to reference Qin, L., Lei, Y., Wang, H., Dong, J., Wu, Y., Zhai, D., Kang, F., Tao, Y., Yang, Q.: Capillary encapsulation of metallic potassium in aligned carbon nanotubes for use as stable potassium metal anodes. Adv. Energy Mater. 9, 1901427 (2019)CrossRef Qin, L., Lei, Y., Wang, H., Dong, J., Wu, Y., Zhai, D., Kang, F., Tao, Y., Yang, Q.: Capillary encapsulation of metallic potassium in aligned carbon nanotubes for use as stable potassium metal anodes. Adv. Energy Mater. 9, 1901427 (2019)CrossRef
41.
go back to reference Liu, F., Xu, R., Hu, Z., Ye, S., Zeng, S., Yao, Y., Li, S., Yu, Y.: Regulating lithium nucleation via CNTs modifying carbon cloth film for stable Li metal anode. Small 15, 1803734 (2019)CrossRef Liu, F., Xu, R., Hu, Z., Ye, S., Zeng, S., Yao, Y., Li, S., Yu, Y.: Regulating lithium nucleation via CNTs modifying carbon cloth film for stable Li metal anode. Small 15, 1803734 (2019)CrossRef
42.
go back to reference Tang, X., Zhou, D., Li, P., Guo, X., Sun, B., Liu, H., Yan, K., Gogotsi, Y., Wang, G.: MXene-based dendrite-free potassium metal batteries. Adv. Mater. 32, 1906739 (2020)CrossRef Tang, X., Zhou, D., Li, P., Guo, X., Sun, B., Liu, H., Yan, K., Gogotsi, Y., Wang, G.: MXene-based dendrite-free potassium metal batteries. Adv. Mater. 32, 1906739 (2020)CrossRef
43.
go back to reference Liu, H., Zhang, J., Liu, Y., Wei, Y., Ren, S., Pan, L., Su, Y., Xiao, J., Fan, H., Lin, Y., Su, Y., Zhang, Y.: A flexible artificial solid-electrolyte interlayer supported by compactness-tailored carbon nanotube network for dendrite-free lithium metal anode. J. Energy Chem. 69, 421–427 (2022)CrossRef Liu, H., Zhang, J., Liu, Y., Wei, Y., Ren, S., Pan, L., Su, Y., Xiao, J., Fan, H., Lin, Y., Su, Y., Zhang, Y.: A flexible artificial solid-electrolyte interlayer supported by compactness-tailored carbon nanotube network for dendrite-free lithium metal anode. J. Energy Chem. 69, 421–427 (2022)CrossRef
44.
go back to reference Wang, H., Hu, J., Dong, J., Lau, K.C., Qin, L., Lei, Y., Li, B., Zhai, D., Wu, Y., Kang, F.: Artificial solid-electrolyte interphase enabled high-capacity and stable cycling potassium metal batteries. Adv. Energy Mater. 9, 1902697 (2019)CrossRef Wang, H., Hu, J., Dong, J., Lau, K.C., Qin, L., Lei, Y., Li, B., Zhai, D., Wu, Y., Kang, F.: Artificial solid-electrolyte interphase enabled high-capacity and stable cycling potassium metal batteries. Adv. Energy Mater. 9, 1902697 (2019)CrossRef
Metadata
Title
Carbon Nanotubes for Metal-Sulfur Batteries
Authors
Qingxue Lai
Jing Zheng
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9931-6_8