Skip to main content
Top

2024 | OriginalPaper | Chapter

Carbon Quantum Dots for Medical Applications

Authors : Chelladurai Karthikeyan Balavigneswaran, Vignesh Muthuvijayan

Published in: Nanoparticles in Modern Antimicrobial and Antiviral Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Despite the rapid development of science and technology, infection threatens human’s life. Infections are caused by the growing global population and increasing contamination of water and air. Antibiotics are generally prescribed to treat microbial infections. However, many microorganisms have mutated and developed resistance against antibiotics. Nanomaterials have been presently studied to use as an alternative to antibiotics, due to their advantageous properties and unique mechanisms of action towards microbes. Among various nanomaterials, carbon dots have attracted huge interest due to their unique physical, chemical, electrical, and biological properties. This book chapter explicitly targets the applications of carbon dots as antimicrobial agents and their toxicity effects in humans. In this chapter, various synthesis methods to control the physiochemical properties of carbon dots have been discussed. In addition, the antimicrobial and antiviral properties of carbon dots have been discussed. Notably, their mechanism of actions against various microbes has been discussed in detail. I believe this chapter will provide insights to readers on developing carbon dots for various biomedical applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abushaheen, M. A., Fatani, A. J., Alosaimi, M., Mansy, W., George, M., Acharya, S., et al. (2020). Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-Month, 66(6), 100971.PubMedCrossRef Abushaheen, M. A., Fatani, A. J., Alosaimi, M., Mansy, W., George, M., Acharya, S., et al. (2020). Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-Month, 66(6), 100971.PubMedCrossRef
go back to reference Adcock, A. F., Wang, P., Ferguson, I. S., Obu, S. C., Sun, Y.-P., & Yang, L. (2022). Inactivation of vesicular stomatitis virus with light-activated carbon dots and mechanistic implications. ACS Applied Bio Materials, 5(7), 3158–3166.PubMedCrossRef Adcock, A. F., Wang, P., Ferguson, I. S., Obu, S. C., Sun, Y.-P., & Yang, L. (2022). Inactivation of vesicular stomatitis virus with light-activated carbon dots and mechanistic implications. ACS Applied Bio Materials, 5(7), 3158–3166.PubMedCrossRef
go back to reference Anand, A., Unnikrishnan, B., Wei, S.-C., Chou, C. P., Zhang, L.-Z., & Huang, C.-C. (2019). Graphene oxide and carbon dots as broad-spectrum antimicrobial agents – A minireview. Nanoscale Horizons, 4(1), 117–137.PubMedCrossRef Anand, A., Unnikrishnan, B., Wei, S.-C., Chou, C. P., Zhang, L.-Z., & Huang, C.-C. (2019). Graphene oxide and carbon dots as broad-spectrum antimicrobial agents – A minireview. Nanoscale Horizons, 4(1), 117–137.PubMedCrossRef
go back to reference Anwar, S., Ding, H., Xu, M., Hu, X., Li, Z., Wang, J., et al. (2019). Recent advances in synthesis, optical properties, and biomedical applications of carbon dots. ACS Applied Bio Materials, 2(6), 2317–2338.PubMedCrossRef Anwar, S., Ding, H., Xu, M., Hu, X., Li, Z., Wang, J., et al. (2019). Recent advances in synthesis, optical properties, and biomedical applications of carbon dots. ACS Applied Bio Materials, 2(6), 2317–2338.PubMedCrossRef
go back to reference Aung, Y. Y., Kristanti, A. N., Khairunisa, S. Q., Nasronudin, N., & Fahmi, M. Z. (2020). Inactivation of HIV-1 infection through integrative blocking with amino phenylboronic acid attributed carbon dots. ACS Biomaterials Science & Engineering, 6(8), 4490–4501.CrossRef Aung, Y. Y., Kristanti, A. N., Khairunisa, S. Q., Nasronudin, N., & Fahmi, M. Z. (2020). Inactivation of HIV-1 infection through integrative blocking with amino phenylboronic acid attributed carbon dots. ACS Biomaterials Science & Engineering, 6(8), 4490–4501.CrossRef
