Skip to main content
Top

2018 | OriginalPaper | Chapter

Carbon Nanotubes Synthesis

Authors : Rasel Das, Sayonthoni Das Tuhi

Published in: Carbon Nanotubes for Clean Water

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Numerous interesting and useful physicochemical properties of carbon nanotubes (CNTs) have made them one of the most fascinating nanomaterials for decades. Although it was a fortuitous discovery at the beginning, many methods have been documented for its synthesis with arguments, criticisms, and appeals. Increasing applications of CNTs from tennis racket to space elevator has pressed its demands for industrial production and invention of novel methods for large-scale synthesis with desirable features. This chapter comprehensively describes major CNT synthetic schemes with highlighted features and growth mechanisms with reasonable illustrations in diagrams and tables, which made them understandable even to a non-professional reader. It also postulates latest developments in the field to understand the roles of carbon feedstock, catalysts, and temperature along with other minor parameters to tune the CNT synthesis procedures for yielding industrial grade CNTs with desired properties. To complement that, current kinetics and reaction engineering aspects are also discussed. This chapter would serve as a reference guide in the field to demonstrate novel synthetic methods and expand denovo CNT-based applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Das, R., Vecitis, C.D., Schulze, A., Cao, B., Ismail, A.F., Lu, X., Chen, J., Ramakrishna, S.: Recent advances in nanomaterials for water protection and monitoring. Chem. Soc. Rev. (2017) Das, R., Vecitis, C.D., Schulze, A., Cao, B., Ismail, A.F., Lu, X., Chen, J., Ramakrishna, S.: Recent advances in nanomaterials for water protection and monitoring. Chem. Soc. Rev. (2017)
2.
go back to reference Das, R.: Nanohybrid Catalyst based on Carbon Nanotube: A Step-By-Step Guideline from Preparation to Demonstration. Springer (2017) Das, R.: Nanohybrid Catalyst based on Carbon Nanotube: A Step-By-Step Guideline from Preparation to Demonstration. Springer (2017)
3.
go back to reference Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef
4.
go back to reference Golnabi, H.: Carbon nanotube research developments in terms of published papers and patents, synthesis and production. Scientia Iranica 19, 2012–2022 (2012)CrossRef Golnabi, H.: Carbon nanotube research developments in terms of published papers and patents, synthesis and production. Scientia Iranica 19, 2012–2022 (2012)CrossRef
5.
go back to reference Zhao, Y.-L., Stoddart, J.F.: Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42, 1161–1171 (2009)CrossRef Zhao, Y.-L., Stoddart, J.F.: Noncovalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42, 1161–1171 (2009)CrossRef
6.
go back to reference Amelinckx, S., Lucas, A., Lambin, P.: Electron diffraction and microscopy of nanotubes. Rep. Prog. Phys. 62, 1471 (1999)CrossRef Amelinckx, S., Lucas, A., Lambin, P.: Electron diffraction and microscopy of nanotubes. Rep. Prog. Phys. 62, 1471 (1999)CrossRef
7.
go back to reference Nessim, G.D.: Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2, 1306–1323 (2010)CrossRef Nessim, G.D.: Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2, 1306–1323 (2010)CrossRef
8.
go back to reference Das, R., Shahnavaz, Z., Ali, M.E., Islam, M.M., Hamid, S.B.A.: Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis? Nanoscale Res. Lett. 11, 510 (2016) Das, R., Shahnavaz, Z., Ali, M.E., Islam, M.M., Hamid, S.B.A.: Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis? Nanoscale Res. Lett. 11, 510 (2016)
9.
go back to reference Mohammad, S.N.: Some possible rules governing the syntheses and characteristics of nanotubes, particularly carbon nanotubes. Carbon 71, 34–46 (2014)CrossRef Mohammad, S.N.: Some possible rules governing the syntheses and characteristics of nanotubes, particularly carbon nanotubes. Carbon 71, 34–46 (2014)CrossRef
10.
go back to reference Le Bouar, Y., Thomas, O., Ponchet, A., Forest, S.: An Introduction to the Stability of Nanoparticles, Mechanics of Nano-Objects, pp. 213–240. Les Presses de l’École des Mines de Paris, Paris (2011) Le Bouar, Y., Thomas, O., Ponchet, A., Forest, S.: An Introduction to the Stability of Nanoparticles, Mechanics of Nano-Objects, pp. 213–240. Les Presses de l’École des Mines de Paris, Paris (2011)
11.
go back to reference Mohammad, S.N.: Systematic investigation of the growth mechanisms for conventional, doped and bamboo-shaped nanotubes. Carbon 75, 133–148 (2014)CrossRef Mohammad, S.N.: Systematic investigation of the growth mechanisms for conventional, doped and bamboo-shaped nanotubes. Carbon 75, 133–148 (2014)CrossRef
12.
go back to reference Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993)CrossRef Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993)CrossRef
13.
go back to reference Bethune, D.S., Klang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)CrossRef Bethune, D.S., Klang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)CrossRef
14.
go back to reference Saito, Y., Okuda, M., Koyama, T.: Carbon nanocapsules and single-wall nanotubes formed by arc evaporation. Surf. Rev. Lett. 3, 863–867 (1996)CrossRef Saito, Y., Okuda, M., Koyama, T.: Carbon nanocapsules and single-wall nanotubes formed by arc evaporation. Surf. Rev. Lett. 3, 863–867 (1996)CrossRef
15.
go back to reference Williams, K., Tachibana, M., Allen, J., Grigorian, L., Cheng, S., Fang, S., Sumanasekera, G., Loper, A., Williams, J., Eklund, P.: Single-wall carbon nanotubes from coal. Chem. Phys. Lett. 310, 31–37 (1999)CrossRef Williams, K., Tachibana, M., Allen, J., Grigorian, L., Cheng, S., Fang, S., Sumanasekera, G., Loper, A., Williams, J., Eklund, P.: Single-wall carbon nanotubes from coal. Chem. Phys. Lett. 310, 31–37 (1999)CrossRef
16.
go back to reference Zhao, J., Bao, W., Liu, X.: Synthesis of SWNTs from charcoal by arc-discharging. J. Wuhan Univ. Technol. Mater Sci. Ed. 25, 194–196 (2010)CrossRef Zhao, J., Bao, W., Liu, X.: Synthesis of SWNTs from charcoal by arc-discharging. J. Wuhan Univ. Technol. Mater Sci. Ed. 25, 194–196 (2010)CrossRef
17.
go back to reference Moothi, K., Iyuke, S.E., Meyyappan, M., Falcon, R.: Coal as a carbon source for carbon nanotube synthesis. Carbon 50, 2679–2690 (2012)CrossRef Moothi, K., Iyuke, S.E., Meyyappan, M., Falcon, R.: Coal as a carbon source for carbon nanotube synthesis. Carbon 50, 2679–2690 (2012)CrossRef
18.
go back to reference Xu, K., Li, Y.F., Xu, C.M., Gao, J.S., Liu, H.W., Yang, H.T., Richard, P.: Controllable synthesis of single-, double- and triple-walled carbon nanotubes from asphalt. Chem. Eng. J. 225, 210–215 (2013)CrossRef Xu, K., Li, Y.F., Xu, C.M., Gao, J.S., Liu, H.W., Yang, H.T., Richard, P.: Controllable synthesis of single-, double- and triple-walled carbon nanotubes from asphalt. Chem. Eng. J. 225, 210–215 (2013)CrossRef
19.
go back to reference Xu, K., Li, Y.F., Yang, F., Yang, W., Zhang, L.Q., Xu, C.M., Kaneko, T., Hatakeyama, R.: Controllable synthesis of single- and double-walled carbon nanotubes from petroleum coke and their application to solar cells. Carbon 68, 511–519 (2014)CrossRef Xu, K., Li, Y.F., Yang, F., Yang, W., Zhang, L.Q., Xu, C.M., Kaneko, T., Hatakeyama, R.: Controllable synthesis of single- and double-walled carbon nanotubes from petroleum coke and their application to solar cells. Carbon 68, 511–519 (2014)CrossRef
20.
go back to reference Farhat, S., Lamy de La Chapelle, M., Loiseau, A., Scott, C.D., Lefrant, S., Journet, C., Bernier, P.: Diameter control of single-walled carbon nanotubes using argon–helium mixture gases. J. Chem. Phys. 115, 6752–6759 (2001)CrossRef Farhat, S., Lamy de La Chapelle, M., Loiseau, A., Scott, C.D., Lefrant, S., Journet, C., Bernier, P.: Diameter control of single-walled carbon nanotubes using argon–helium mixture gases. J. Chem. Phys. 115, 6752–6759 (2001)CrossRef
21.
go back to reference Shimotani, K., Anazawa, K., Watanabe, H., Shimizu, M.: New synthesis of multi-walled carbon nanotubes using an arc discharge technique under organic molecular atmospheres. Appl. Phys. Mater. Sci. Process. 73, 451–454 (2001)CrossRef Shimotani, K., Anazawa, K., Watanabe, H., Shimizu, M.: New synthesis of multi-walled carbon nanotubes using an arc discharge technique under organic molecular atmospheres. Appl. Phys. Mater. Sci. Process. 73, 451–454 (2001)CrossRef
22.
go back to reference Kota, M., Padya, B., Ramana, G.V., Jain, P.K., Padmanabham, G.: Role of buffer gas pressure on the synthesis of carbon nanotubes by arc discharge method. AIP Conf. Proc. 1538, 200–204 (2013)CrossRef Kota, M., Padya, B., Ramana, G.V., Jain, P.K., Padmanabham, G.: Role of buffer gas pressure on the synthesis of carbon nanotubes by arc discharge method. AIP Conf. Proc. 1538, 200–204 (2013)CrossRef
23.
go back to reference Kim, H.J., Oh, E., Lee, J., Lee, K.H.: Synthesis of single-walled carbon nanotubes using hemoglobin-based iron catalyst. Carbon 50, 722–726 (2012)CrossRef Kim, H.J., Oh, E., Lee, J., Lee, K.H.: Synthesis of single-walled carbon nanotubes using hemoglobin-based iron catalyst. Carbon 50, 722–726 (2012)CrossRef
24.
go back to reference Maser, W.K., Benito, A.M., Martinez, M.T.: Production of carbon nanotubes: the light approach. Carbon 40, 1685–1695 (2002)CrossRef Maser, W.K., Benito, A.M., Martinez, M.T.: Production of carbon nanotubes: the light approach. Carbon 40, 1685–1695 (2002)CrossRef
25.
go back to reference Guo, T., Nikolaev, P., Rinzler, A.G., Tomanek, D., Colbert, D.T., Smalley, R.E.: Self-assembly of tubular fullerenes. J. Phys. Chem. 99, 10694–10697 (1995)CrossRef Guo, T., Nikolaev, P., Rinzler, A.G., Tomanek, D., Colbert, D.T., Smalley, R.E.: Self-assembly of tubular fullerenes. J. Phys. Chem. 99, 10694–10697 (1995)CrossRef
26.
go back to reference Zhang, Y., Gu, H., Iijima, S.: Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Appl. Phys. Lett. 73, 3827–3829 (1998)CrossRef Zhang, Y., Gu, H., Iijima, S.: Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Appl. Phys. Lett. 73, 3827–3829 (1998)CrossRef
27.
go back to reference Kokai, F., Takahashi, K., Yudasaka, M., Yamada, R., Ichihashi, T., Iijima, S.: Growth dynamics of single-wall carbon nanotubes synthesized by CO2 laser vaporization. J. Phys. Chem. B 103, 4346–4351 (1999)CrossRef Kokai, F., Takahashi, K., Yudasaka, M., Yamada, R., Ichihashi, T., Iijima, S.: Growth dynamics of single-wall carbon nanotubes synthesized by CO2 laser vaporization. J. Phys. Chem. B 103, 4346–4351 (1999)CrossRef
28.
go back to reference Bandow, S., Asaka, S., Saito, Y., Rao, A.M., Grigorian, L., Richter, E., Eklund, P.C.: Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett. 80, 3779–3782 (1998)CrossRef Bandow, S., Asaka, S., Saito, Y., Rao, A.M., Grigorian, L., Richter, E., Eklund, P.C.: Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett. 80, 3779–3782 (1998)CrossRef
29.
go back to reference Braidy, N., El Khakani, M.A., Botton, G.A.: Single-wall carbon nanotubes synthesis by means of UV laser vaporization. Chem. Phys. Lett. 354, 88–92 (2002)CrossRef Braidy, N., El Khakani, M.A., Botton, G.A.: Single-wall carbon nanotubes synthesis by means of UV laser vaporization. Chem. Phys. Lett. 354, 88–92 (2002)CrossRef
30.
go back to reference Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E.: Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996)CrossRef Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E.: Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996)CrossRef
31.
go back to reference Yudasaka, M., Ichihashi, T., Komatsu, T., Iijima, S.: Single-wall carbon nanotubes formed by a single laser-beam pulse. Chem. Phys. Lett. 299, 91–96 (1999)CrossRef Yudasaka, M., Ichihashi, T., Komatsu, T., Iijima, S.: Single-wall carbon nanotubes formed by a single laser-beam pulse. Chem. Phys. Lett. 299, 91–96 (1999)CrossRef
32.
go back to reference Rinzler, A.G., Liu, J., Dai, H., Nikolaev, P., Huffman, C.B., Rodriguez-Macias, F.J., Boul, P.J., Lu, A.H., Heymann, D., Colbert, D.T., Lee, R.S., Fischer, J.E., Rao, A.M., Eklund, P.C., Smalley, R.E.: Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. Mater. 67, 29–37 (1998)CrossRef Rinzler, A.G., Liu, J., Dai, H., Nikolaev, P., Huffman, C.B., Rodriguez-Macias, F.J., Boul, P.J., Lu, A.H., Heymann, D., Colbert, D.T., Lee, R.S., Fischer, J.E., Rao, A.M., Eklund, P.C., Smalley, R.E.: Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. Mater. 67, 29–37 (1998)CrossRef
33.
go back to reference Ismail, I., Hashim, M., Yahya, N.: Magnetic characterization of web-like carbon nanotubes catalyzed by Fe2O3 via pulsed laser ablation deposition (PLAD) technique. Int. J. Nanosci. 10, 403–412 (2011)CrossRef Ismail, I., Hashim, M., Yahya, N.: Magnetic characterization of web-like carbon nanotubes catalyzed by Fe2O3 via pulsed laser ablation deposition (PLAD) technique. Int. J. Nanosci. 10, 403–412 (2011)CrossRef
34.
go back to reference Yuge, R., Toyama, K., Ichihashi, T., Ohkawa, T., Aoki, Y., Manako, T.: Characterization and field emission properties of multi-walled carbon nanotubes with fine crystallinity prepared by CO2 laser ablation. Appl. Surf. Sci. 258, 6958–6962 (2012)CrossRef Yuge, R., Toyama, K., Ichihashi, T., Ohkawa, T., Aoki, Y., Manako, T.: Characterization and field emission properties of multi-walled carbon nanotubes with fine crystallinity prepared by CO2 laser ablation. Appl. Surf. Sci. 258, 6958–6962 (2012)CrossRef
35.
go back to reference Jedrzejewska, A., Bachmatiuk, A., Ibrahim, I., Srekova, H., Nganou, C., Schuchner, F., Borowiak-Palen, E., Gemming, T., Cuniberti, G., Buchner, B., Rummeli, M.H.: A systematic and comparative study of binary metal catalysts for carbon nanotube fabrication using CVD and laser evaporation. Fullerenes, Nanotubes, Carbon Nanostruct. 21, 273–285 (2013)CrossRef Jedrzejewska, A., Bachmatiuk, A., Ibrahim, I., Srekova, H., Nganou, C., Schuchner, F., Borowiak-Palen, E., Gemming, T., Cuniberti, G., Buchner, B., Rummeli, M.H.: A systematic and comparative study of binary metal catalysts for carbon nanotube fabrication using CVD and laser evaporation. Fullerenes, Nanotubes, Carbon Nanostruct. 21, 273–285 (2013)CrossRef
36.
go back to reference Liu, Y., Xu, M.H., Zhu, X.Z., Xie, M.M., Su, Y.J., Hu, N.T., Yang, Z., Zhang, Y.F.: Synthesis of carbon nanotubes on graphene quantum dot surface by catalyst free chemical vapor deposition. Carbon 68, 399–405 (2014)CrossRef Liu, Y., Xu, M.H., Zhu, X.Z., Xie, M.M., Su, Y.J., Hu, N.T., Yang, Z., Zhang, Y.F.: Synthesis of carbon nanotubes on graphene quantum dot surface by catalyst free chemical vapor deposition. Carbon 68, 399–405 (2014)CrossRef
37.
go back to reference Ionescu, M.I., Zhang, Y., Li, R.Y., Sun, X.L.: Selective growth, characterization, and field emission performance of single-walled and few-walled carbon nanotubes by plasma enhanced chemical vapor deposition. Appl. Surf. Sci. 258, 1366–1372 (2011)CrossRef Ionescu, M.I., Zhang, Y., Li, R.Y., Sun, X.L.: Selective growth, characterization, and field emission performance of single-walled and few-walled carbon nanotubes by plasma enhanced chemical vapor deposition. Appl. Surf. Sci. 258, 1366–1372 (2011)CrossRef
38.
go back to reference Lee, J.H., Hong, B., Park, Y.S.: The electrical and structural properties of carbon nanotubes grown by microwave plasma-enhanced chemical vapor deposition method for organic thin film transistor. Thin Solid Films 546, 77–80 (2013)CrossRef Lee, J.H., Hong, B., Park, Y.S.: The electrical and structural properties of carbon nanotubes grown by microwave plasma-enhanced chemical vapor deposition method for organic thin film transistor. Thin Solid Films 546, 77–80 (2013)CrossRef
39.