go back to reference Bao, L., Zhang, Z. L., Tian, Z. Q., Zhang, L., Liu, C., Lin, Y., et al. (2011). Electrochemical tuning of luminescent carbon nanodots: From preparation to luminescence mechanism. Advanced Materials, 23(48), 5801–5806.PubMedCrossRef Bao, L., Zhang, Z. L., Tian, Z. Q., Zhang, L., Liu, C., Lin, Y., et al. (2011). Electrochemical tuning of luminescent carbon nanodots: From preparation to luminescence mechanism. Advanced Materials, 23(48), 5801–5806.PubMedCrossRef
go back to reference Barras, A., Pagneux, Q., Sane, F., Wang, Q., Boukherroub, R., Hober, D., & Szunerits, S. (2016). High efficiency of functional carbon nanodots as entry inhibitors of herpes simplex virus type 1. ACS Applied Materials & Interfaces, 8(14), 9004–9013.CrossRef Barras, A., Pagneux, Q., Sane, F., Wang, Q., Boukherroub, R., Hober, D., & Szunerits, S. (2016). High efficiency of functional carbon nanodots as entry inhibitors of herpes simplex virus type 1. ACS Applied Materials & Interfaces, 8(14), 9004–9013.CrossRef
go back to reference Belza, J., Opletalová, A., & Poláková, K. (2021). Carbon dots for virus detection and therapy. Microchimica Acta, 188, 1–23.CrossRef Belza, J., Opletalová, A., & Poláková, K. (2021). Carbon dots for virus detection and therapy. Microchimica Acta, 188, 1–23.CrossRef
go back to reference Bing, W., Sun, H., Yan, Z., Ren, J., & Qu, X. (2016). Programmed bacteria death induced by carbon dots with different surface charge. Small, 12(34), 4713–4718.PubMedCrossRef Bing, W., Sun, H., Yan, Z., Ren, J., & Qu, X. (2016). Programmed bacteria death induced by carbon dots with different surface charge. Small, 12(34), 4713–4718.PubMedCrossRef
go back to reference Bloom, D. E., & Cadarette, D. (2019). Infectious disease threats in the twenty-first century: Strengthening the global response. Frontiers in Immunology, 10, 549.PubMedPubMedCentralCrossRef Bloom, D. E., & Cadarette, D. (2019). Infectious disease threats in the twenty-first century: Strengthening the global response. Frontiers in Immunology, 10, 549.PubMedPubMedCentralCrossRef
go back to reference Choi, Y., Choi, Y., Kwon, O. H., & Kim, B. S. (2018). Carbon dots: Bottom-up syntheses, properties, and light-harvesting applications. Chemistry – An Asian Journal, 13(6), 586–598.PubMedCrossRef Choi, Y., Choi, Y., Kwon, O. H., & Kim, B. S. (2018). Carbon dots: Bottom-up syntheses, properties, and light-harvesting applications. Chemistry – An Asian Journal, 13(6), 586–598.PubMedCrossRef
go back to reference Chung, C.-Y., Chen, Y.-J., Kang, C.-H., Lin, H.-Y., Huang, C.-C., Hsu, P.-H., & Lin, H.-J. (2021). Toxic or not toxic, that is the carbon quantum dot’s question: A comprehensive evaluation with zebrafish embryo, eleutheroembryo, and adult models. Polymers, 13(10), 1598.PubMedPubMedCentralCrossRef Chung, C.-Y., Chen, Y.-J., Kang, C.-H., Lin, H.-Y., Huang, C.-C., Hsu, P.-H., & Lin, H.-J. (2021). Toxic or not toxic, that is the carbon quantum dot’s question: A comprehensive evaluation with zebrafish embryo, eleutheroembryo, and adult models. Polymers, 13(10), 1598.PubMedPubMedCentralCrossRef
go back to reference Crofts, T. S., Gasparrini, A. J., & Dantas, G. (2017). Next-generation approaches to understand and combat the antibiotic resistome. Nature Reviews Microbiology, 15(7), 422–434.PubMedPubMedCentralCrossRef Crofts, T. S., Gasparrini, A. J., & Dantas, G. (2017). Next-generation approaches to understand and combat the antibiotic resistome. Nature Reviews Microbiology, 15(7), 422–434.PubMedPubMedCentralCrossRef
go back to reference da Silva Júnior, A. H., Macuvele, D. L. P., Riella, H. G., Soares, C., & Padoin, N. (2021). Are carbon dots effective for ion sensing and antiviral applications? A state-of-the-art description from synthesis methods to cost evaluation. Journal of Materials Research and Technology, 12, 688–716.CrossRef da Silva Júnior, A. H., Macuvele, D. L. P., Riella, H. G., Soares, C., & Padoin, N. (2021). Are carbon dots effective for ion sensing and antiviral applications? A state-of-the-art description from synthesis methods to cost evaluation. Journal of Materials Research and Technology, 12, 688–716.CrossRef
go back to reference Dik, D. A., Fisher, J. F., & Mobashery, S. (2018). Cell-wall recycling of the gram-negative bacteria and the nexus to antibiotic resistance. Chemical Reviews, 118(12), 5952–5984.PubMedPubMedCentralCrossRef Dik, D. A., Fisher, J. F., & Mobashery, S. (2018). Cell-wall recycling of the gram-negative bacteria and the nexus to antibiotic resistance. Chemical Reviews, 118(12), 5952–5984.PubMedPubMedCentralCrossRef