go back to reference Bystrov, K., van de Sanden, M.C.M., Arnas, C., Marot, L., Mathys, D., Liu, F., Xu, L.K., Li, X.B., Shalpegin, A.V., De Temmerman, G.: Spontaneous synthesis of carbon nanowalls, nanotubes and nanotips using high flux density plasmas. Carbon 68, 695–707 (2014)CrossRef Bystrov, K., van de Sanden, M.C.M., Arnas, C., Marot, L., Mathys, D., Liu, F., Xu, L.K., Li, X.B., Shalpegin, A.V., De Temmerman, G.: Spontaneous synthesis of carbon nanowalls, nanotubes and nanotips using high flux density plasmas. Carbon 68, 695–707 (2014)CrossRef
40.
go back to reference Wang, B.B., Zheng, K., Shao, R.W.: Comparative study on catalyst-free formation and electron field emission of carbon nanotips and nanotubes grown by chemical vapor deposition. Appl. Surf. Sci. 273, 268–272 (2013)CrossRef Wang, B.B., Zheng, K., Shao, R.W.: Comparative study on catalyst-free formation and electron field emission of carbon nanotips and nanotubes grown by chemical vapor deposition. Appl. Surf. Sci. 273, 268–272 (2013)CrossRef
41.
go back to reference Kim, J.B., Kong, S.J., Lee, S.Y., Kim, J.H., Lee, H.R., Kim, C.D., Min, B.K.: Characteristics of nitrogen-doped carbon nanotubes synthesized by using PECVD and thermal CVD. J. Korean Phys. Soc. 60, 1124–1128 (2012)CrossRef Kim, J.B., Kong, S.J., Lee, S.Y., Kim, J.H., Lee, H.R., Kim, C.D., Min, B.K.: Characteristics of nitrogen-doped carbon nanotubes synthesized by using PECVD and thermal CVD. J. Korean Phys. Soc. 60, 1124–1128 (2012)CrossRef
42.
go back to reference Ohashi, T., Kato, R., Ochiai, T., Tokune, T., Kawarada, H.: High quality single-walled carbon nanotube synthesis using remote plasma CVD. Diamond Relat. Mater. 24, 184–187 (2012)CrossRef Ohashi, T., Kato, R., Ochiai, T., Tokune, T., Kawarada, H.: High quality single-walled carbon nanotube synthesis using remote plasma CVD. Diamond Relat. Mater. 24, 184–187 (2012)CrossRef
43.
go back to reference Wei, L., Bai, S.H., Peng, W.K., Yuan, Y., Si, R.M., Goh, K.L., Jiang, R.R., Chen, Y.: Narrow-chirality distributed single-walled carbon nanotube synthesis by remote plasma enhanced ethanol deposition on cobalt incorporated MCM-41 catalyst. Carbon 66, 134–143 (2014)CrossRef Wei, L., Bai, S.H., Peng, W.K., Yuan, Y., Si, R.M., Goh, K.L., Jiang, R.R., Chen, Y.: Narrow-chirality distributed single-walled carbon nanotube synthesis by remote plasma enhanced ethanol deposition on cobalt incorporated MCM-41 catalyst. Carbon 66, 134–143 (2014)CrossRef
44.
go back to reference Ramakrishnan, S., Jelmy, E.J., Dhakshnamoorthy, M., Rangarajan, M., Kothurkar, N.: Synthesis of Carbon Nanotubes from Ethanol Using RF-CCVD and Fe–Mo Catalyst. Synth. React. Inorg. Met.-Org., Nano-Met. Chem. 44, 873–876 (2014)CrossRef Ramakrishnan, S., Jelmy, E.J., Dhakshnamoorthy, M., Rangarajan, M., Kothurkar, N.: Synthesis of Carbon Nanotubes from Ethanol Using RF-CCVD and Fe–Mo Catalyst. Synth. React. Inorg. Met.-Org., Nano-Met. Chem. 44, 873–876 (2014)CrossRef
45.
go back to reference Wang, H.Y., Moore, J.J.: Low temperature growth mechanisms of vertically aligned carbon nanofibers and nanotubes by radio frequency-plasma enhanced chemical vapor deposition. Carbon 50, 1235–1242 (2012)CrossRef Wang, H.Y., Moore, J.J.: Low temperature growth mechanisms of vertically aligned carbon nanofibers and nanotubes by radio frequency-plasma enhanced chemical vapor deposition. Carbon 50, 1235–1242 (2012)CrossRef
46.
go back to reference Lee, D.H., Lee, W.J., Kim, S.O.: Vertical single-walled carbon nanotube arrays via block copolymer lithography. Chem. Mater. 21, 1368–1374 (2009)CrossRef Lee, D.H., Lee, W.J., Kim, S.O.: Vertical single-walled carbon nanotube arrays via block copolymer lithography. Chem. Mater. 21, 1368–1374 (2009)CrossRef
47.
go back to reference Shahzad, M.I., Giorcelli, M., Perrone, D., Virga, A., Shahzad, N., Jagdale, P., Cocuzza, M., Tagliaferro, A.: Growth of vertically aligned multiwall carbon nanotubes columns. J. Phys. Conf. Ser. 439 (2013) Shahzad, M.I., Giorcelli, M., Perrone, D., Virga, A., Shahzad, N., Jagdale, P., Cocuzza, M., Tagliaferro, A.: Growth of vertically aligned multiwall carbon nanotubes columns. J. Phys. Conf. Ser. 439 (2013)
48.
go back to reference Youn, S.K., Frouzakis, C.E., Gopi, B.P., Robertson, J., Teo, K.B.K., Park, H.G.: Temperature gradient chemical vapor deposition of vertically aligned carbon nanotubes. Carbon 54, 343–352 (2013)CrossRef Youn, S.K., Frouzakis, C.E., Gopi, B.P., Robertson, J., Teo, K.B.K., Park, H.G.: Temperature gradient chemical vapor deposition of vertically aligned carbon nanotubes. Carbon 54, 343–352 (2013)CrossRef
49.
go back to reference Asli, N.A., Shamsudin, M.S., Falina, A.N., Azmina, M.S., Suriani, A.B., Rusop, M., Abdullah, S.: Field electron emission properties of vertically aligned carbon nanotubes deposited on a nanostructured porous silicon template: the hidden role of the hydrocarbon/catalyst ratio. Microelectron. Eng. 108, 86–92 (2013)CrossRef Asli, N.A., Shamsudin, M.S., Falina, A.N., Azmina, M.S., Suriani, A.B., Rusop, M., Abdullah, S.: Field electron emission properties of vertically aligned carbon nanotubes deposited on a nanostructured porous silicon template: the hidden role of the hydrocarbon/catalyst ratio. Microelectron. Eng. 108, 86–92 (2013)CrossRef
50.
go back to reference Dittmer, S., Nerushev, O.A., Campbell, E.E.B.: Low ambient temperature CVD growth of carbon nanotubes. Appl. Phys. Mater. 84, 243–246 (2006)CrossRef Dittmer, S., Nerushev, O.A., Campbell, E.E.B.: Low ambient temperature CVD growth of carbon nanotubes. Appl. Phys. Mater. 84, 243–246 (2006)CrossRef
51.
go back to reference Marangoni, R., Serp, P., Feurer, R., Kihn, Y., Kalck, P., Vahlas, C.: Carbon nanotubes produced by substrate free metalorganic chemical vapor deposition of iron catalysts and ethylene. Carbon 39, 443–449 (2001)CrossRef Marangoni, R., Serp, P., Feurer, R., Kihn, Y., Kalck, P., Vahlas, C.: Carbon nanotubes produced by substrate free metalorganic chemical vapor deposition of iron catalysts and ethylene. Carbon 39, 443–449 (2001)CrossRef
52.
go back to reference Teng, I.J., Hsu, H.L., Jian, S.R., Wang, L.C., Chen, K.L., Kuo, C.T., Pan, F.M., Wang, W.H., Juang, J.Y.: Temperature-dependent electrical and photo-sensing properties of horizontally-oriented carbon nanotube networks synthesized by sandwich-growth microwave plasma chemical vapor deposition. Thin Solid Films 529, 190–194 (2013)CrossRef Teng, I.J., Hsu, H.L., Jian, S.R., Wang, L.C., Chen, K.L., Kuo, C.T., Pan, F.M., Wang, W.H., Juang, J.Y.: Temperature-dependent electrical and photo-sensing properties of horizontally-oriented carbon nanotube networks synthesized by sandwich-growth microwave plasma chemical vapor deposition. Thin Solid Films 529, 190–194 (2013)CrossRef
53.
go back to reference Breza, J., Pastorková, K., Kadlečíková, M., Jesenák, K., Čaplovičová, M., Kolmačka, M., Lazišťan, F.: Synthesis of nanocomposites based on nanotubes and silicates. Appl. Surf. Sci. 258, 2540–2543 (2012)CrossRef Breza, J., Pastorková, K., Kadlečíková, M., Jesenák, K., Čaplovičová, M., Kolmačka, M., Lazišťan, F.: Synthesis of nanocomposites based on nanotubes and silicates. Appl. Surf. Sci. 258, 2540–2543 (2012)CrossRef
54.
go back to reference Somanathan, T., Dijon, J., Fournier, A., Okuno, H.: Effective supergrowth of vertical aligned carbon nanotubes at low temperature and pressure. J. Nanosci. Nanotechnol. 14, 2520–2526 (2014)CrossRef Somanathan, T., Dijon, J., Fournier, A., Okuno, H.: Effective supergrowth of vertical aligned carbon nanotubes at low temperature and pressure. J. Nanosci. Nanotechnol. 14, 2520–2526 (2014)CrossRef
55.
go back to reference Zhang, Y.L., Hou, P.X., Liu, C., Cheng, H.M.: De-bundling of single-wall carbon nanotubes induced by an electric field during arc discharge synthesis. Carbon 74, 370–373 (2014)CrossRef Zhang, Y.L., Hou, P.X., Liu, C., Cheng, H.M.: De-bundling of single-wall carbon nanotubes induced by an electric field during arc discharge synthesis. Carbon 74, 370–373 (2014)CrossRef
56.
go back to reference Byon, H.R., Lim, H., Song, H.J., Choi, H.C.: A synthesis of high purity single-walled carbon nanotubes from small diameters of cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process. Bull. Korean Chem. Soc. 28, 2056–2060 (2007)CrossRef Byon, H.R., Lim, H., Song, H.J., Choi, H.C.: A synthesis of high purity single-walled carbon nanotubes from small diameters of cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process. Bull. Korean Chem. Soc. 28, 2056–2060 (2007)CrossRef
57.
go back to reference Yu, B., Liu, C., Hou, P.X., Tian, Y., Li, S., Liu, B., Li, F., Kauppinen, E.I., Cheng, H.M.: Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. J. Am. Chem. Soc. 133, 5232–5235 (2011)CrossRef Yu, B., Liu, C., Hou, P.X., Tian, Y., Li, S., Liu, B., Li, F., Kauppinen, E.I., Cheng, H.M.: Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. J. Am. Chem. Soc. 133, 5232–5235 (2011)CrossRef
58.
go back to reference Paukner, C., Koziol, K.K.K.: Ultra-pure single wall carbon nanotube fibres continuously spun without promoter. Sci. Rep. 4 (2014) Paukner, C., Koziol, K.K.K.: Ultra-pure single wall carbon nanotube fibres continuously spun without promoter. Sci. Rep. 4 (2014)
59.
go back to reference Castro, C., Pinault, M., Porterat, D., Reynaud, C., Mayne-L’Hermite, M.: The role of hydrogen in the aerosol-assisted chemical vapor deposition process in producing thin and densely packed vertically aligned carbon nanotubes. Carbon 61, 585–594 (2013)CrossRef Castro, C., Pinault, M., Porterat, D., Reynaud, C., Mayne-L’Hermite, M.: The role of hydrogen in the aerosol-assisted chemical vapor deposition process in producing thin and densely packed vertically aligned carbon nanotubes. Carbon 61, 585–594 (2013)CrossRef
60.
go back to reference Kucukayan, G., Ovali, R., Ilday, S., Baykal, B., Yurdakul, H., Turan, S., Gulseren, O., Bengu, E.: An experimental and theoretical examination of the effect of sulfur on the pyrolytically grown carbon nanotubes from sucrose-based solid state precursors. Carbon 49, 508–517 (2011)CrossRef Kucukayan, G., Ovali, R., Ilday, S., Baykal, B., Yurdakul, H., Turan, S., Gulseren, O., Bengu, E.: An experimental and theoretical examination of the effect of sulfur on the pyrolytically grown carbon nanotubes from sucrose-based solid state precursors. Carbon 49, 508–517 (2011)CrossRef
61.
go back to reference Buang, N.A., Ismail, F., Othman, M.Z.: Synthesis of carbon nanotube heterojunctions from the decomposition of ethanol. Fullerenes, Nanotubes, Carbon Nanostruct. 22, 307–315 (2014)CrossRef Buang, N.A., Ismail, F., Othman, M.Z.: Synthesis of carbon nanotube heterojunctions from the decomposition of ethanol. Fullerenes, Nanotubes, Carbon Nanostruct. 22, 307–315 (2014)CrossRef
62.
go back to reference Yokoyama, D., Iwasaki, T., Ishimaru, K., Sato, S., Nihei, M., Awano, Y., Kawarada, H.: Low-temperature synthesis of multiwalled carbon nanotubes by graphite antenna CVD in a hydrogen-free atmosphere. Carbon 48, 825–831 (2010)CrossRef Yokoyama, D., Iwasaki, T., Ishimaru, K., Sato, S., Nihei, M., Awano, Y., Kawarada, H.: Low-temperature synthesis of multiwalled carbon nanotubes by graphite antenna CVD in a hydrogen-free atmosphere. Carbon 48, 825–831 (2010)CrossRef
63.
go back to reference Yu, D.S., Xue, Y.H., Dai, L.M.: Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J. Phys. Chem. Lett. 3, 2863–2870 (2012)CrossRef Yu, D.S., Xue, Y.H., Dai, L.M.: Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J. Phys. Chem. Lett. 3, 2863–2870 (2012)CrossRef
64.
go back to reference Xu, Y., Dervishi, E., Biris, A.R., Biris, A.S.: Chirality-enriched semiconducting carbon nanotubes synthesized on high surface area MgO-supported catalyst. Mater. Lett. 65, 1878–1881 (2011)CrossRef Xu, Y., Dervishi, E., Biris, A.R., Biris, A.S.: Chirality-enriched semiconducting carbon nanotubes synthesized on high surface area MgO-supported catalyst. Mater. Lett. 65, 1878–1881 (2011)CrossRef
65.
go back to reference Li, Y.C., Ruan, W.Z., Wang, Z.Y.: Localized synthesis of carbon nanotube films on suspended microstructures by laser-assisted chemical vapor deposition. IEEE Trans. Nanotechnol. 12, 352–360 (2013)CrossRef Li, Y.C., Ruan, W.Z., Wang, Z.Y.: Localized synthesis of carbon nanotube films on suspended microstructures by laser-assisted chemical vapor deposition. IEEE Trans. Nanotechnol. 12, 352–360 (2013)CrossRef
66.
go back to reference Morales, N.J., Goyanes, S., Chiliotte, C., Bekeris, V., Candal, R.J., Rubiolo, G.H.: One-step chemical vapor deposition synthesis of magnetic CNT–hercynite (FeAl2O4) hybrids with good aqueous colloidal stability. Carbon 61, 515–524 (2013)CrossRef Morales, N.J., Goyanes, S., Chiliotte, C., Bekeris, V., Candal, R.J., Rubiolo, G.H.: One-step chemical vapor deposition synthesis of magnetic CNT–hercynite (FeAl2O4) hybrids with good aqueous colloidal stability. Carbon 61, 515–524 (2013)CrossRef
67.
go back to reference Toubestani, D.H., Ghoranneviss, M., Mahmoodi, A., Zareh, M.R.: CVD growth of carbon nanotubes and nanofibers: big length and constant diameter. Macromol. Symp. 287, 143–147 (2010)CrossRef Toubestani, D.H., Ghoranneviss, M., Mahmoodi, A., Zareh, M.R.: CVD growth of carbon nanotubes and nanofibers: big length and constant diameter. Macromol. Symp. 287, 143–147 (2010)CrossRef
68.
go back to reference Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., Kohno, M.: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett. 360, 229–234 (2002)CrossRef Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., Kohno, M.: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett. 360, 229–234 (2002)CrossRef
69.
go back to reference Pooperasupong, S., Caussat, B., Serp, P., Damronglerd, S.: Synthesis of multi-walled carbon nanotubes by fluidized-bed chemical vapor deposition over Co/Al2O3. J. Chem. Eng. Jpn. 47, 28–39 (2014)CrossRef Pooperasupong, S., Caussat, B., Serp, P., Damronglerd, S.: Synthesis of multi-walled carbon nanotubes by fluidized-bed chemical vapor deposition over Co/Al2O3. J. Chem. Eng. Jpn. 47, 28–39 (2014)CrossRef
70.
go back to reference Lolli, G., Zhang, L., Balzano, L., Sakulchaicharoen, N., Tan, Y., Resasco, D.E.: Tailoring (n, m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J. Phys. Chem. B 110, 2108–2115 (2006)CrossRef Lolli, G., Zhang, L., Balzano, L., Sakulchaicharoen, N., Tan, Y., Resasco, D.E.: Tailoring (n, m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J. Phys. Chem. B 110, 2108–2115 (2006)CrossRef
71.
go back to reference Bronikowski, M.J., Willis, P.A., Colbert, D.T., Smith, K.A., Smalley, R.E.: Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vac. Sci. Technol. A 19, 1800–1805 (2001)CrossRef Bronikowski, M.J., Willis, P.A., Colbert, D.T., Smith, K.A., Smalley, R.E.: Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vac. Sci. Technol. A 19, 1800–1805 (2001)CrossRef
72.