go back to reference Dong, X., Awak, M. A., Tomlinson, N., Tang, Y., Sun, Y.-P., & Yang, L. (2017a). Antibacterial effects of carbon dots in combination with other antimicrobial reagents. PLoS One, 12(9), e0185324.PubMedPubMedCentralCrossRef Dong, X., Awak, M. A., Tomlinson, N., Tang, Y., Sun, Y.-P., & Yang, L. (2017a). Antibacterial effects of carbon dots in combination with other antimicrobial reagents. PLoS One, 12(9), e0185324.PubMedPubMedCentralCrossRef
go back to reference Dong, X., Moyer, M. M., Yang, F., Sun, Y.-P., & Yang, L. (2017b). Carbon dots’ antiviral functions against noroviruses. Scientific Reports, 7(1), 519.PubMedPubMedCentralCrossRef Dong, X., Moyer, M. M., Yang, F., Sun, Y.-P., & Yang, L. (2017b). Carbon dots’ antiviral functions against noroviruses. Scientific Reports, 7(1), 519.PubMedPubMedCentralCrossRef
go back to reference Du, T., Liang, J., Dong, N., Liu, L., Fang, L., Xiao, S., & Han, H. (2016). Carbon dots as inhibitors of virus by activation of type I interferon response. Carbon, 110, 278–285.CrossRef Du, T., Liang, J., Dong, N., Liu, L., Fang, L., Xiao, S., & Han, H. (2016). Carbon dots as inhibitors of virus by activation of type I interferon response. Carbon, 110, 278–285.CrossRef
go back to reference Emam, H. E., & Ahmed, H. B. (2021). Antitumor/antiviral carbon quantum dots based on carrageenan and pullulan. International Journal of Biological Macromolecules, 170, 688–700.PubMedCrossRef Emam, H. E., & Ahmed, H. B. (2021). Antitumor/antiviral carbon quantum dots based on carrageenan and pullulan. International Journal of Biological Macromolecules, 170, 688–700.PubMedCrossRef
go back to reference Fahmi, M., Sukmayani, W., Khairunisa, S. Q., Witaningrum, A., Indriati, D., Matondang, M., et al. (2016). Design of boronic acid-attributed carbon dots on inhibits HIV-1 entry. RSC Advances, 6(95), 92996–93002.CrossRef Fahmi, M., Sukmayani, W., Khairunisa, S. Q., Witaningrum, A., Indriati, D., Matondang, M., et al. (2016). Design of boronic acid-attributed carbon dots on inhibits HIV-1 entry. RSC Advances, 6(95), 92996–93002.CrossRef
go back to reference Fu, F., Pan, X., Huang, R., Luo, L., Huang, F., Li, W., et al. (2022). Immunoregulatory activity of herbal tea-derived carbon dots. ACS Applied Bio Materials, 5(4), 1604–1609.PubMedCrossRef Fu, F., Pan, X., Huang, R., Luo, L., Huang, F., Li, W., et al. (2022). Immunoregulatory activity of herbal tea-derived carbon dots. ACS Applied Bio Materials, 5(4), 1604–1609.PubMedCrossRef
go back to reference Garg, P., Sangam, S., Kochhar, D., Pahari, S., Kar, C., & Mukherjee, M. (2020). Exploring the role of triazole functionalized heteroatom co-doped carbon quantum dots against human coronaviruses. Nano Today, 35, 101001.PubMedPubMedCentralCrossRef Garg, P., Sangam, S., Kochhar, D., Pahari, S., Kar, C., & Mukherjee, M. (2020). Exploring the role of triazole functionalized heteroatom co-doped carbon quantum dots against human coronaviruses. Nano Today, 35, 101001.PubMedPubMedCentralCrossRef
go back to reference Geng, B., Li, Y., Hu, J., Chen, Y., Huang, J., Shen, L., et al. (2022). Graphitic-N-doped graphene quantum dots for photothermal eradication of multidrug-resistant bacteria in the second near-infrared window. Journal of Materials Chemistry B, 10(17), 3357–3365.PubMedCrossRef Geng, B., Li, Y., Hu, J., Chen, Y., Huang, J., Shen, L., et al. (2022). Graphitic-N-doped graphene quantum dots for photothermal eradication of multidrug-resistant bacteria in the second near-infrared window. Journal of Materials Chemistry B, 10(17), 3357–3365.PubMedCrossRef
go back to reference Guo, B., Liu, G., Hu, C., Lei, B., & Liu, Y. (2022). The structural characteristics and mechanisms of antimicrobial carbon dots: A mini review (Vol. 3, p. 7726). Materials Advances. Guo, B., Liu, G., Hu, C., Lei, B., & Liu, Y. (2022). The structural characteristics and mechanisms of antimicrobial carbon dots: A mini review (Vol. 3, p. 7726). Materials Advances.