go back to reference Lyu, S.C., Kim, H.W., Kim, S.J., Park, J.W., Lee, C.J.: Synthesis and crystallinity of carbon nanotubes produced by a vapor-phase growth method. Appl. Phys. Mater. Sci. Process. 79, 697–700 (2004)CrossRef Lyu, S.C., Kim, H.W., Kim, S.J., Park, J.W., Lee, C.J.: Synthesis and crystallinity of carbon nanotubes produced by a vapor-phase growth method. Appl. Phys. Mater. Sci. Process. 79, 697–700 (2004)CrossRef
73.
go back to reference Jorio, A., Kauppinen, E., Hassanien, A.: Carbon-nanotube metrology. In: Carbon Nanotubes. Springer, pp. 63–100 (2008) Jorio, A., Kauppinen, E., Hassanien, A.: Carbon-nanotube metrology. In: Carbon Nanotubes. Springer, pp. 63–100 (2008)
74.
go back to reference Holt, J.K., Noy, A., Huser, T., Eaglesham, D., Bakajin, O.: Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport. Nano Lett. 4, 2245–2250 (2004)CrossRef Holt, J.K., Noy, A., Huser, T., Eaglesham, D., Bakajin, O.: Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport. Nano Lett. 4, 2245–2250 (2004)CrossRef
75.
go back to reference Amama, P.B., Pint, C.L., McJilton, L., Kim, S.M., Stach, E.A., Murray, P.T., Hauge, R.H., Maruyama, B.: Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 9, 44–49 (2008)CrossRef Amama, P.B., Pint, C.L., McJilton, L., Kim, S.M., Stach, E.A., Murray, P.T., Hauge, R.H., Maruyama, B.: Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 9, 44–49 (2008)CrossRef
76.
go back to reference Kang, Z.H., Wang, E.B., Mao, B.D., Su, Z.M., Chen, L., Xu, L.: Obtaining carbon nanotubes from grass. Nanotechnology 16, 1192–1195 (2005)CrossRef Kang, Z.H., Wang, E.B., Mao, B.D., Su, Z.M., Chen, L., Xu, L.: Obtaining carbon nanotubes from grass. Nanotechnology 16, 1192–1195 (2005)CrossRef
77.
go back to reference Ye, X.D., Yang, Q., Zheng, Y.F., Mo, W.M., Hu, J.G., Huang, W.Z.: Biotemplate synthesis of carbon nanostructures using bamboo as both the template and the carbon source. Mater. Res. Bull. 51, 366–371 (2014)CrossRef Ye, X.D., Yang, Q., Zheng, Y.F., Mo, W.M., Hu, J.G., Huang, W.Z.: Biotemplate synthesis of carbon nanostructures using bamboo as both the template and the carbon source. Mater. Res. Bull. 51, 366–371 (2014)CrossRef
78.
go back to reference Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., Waite, R.J.: Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26, 51–62 (1972)CrossRef Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., Waite, R.J.: Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26, 51–62 (1972)CrossRef
79.
go back to reference Shah, R., Zhang, X.F., An, X., Kar, S., Talapatra, S.: Ferrocene derived carbon nanotubes and their application as electrochemical double layer capacitor electrodes. J. Nanosci. Nanotechnol. 10, 4043–4048 (2010)CrossRef Shah, R., Zhang, X.F., An, X., Kar, S., Talapatra, S.: Ferrocene derived carbon nanotubes and their application as electrochemical double layer capacitor electrodes. J. Nanosci. Nanotechnol. 10, 4043–4048 (2010)CrossRef
80.
go back to reference He, C.N., Chen, L., Shi, C.S., Zhang, C.G., Liu, E.Z., Li, J.J., Zhao, N.Q., Wang, X.M., Makino, A., Inoue, A.: Direct synthesis of amorphous carbon nanotubes on Fe76Si9B10P5 glassy alloy particles. J. Alloys Compd. 581, 282–288 (2013)CrossRef He, C.N., Chen, L., Shi, C.S., Zhang, C.G., Liu, E.Z., Li, J.J., Zhao, N.Q., Wang, X.M., Makino, A., Inoue, A.: Direct synthesis of amorphous carbon nanotubes on Fe76Si9B10P5 glassy alloy particles. J. Alloys Compd. 581, 282–288 (2013)CrossRef
81.
go back to reference Zhong, G., Xie, R., Yang, J., Robertson, J.: Single-step CVD growth of high-density carbon nanotube forests on metallic Ti coatings through catalyst engineering. Carbon 67, 680–687 (2014)CrossRef Zhong, G., Xie, R., Yang, J., Robertson, J.: Single-step CVD growth of high-density carbon nanotube forests on metallic Ti coatings through catalyst engineering. Carbon 67, 680–687 (2014)CrossRef
82.
go back to reference Yeoh, W.M., Lee, K.Y., Chai, S.P., Lee, K.T., Mohamed, A.R.: Effective synthesis of carbon nanotubes via catalytic decomposition of methane: Influence of calcination temperature on metal-support interaction of Co-Mo/MgO catalyst. J. Phys. Chem. Solids 74, 1553–1559 (2013)CrossRef Yeoh, W.M., Lee, K.Y., Chai, S.P., Lee, K.T., Mohamed, A.R.: Effective synthesis of carbon nanotubes via catalytic decomposition of methane: Influence of calcination temperature on metal-support interaction of Co-Mo/MgO catalyst. J. Phys. Chem. Solids 74, 1553–1559 (2013)CrossRef
83.
go back to reference He, M., Jiang, H., Liu, B., Fedotov, P.V., Chernov, A.I., Obraztsova, E.D., Cavalca, F., Wagner, J.B., Hansen, T.W., Anoshkin, I.V., Obraztsova, E.A., Belkin, A.V., Sairanen, E., Nasibulin, A.G., Lehtonen, J., Kauppinen, E.I.: Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci. Rep. 3, 1460 (2013)CrossRef He, M., Jiang, H., Liu, B., Fedotov, P.V., Chernov, A.I., Obraztsova, E.D., Cavalca, F., Wagner, J.B., Hansen, T.W., Anoshkin, I.V., Obraztsova, E.A., Belkin, A.V., Sairanen, E., Nasibulin, A.G., Lehtonen, J., Kauppinen, E.I.: Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci. Rep. 3, 1460 (2013)CrossRef
84.
go back to reference Lin, J.-H., Chen, C.-S., Ma, H.-L., Hsu, C.-Y., Chen, H.-W.: Synthesis of MWCNTs on CuSO4/Al2O3 using chemical vapor deposition from methane. Carbon 45, 223–225 (2007)CrossRef Lin, J.-H., Chen, C.-S., Ma, H.-L., Hsu, C.-Y., Chen, H.-W.: Synthesis of MWCNTs on CuSO4/Al2O3 using chemical vapor deposition from methane. Carbon 45, 223–225 (2007)CrossRef
85.
go back to reference Lin, Y.C., Lin, J.H.: Purity-controllable growth of bamboo-like multi-walled carbon nanotubes over copper-based catalysts. Catal. Commun. 34, 41–44 (2013)CrossRef Lin, Y.C., Lin, J.H.: Purity-controllable growth of bamboo-like multi-walled carbon nanotubes over copper-based catalysts. Catal. Commun. 34, 41–44 (2013)CrossRef
86.
go back to reference Baliyan, A., Nakajima, Y., Fukuda, T., Uchida, T., Hanajiri, T., Maekawa, T.: Synthesis of an ultradense forest of vertically aligned triple-walled carbon nanotubes of uniform diameter and length using hollow catalytic nanoparticles. J. Am. Chem. Soc. 136, 1047–1053 (2014)CrossRef Baliyan, A., Nakajima, Y., Fukuda, T., Uchida, T., Hanajiri, T., Maekawa, T.: Synthesis of an ultradense forest of vertically aligned triple-walled carbon nanotubes of uniform diameter and length using hollow catalytic nanoparticles. J. Am. Chem. Soc. 136, 1047–1053 (2014)CrossRef
87.
go back to reference Pastorkova, K., Jesenak, K., Kadlecikova, M., Breza, J., Kolmacka, M., Caplovicova, M., Lazist’an, F., Michalka, M.: The growth of multi-walled carbon nanotubes on natural clay minerals (kaolinite, nontronite and sepiolite). Appl. Surf. Sci. 258, 2661–2666 (2012)CrossRef Pastorkova, K., Jesenak, K., Kadlecikova, M., Breza, J., Kolmacka, M., Caplovicova, M., Lazist’an, F., Michalka, M.: The growth of multi-walled carbon nanotubes on natural clay minerals (kaolinite, nontronite and sepiolite). Appl. Surf. Sci. 258, 2661–2666 (2012)CrossRef
88.
go back to reference Kim, H.J., Seo, S.W., Lee, J., Jung, G.Y., Lee, K.H.: The synthesis of single-walled carbon nanotubes with narrow diameter distribution using polymerized hemoglobin. Carbon 69, 588–594 (2014)CrossRef Kim, H.J., Seo, S.W., Lee, J., Jung, G.Y., Lee, K.H.: The synthesis of single-walled carbon nanotubes with narrow diameter distribution using polymerized hemoglobin. Carbon 69, 588–594 (2014)CrossRef
89.
go back to reference Lee, J.H., Lee, S.H., Kim, D., Park, Y.S.: The structural and surface properties of carbon nanotube synthesized by microwave plasma chemical vapor deposition method for superhydrophobic coating. Thin Solid Films 546, 94–97 (2013)CrossRef Lee, J.H., Lee, S.H., Kim, D., Park, Y.S.: The structural and surface properties of carbon nanotube synthesized by microwave plasma chemical vapor deposition method for superhydrophobic coating. Thin Solid Films 546, 94–97 (2013)CrossRef
90.
go back to reference Sun, T.T., Fan, G.L., Li, F.: Dispersion-enhanced supported Pd catalysts for efficient growth of carbon nanotubes through chemical vapor deposition. Ind. Eng. Chem. Res. 52, 5538–5547 (2013)CrossRef Sun, T.T., Fan, G.L., Li, F.: Dispersion-enhanced supported Pd catalysts for efficient growth of carbon nanotubes through chemical vapor deposition. Ind. Eng. Chem. Res. 52, 5538–5547 (2013)CrossRef
91.
go back to reference Li, Y.F., Wang, H.F., Wang, G., Gao, J.S.: Synthesis of single-walled carbon nanotubes from heavy oil residue. Chem. Eng. J. 211, 255–259 (2012)CrossRef Li, Y.F., Wang, H.F., Wang, G., Gao, J.S.: Synthesis of single-walled carbon nanotubes from heavy oil residue. Chem. Eng. J. 211, 255–259 (2012)CrossRef
92.
go back to reference Kaushik, V., Sharma, H., Girdhar, P., Shukla, A.K., Vankar, V.D.: Structural modification and enhanced electron emission from multiwalled carbon nanotubes grown on Ag/Fe catalysts coated Si-substrates. Mater. Chem. Phys. 130, 986–992 (2011)CrossRef Kaushik, V., Sharma, H., Girdhar, P., Shukla, A.K., Vankar, V.D.: Structural modification and enhanced electron emission from multiwalled carbon nanotubes grown on Ag/Fe catalysts coated Si-substrates. Mater. Chem. Phys. 130, 986–992 (2011)CrossRef
93.
go back to reference Ohashi, T., Ochiai, T., Tokune, T., Kawarada, H.: Increasing the length of a single-wall carbon nanotube forest by adding titanium to a catalytic substrate. Carbon 57, 79–87 (2013)CrossRef Ohashi, T., Ochiai, T., Tokune, T., Kawarada, H.: Increasing the length of a single-wall carbon nanotube forest by adding titanium to a catalytic substrate. Carbon 57, 79–87 (2013)CrossRef
94.
go back to reference Balamurugan, J., Thangamuthu, R., Pandurangan, A.: Growth of carbon nanotubes over transition metal loaded on Co-SBA-15 and its application for high performance dye-sensitized solar cells. J. Mater. Chem. A 1, 5070–5080 (2013)CrossRef Balamurugan, J., Thangamuthu, R., Pandurangan, A.: Growth of carbon nanotubes over transition metal loaded on Co-SBA-15 and its application for high performance dye-sensitized solar cells. J. Mater. Chem. A 1, 5070–5080 (2013)CrossRef
95.
go back to reference Jung, Y., Song, J., Huh, W., Cho, D., Jeong, Y.: Controlling the crystalline quality of carbon nanotubes with processing parameters from chemical vapor deposition synthesis. Chem. Eng. J. 228, 1050–1056 (2013)CrossRef Jung, Y., Song, J., Huh, W., Cho, D., Jeong, Y.: Controlling the crystalline quality of carbon nanotubes with processing parameters from chemical vapor deposition synthesis. Chem. Eng. J. 228, 1050–1056 (2013)CrossRef
96.
go back to reference Li, W.L., Yuan, J.K., Lin, Y.Q., Yao, S.H., Ren, Z.Y., Wang, H., Wang, M.Q., Bai, J.B.: The controlled formation of hybrid structures of multi-walled carbon nanotubes on SiC plate-like particles and their synergetic effect as a filler in poly(vinylidene fluoride) based composites. Carbon 51, 355–364 (2013)CrossRef Li, W.L., Yuan, J.K., Lin, Y.Q., Yao, S.H., Ren, Z.Y., Wang, H., Wang, M.Q., Bai, J.B.: The controlled formation of hybrid structures of multi-walled carbon nanotubes on SiC plate-like particles and their synergetic effect as a filler in poly(vinylidene fluoride) based composites. Carbon 51, 355–364 (2013)CrossRef
97.
go back to reference Sekiguchi, K., Furuichi, K., Shiratori, Y., Noda, S.: One second growth of carbon nanotube arrays on a glass substrate by pulsed-current heating. Carbon 50, 2110–2118 (2012)CrossRef Sekiguchi, K., Furuichi, K., Shiratori, Y., Noda, S.: One second growth of carbon nanotube arrays on a glass substrate by pulsed-current heating. Carbon 50, 2110–2118 (2012)CrossRef
98.
go back to reference Liu, Y., Li, H.B., Nie, C.Y., Pan, L.K., Sun, Z.: Carbon nanotube and carbon nanofiber composite films grown on different graphite substrate for capacitive deionization. Desalin. Water Treat. 51, 3988–3994 (2013)CrossRef Liu, Y., Li, H.B., Nie, C.Y., Pan, L.K., Sun, Z.: Carbon nanotube and carbon nanofiber composite films grown on different graphite substrate for capacitive deionization. Desalin. Water Treat. 51, 3988–3994 (2013)CrossRef
99.
go back to reference Han, S., Liu, X., Zhou, C.: Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J. Am. Chem. Soc. 127, 5294–5295 (2005)CrossRef Han, S., Liu, X., Zhou, C.: Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J. Am. Chem. Soc. 127, 5294–5295 (2005)CrossRef
100.
go back to reference Maret, M., Hostache, K., Schouler, M.C., Marcus, B., Roussel-Dherbey, F., Albrecht, M., Gadelle, P.: Oriented growth of single-walled carbon nanotubes on a MgO(001) surface. Carbon 45, 180–187 (2007)CrossRef Maret, M., Hostache, K., Schouler, M.C., Marcus, B., Roussel-Dherbey, F., Albrecht, M., Gadelle, P.: Oriented growth of single-walled carbon nanotubes on a MgO(001) surface. Carbon 45, 180–187 (2007)CrossRef
101.
go back to reference Su, C.C., Chang, S.H.: Comparison of the efficiency of various substrates in growing vertically aligned carbon nanotube carpets. Carbon 49, 5271–5282 (2011)CrossRef Su, C.C., Chang, S.H.: Comparison of the efficiency of various substrates in growing vertically aligned carbon nanotube carpets. Carbon 49, 5271–5282 (2011)CrossRef
102.
go back to reference He, D.L., Li, H., Li, W.L., Haghi-Ashtiani, P., Lejay, P., Bai, J.B.: Growth of carbon nanotubes in six orthogonal directions on spherical alumina microparticles. Carbon 49, 2273–2286 (2011)CrossRef He, D.L., Li, H., Li, W.L., Haghi-Ashtiani, P., Lejay, P., Bai, J.B.: Growth of carbon nanotubes in six orthogonal directions on spherical alumina microparticles. Carbon 49, 2273–2286 (2011)CrossRef
103.
go back to reference Hiramatsu, M., Hori, M.: Aligned growth of single-walled and double-walled carbon nanotube films by control of catalyst preparation (2011) Hiramatsu, M., Hori, M.: Aligned growth of single-walled and double-walled carbon nanotube films by control of catalyst preparation (2011)
104.
go back to reference Kumar, S., Srivastava, S., Vijay, Y.: Study of gas transport properties of multi-walled carbon nanotubes/polystyrene composite membranes. Int. J. Hydrogen Energy 37, 3914–3921 (2012)CrossRef Kumar, S., Srivastava, S., Vijay, Y.: Study of gas transport properties of multi-walled carbon nanotubes/polystyrene composite membranes. Int. J. Hydrogen Energy 37, 3914–3921 (2012)CrossRef
105.
go back to reference Liu, T.Y., Zhang, L.L., Yu, W.J., Li, S.S., Hou, P.X., Cong, H.T., Liu, C., Cheng, H.M.: Growth of double-walled carbon nanotubes from silicon oxide nanoparticles. Carbon 56, 167–172 (2013)CrossRef Liu, T.Y., Zhang, L.L., Yu, W.J., Li, S.S., Hou, P.X., Cong, H.T., Liu, C., Cheng, H.M.: Growth of double-walled carbon nanotubes from silicon oxide nanoparticles. Carbon 56, 167–172 (2013)CrossRef
106.
go back to reference Kumar, M., Ando, Y.: Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10, 3739–3758 (2010)CrossRef Kumar, M., Ando, Y.: Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10, 3739–3758 (2010)CrossRef
107.
go back to reference Taleshi, F.: A new strategy for increasing the yield of carbon nanotubes by the CVD method. Fullerenes, Nanotubes, Carbon Nanostruct. 22, 921–927 (2014)CrossRef Taleshi, F.: A new strategy for increasing the yield of carbon nanotubes by the CVD method. Fullerenes, Nanotubes, Carbon Nanostruct. 22, 921–927 (2014)CrossRef
108.
go back to reference Taleshi, F., Hosseini, A.A.: Effect of sudden initiation and temperature on growth and diameter of carbon nanotubes synthesized by CVD method. Indian J. Phys. 87, 425–430 (2013)CrossRef Taleshi, F., Hosseini, A.A.: Effect of sudden initiation and temperature on growth and diameter of carbon nanotubes synthesized by CVD method. Indian J. Phys. 87, 425–430 (2013)CrossRef
109.
go back to reference Aksak, M., Kir, S., Selamet, Y.: Effect of the growth temperature on carbon nanotubes grown by thermal chemical vapor deposition method. J. Optoelectron. Adv. Mater. Symp. 1, 281–284 (2009) Aksak, M., Kir, S., Selamet, Y.: Effect of the growth temperature on carbon nanotubes grown by thermal chemical vapor deposition method. J. Optoelectron. Adv. Mater. Symp. 1, 281–284 (2009)
110.
go back to reference Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., Hasko, D.G., Pirio, G., Legagneux, P., Wyczisk, F., Pribat, D.: Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett. 79, 1534–1536 (2001)CrossRef Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., Hasko, D.G., Pirio, G., Legagneux, P., Wyczisk, F., Pribat, D.: Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett. 79, 1534–1536 (2001)CrossRef
111.
go back to reference Sengupta, J., Jacob, C.: Growth temperature dependence of partially Fe filled MWCNT using chemical vapor deposition. J. Cryst. Growth 311, 4692–4697 (2009)CrossRef Sengupta, J., Jacob, C.: Growth temperature dependence of partially Fe filled MWCNT using chemical vapor deposition. J. Cryst. Growth 311, 4692–4697 (2009)CrossRef
112.
go back to reference Murakami, Y., Miyauchi, Y., Chiashi, S., Maruyama, S.: Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chem. Phys. Lett. 377, 49–54 (2003)CrossRef Murakami, Y., Miyauchi, Y., Chiashi, S., Maruyama, S.: Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chem. Phys. Lett. 377, 49–54 (2003)CrossRef
113.
go back to reference Xiang, R., Einarsson, E., Okawa, J., Miyauchi, Y., Maruyama, S.: Acetylene-accelerated alcohol catalytic chemical vapor deposition growth of vertically aligned single-walled carbon nanotubes. J. Phys. Chem. C 113, 7511–7515 (2009)CrossRef Xiang, R., Einarsson, E., Okawa, J., Miyauchi, Y., Maruyama, S.: Acetylene-accelerated alcohol catalytic chemical vapor deposition growth of vertically aligned single-walled carbon nanotubes. J. Phys. Chem. C 113, 7511–7515 (2009)CrossRef
114.
go back to reference Inoue, T., Hasegawa, D., Badar, S., Aikawa, S., Chiashi, S., Maruyama, S.: Effect of gas pressure on the density of horizontally aligned single-walled carbon nanotubes grown on quartz substrates. J. Phys. Chem. C 117, 11804–11810 (2013)CrossRef Inoue, T., Hasegawa, D., Badar, S., Aikawa, S., Chiashi, S., Maruyama, S.: Effect of gas pressure on the density of horizontally aligned single-walled carbon nanotubes grown on quartz substrates. J. Phys. Chem. C 117, 11804–11810 (2013)CrossRef
115.
go back to reference Zhang, G., Mann, D., Zhang, L., Javey, A., Li, Y., Yenilmez, E., Wang, Q., McVittie, J.P., Nishi, Y., Gibbons, J., Dai, H.: Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. U.S.A. 102, 16141–16145 (2005)CrossRef Zhang, G., Mann, D., Zhang, L., Javey, A., Li, Y., Yenilmez, E., Wang, Q., McVittie, J.P., Nishi, Y., Gibbons, J., Dai, H.: Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. U.S.A. 102, 16141–16145 (2005)CrossRef
116.
go back to reference Xu, T., Miao, J.: Investigation of influence of synthesis parameters on length and purity of the CNTs grown by thermal chemical vapor deposition. In: 2010 3rd International Nanoelectronics Conference (INEC), IEEE, pp. 83–84 (2010) Xu, T., Miao, J.: Investigation of influence of synthesis parameters on length and purity of the CNTs grown by thermal chemical vapor deposition. In: 2010 3rd International Nanoelectronics Conference (INEC), IEEE, pp. 83–84 (2010)
117.
go back to reference Toussi, S.M., Fakhru’l-Razi, A., Chuah, A.L., Suraya, A.R.: Optimization of synthesis condition for carbon nanotubes by catalytic chemical vapor deposition (CCVD). In: Conference on Advanced Materials and Nanotechnology (Caman 2009), vol. 17 (2011) Toussi, S.M., Fakhru’l-Razi, A., Chuah, A.L., Suraya, A.R.: Optimization of synthesis condition for carbon nanotubes by catalytic chemical vapor deposition (CCVD). In: Conference on Advanced Materials and Nanotechnology (Caman 2009), vol. 17 (2011)
118.
go back to reference Hsu, W.K., Hare, J.P., Terrones, M., Kroto, H.W., Walton, D.R.M., Harris, P.J.F.: Condensed-phase nanotubes. Nature 377, 687 (1995)CrossRef Hsu, W.K., Hare, J.P., Terrones, M., Kroto, H.W., Walton, D.R.M., Harris, P.J.F.: Condensed-phase nanotubes. Nature 377, 687 (1995)CrossRef
119.
go back to reference Schwandt, C., Dimitrov, A.T., Fray, D.J.: The preparation of nano-structured carbon materials by electrolysis of molten lithium chloride at graphite electrodes. J. Electroanal. Chem. 647, 150–158 (2010)CrossRef Schwandt, C., Dimitrov, A.T., Fray, D.J.: The preparation of nano-structured carbon materials by electrolysis of molten lithium chloride at graphite electrodes. J. Electroanal. Chem. 647, 150–158 (2010)CrossRef
120.
go back to reference Hsu, W., Hare, J., Terrones, M., Kroto, H., Walton, D., Harris, P.: Condensed-phase nanotubes. Nature 377, 687 (1995)CrossRef Hsu, W., Hare, J., Terrones, M., Kroto, H., Walton, D., Harris, P.: Condensed-phase nanotubes. Nature 377, 687 (1995)CrossRef
121.
go back to reference Bai, J.B., Hamon, A.L., Marraud, A., Jouffrey, B., Zymla, V.: Synthesis of SWNTs and MWNTs by a molten salt (NaCl) method. Chem. Phys. Lett. 365, 184–188 (2002)CrossRef Bai, J.B., Hamon, A.L., Marraud, A., Jouffrey, B., Zymla, V.: Synthesis of SWNTs and MWNTs by a molten salt (NaCl) method. Chem. Phys. Lett. 365, 184–188 (2002)CrossRef
122.
go back to reference Kinloch, I.A., Chen, G.Z., Howes, J., Boothroyd, C., Singh, C., Fray, D.J., Windle, A.H.: Electrolytic, TEM and Raman studies on the production of carbon nanotubes in molten NaCl. Carbon 41, 1127–1141 (2003)CrossRef Kinloch, I.A., Chen, G.Z., Howes, J., Boothroyd, C., Singh, C., Fray, D.J., Windle, A.H.: Electrolytic, TEM and Raman studies on the production of carbon nanotubes in molten NaCl. Carbon 41, 1127–1141 (2003)CrossRef
123.
go back to reference Novoselova, I.A., Oliinyk, N.F., Volkov, S.V., Konchits, A.A., Yanchuk, I.B., Yefanov, V.S., Kolesnik, S.P., Karpets, M.V.: Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization. Phys. E 40, 2231–2237 (2008)CrossRef Novoselova, I.A., Oliinyk, N.F., Volkov, S.V., Konchits, A.A., Yanchuk, I.B., Yefanov, V.S., Kolesnik, S.P., Karpets, M.V.: Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization. Phys. E 40, 2231–2237 (2008)CrossRef
124.
go back to reference Dimitrov, T.A., Ademi, A., Grozdanov, A., Paunović, P.: Production and characterization of MWCNTs produced by non-stationary current regimes in molten LiCl. Appl. Mech. Mater. 328, 772–777 (2013)CrossRef Dimitrov, T.A., Ademi, A., Grozdanov, A., Paunović, P.: Production and characterization of MWCNTs produced by non-stationary current regimes in molten LiCl. Appl. Mech. Mater. 328, 772–777 (2013)CrossRef
125.
go back to reference Gogotsi, Y., Libera, J.A., Yoshimura, M.: Hydrothermal synthesis of multiwall carbon nanotubes. J. Mater. Res. 15, 2591–2594 (2000)CrossRef Gogotsi, Y., Libera, J.A., Yoshimura, M.: Hydrothermal synthesis of multiwall carbon nanotubes. J. Mater. Res. 15, 2591–2594 (2000)CrossRef
126.
go back to reference Calderon Moreno, J.M., Yoshimura, M.: Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon. J. Am. Chem. Soc. 123, 741–742 (2001)CrossRef Calderon Moreno, J.M., Yoshimura, M.: Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon. J. Am. Chem. Soc. 123, 741–742 (2001)CrossRef
127.
go back to reference Wang, W.Z., Huang, J.Y., Wang, D.Z., Ren, Z.F.: Low-temperature hydrothermal synthesis of multiwall carbon nanotubes. Carbon 43, 1328–1331 (2005)CrossRef Wang, W.Z., Huang, J.Y., Wang, D.Z., Ren, Z.F.: Low-temperature hydrothermal synthesis of multiwall carbon nanotubes. Carbon 43, 1328–1331 (2005)CrossRef
128.
go back to reference Vohs, J.K., Brege, J.J., Raymond, J.E., Brown, A.E., Williams, G.L., Fahlman, B.D.: Low-temperature growth of carbon nanotubes from the catalytic decomposition of carbon tetrachloride. J. Am. Chem. Soc. 126, 9936–9937 (2004)CrossRef Vohs, J.K., Brege, J.J., Raymond, J.E., Brown, A.E., Williams, G.L., Fahlman, B.D.: Low-temperature growth of carbon nanotubes from the catalytic decomposition of carbon tetrachloride. J. Am. Chem. Soc. 126, 9936–9937 (2004)CrossRef
129.
go back to reference Manafi, S., Nadali, H., Irani, H.R.: Low temperature synthesis of multi-walled carbon nanotubes via a sonochemical/hydrothermal method. Mater. Lett. 62, 4175–4176 (2008)CrossRef Manafi, S., Nadali, H., Irani, H.R.: Low temperature synthesis of multi-walled carbon nanotubes via a sonochemical/hydrothermal method. Mater. Lett. 62, 4175–4176 (2008)CrossRef
130.
go back to reference Manafi, S., Rahaei, M.B., Elli, Y., Joughehdoust, S.: High-yield synthesis of multi-walled carbon nanotube by hydrothermal method. Can. J. Chem. Eng. 88, 283–286 (2010) Manafi, S., Rahaei, M.B., Elli, Y., Joughehdoust, S.: High-yield synthesis of multi-walled carbon nanotube by hydrothermal method. Can. J. Chem. Eng. 88, 283–286 (2010)
131.
go back to reference Omachi, H., Nakayama, T., Takahashi, E., Segawa, Y., Itami, K.: Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat. Chem. 5, 572–576 (2013)CrossRef Omachi, H., Nakayama, T., Takahashi, E., Segawa, Y., Itami, K.: Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat. Chem. 5, 572–576 (2013)CrossRef
132.
go back to reference Omachi, H., Matsuura, S., Segawa, Y., Itami, K.: A modular and size-selective synthesis of [n]cycloparaphenylenes: a step toward the selective synthesis of [n, n] single-walled carbon nanotubes. Angew. Chem. Int. Ed. Engl. 49, 10202–10205 (2010)CrossRef Omachi, H., Matsuura, S., Segawa, Y., Itami, K.: A modular and size-selective synthesis of [n]cycloparaphenylenes: a step toward the selective synthesis of [n, n] single-walled carbon nanotubes. Angew. Chem. Int. Ed. Engl. 49, 10202–10205 (2010)CrossRef
133.
go back to reference Yagi, A., Segawa, Y., Itami, K.: Synthesis and properties of [9] cyclo-1, 4-naphthylene: a π-extended carbon nanoring. J. Am. Chem. Soc. 134, 2962–2965 (2012)CrossRef Yagi, A., Segawa, Y., Itami, K.: Synthesis and properties of [9] cyclo-1, 4-naphthylene: a π-extended carbon nanoring. J. Am. Chem. Soc. 134, 2962–2965 (2012)CrossRef
134.
go back to reference Omachi, H., Segawa, Y., Itami, K.: Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc. Chem. Res. 45, 1378–1389 (2012)CrossRef Omachi, H., Segawa, Y., Itami, K.: Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc. Chem. Res. 45, 1378–1389 (2012)CrossRef
135.
go back to reference Omachi, H., Segawa, Y., Itami, K.: Synthesis and racemization process of chiral carbon nanorings: a step toward the chemical synthesis of chiral carbon nanotubes. Org. Lett. 13, 2480–2483 (2011)CrossRef Omachi, H., Segawa, Y., Itami, K.: Synthesis and racemization process of chiral carbon nanorings: a step toward the chemical synthesis of chiral carbon nanotubes. Org. Lett. 13, 2480–2483 (2011)CrossRef
136.
go back to reference Li, H.B., Page, A.J., Irle, S., Morokuma, K.: Single-walled carbon nanotube growth from chiral carbon nanorings: prediction of chirality and diameter influence on growth rates. J. Am. Chem. Soc. 134, 15887–15896 (2012)CrossRef Li, H.B., Page, A.J., Irle, S., Morokuma, K.: Single-walled carbon nanotube growth from chiral carbon nanorings: prediction of chirality and diameter influence on growth rates. J. Am. Chem. Soc. 134, 15887–15896 (2012)CrossRef
137.
go back to reference Fort, E.H., Scott, L.T.: Gas-phase Diels-Alder cycloaddition of benzyne to an aromatic hydrocarbon bay region: groundwork for the selective solvent-free growth of armchair carbon nanotubes. Tetrahedron Lett. 52, 2051–2053 (2011)CrossRef Fort, E.H., Scott, L.T.: Gas-phase Diels-Alder cycloaddition of benzyne to an aromatic hydrocarbon bay region: groundwork for the selective solvent-free growth of armchair carbon nanotubes. Tetrahedron Lett. 52, 2051–2053 (2011)CrossRef
138.
go back to reference Berson, J.A.: Discoveries missed, discoveries made: creativity, influence, and fame in chemistry. Tetrahedron 48, 3–17 (1992)CrossRef Berson, J.A.: Discoveries missed, discoveries made: creativity, influence, and fame in chemistry. Tetrahedron 48, 3–17 (1992)CrossRef
139.
go back to reference Fort, E.H., Scott, L.T.: Carbon nanotubes from short hydrocarbon templates. Energy analysis of the Diels-Alder cycloaddition/rearomatization growth strategy. J. Mater. Chem. 21, 1373–1381 (2011)CrossRef Fort, E.H., Scott, L.T.: Carbon nanotubes from short hydrocarbon templates. Energy analysis of the Diels-Alder cycloaddition/rearomatization growth strategy. J. Mater. Chem. 21, 1373–1381 (2011)CrossRef
140.
go back to reference Smalley, R.E., Li, Y., Moore, V.C., Price, B.K., Colorado Jr., R., Schmidt, H.K., Hauge, R.H., Barron, A.R., Tour, J.M.: Single wall carbon nanotube amplification: en route to a type-specific growth mechanism. J. Am. Chem. Soc. 128, 15824–15829 (2006)CrossRef Smalley, R.E., Li, Y., Moore, V.C., Price, B.K., Colorado Jr., R., Schmidt, H.K., Hauge, R.H., Barron, A.R., Tour, J.M.: Single wall carbon nanotube amplification: en route to a type-specific growth mechanism. J. Am. Chem. Soc. 128, 15824–15829 (2006)CrossRef
141.
go back to reference Scott, C.D., Arepalli, S., Nikolaev, P., Smalley, R.E.: Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. Mater. 72, 573–580 (2001)CrossRef Scott, C.D., Arepalli, S., Nikolaev, P., Smalley, R.E.: Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. Mater. 72, 573–580 (2001)CrossRef
142.
go back to reference Xia, J., Golder, M.R., Foster, M.E., Wong, B.M., Jasti, R.: Synthesis, characterization, and computational studies of cycloparaphenylene dimers. J. Am. Chem. Soc. 134, 19709–19715 (2012)CrossRef Xia, J., Golder, M.R., Foster, M.E., Wong, B.M., Jasti, R.: Synthesis, characterization, and computational studies of cycloparaphenylene dimers. J. Am. Chem. Soc. 134, 19709–19715 (2012)CrossRef
143.
go back to reference Jasti, R., Bertozzi, C.R.: Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality. Chem. Phys. Lett. 494, 1–7 (2010)CrossRef Jasti, R., Bertozzi, C.R.: Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality. Chem. Phys. Lett. 494, 1–7 (2010)CrossRef
144.
go back to reference Price, C.C.: The alkylation of aromatic compounds by the Friedel-Crafts method. Org. React. (1946) Price, C.C.: The alkylation of aromatic compounds by the Friedel-Crafts method. Org. React. (1946)
145.
go back to reference Arndtsen, B.A., Bergman, R.G., Mobley, T.A., Peterson, T.H.: Selective intermolecular carbon-hydrogen bond activation by synthetic metal complexes in homogeneous solution. Acc. Chem. Res. 28, 154–162 (1995)CrossRef Arndtsen, B.A., Bergman, R.G., Mobley, T.A., Peterson, T.H.: Selective intermolecular carbon-hydrogen bond activation by synthetic metal complexes in homogeneous solution. Acc. Chem. Res. 28, 154–162 (1995)CrossRef
Metadata
Title
Carbon Nanotubes Synthesis
Authors
Rasel Das
Sayonthoni Das Tuhi
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-95603-9_3

Premium Partners