go back to reference Gurunathan, S., Qasim, M., Choi, Y., Do, J. T., Park, C., Hong, K., et al. (2020). Antiviral potential of nanoparticles—Can nanoparticles fight against coronaviruses? Nanomaterials, 10(9), 1645.PubMedPubMedCentralCrossRef Gurunathan, S., Qasim, M., Choi, Y., Do, J. T., Park, C., Hong, K., et al. (2020). Antiviral potential of nanoparticles—Can nanoparticles fight against coronaviruses? Nanomaterials, 10(9), 1645.PubMedPubMedCentralCrossRef
go back to reference Hong, G., Diao, S., Antaris, A. L., & Dai, H. (2015). Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chemical Reviews, 115(19), 10816–10906.PubMedCrossRef Hong, G., Diao, S., Antaris, A. L., & Dai, H. (2015). Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chemical Reviews, 115(19), 10816–10906.PubMedCrossRef
go back to reference Huang, S., Gu, J., Ye, J., Fang, B., Wan, S., Wang, C., et al. (2019). Benzoxazine monomer derived carbon dots as a broad-spectrum agent to block viral infectivity. Journal of Colloid and Interface Science, 542, 198–206.PubMedCrossRef Huang, S., Gu, J., Ye, J., Fang, B., Wan, S., Wang, C., et al. (2019). Benzoxazine monomer derived carbon dots as a broad-spectrum agent to block viral infectivity. Journal of Colloid and Interface Science, 542, 198–206.PubMedCrossRef
go back to reference Huang, S., Li, B., Ashraf, U., Li, Q., Lu, X., Gao, X., et al. (2020). Quaternized cationic carbon dots as antigen delivery systems for improving humoral and cellular immune responses. ACS Applied Nano Materials, 3(9), 9449–9461.CrossRef Huang, S., Li, B., Ashraf, U., Li, Q., Lu, X., Gao, X., et al. (2020). Quaternized cationic carbon dots as antigen delivery systems for improving humoral and cellular immune responses. ACS Applied Nano Materials, 3(9), 9449–9461.CrossRef
go back to reference Iannazzo, D., Pistone, A., Ferro, S., De Luca, L., Monforte, A. M., Romeo, R., et al. (2018). Graphene quantum dots based systems as HIV inhibitors. Bioconjugate Chemistry, 29(9), 3084–3093.PubMedCrossRef Iannazzo, D., Pistone, A., Ferro, S., De Luca, L., Monforte, A. M., Romeo, R., et al. (2018). Graphene quantum dots based systems as HIV inhibitors. Bioconjugate Chemistry, 29(9), 3084–3093.PubMedCrossRef
go back to reference Jian, H.-J., Wu, R.-S., Lin, T.-Y., Li, Y.-J., Lin, H.-J., Harroun, S. G., et al. (2017). Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano, 11(7), 6703–6716.PubMedCrossRef Jian, H.-J., Wu, R.-S., Lin, T.-Y., Li, Y.-J., Lin, H.-J., Harroun, S. G., et al. (2017). Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano, 11(7), 6703–6716.PubMedCrossRef
go back to reference Ju, E., Li, T., Liu, Z., da Silva, S. R., Wei, S., Zhang, X., et al. (2020). Specific inhibition of viral MicroRNAs by carbon dots-mediated delivery of locked nucleic acids for therapy of virus-induced cancer. ACS Nano, 14(1), 476–487.PubMedPubMedCentralCrossRef Ju, E., Li, T., Liu, Z., da Silva, S. R., Wei, S., Zhang, X., et al. (2020). Specific inhibition of viral MicroRNAs by carbon dots-mediated delivery of locked nucleic acids for therapy of virus-induced cancer. ACS Nano, 14(1), 476–487.PubMedPubMedCentralCrossRef
go back to reference Lee, Y.-S., Sung, J.-H., Song, K.-S., Kim, J.-K., Choi, B.-S., Yu, I.-J., & Park, J.-D. (2019). Derivation of occupational exposure limits for multi-walled carbon nanotubes and graphene using subchronic inhalation toxicity data and a multi-path particle dosimetry model. Toxicology Research, 8(4), 580–586.PubMedPubMedCentralCrossRef Lee, Y.-S., Sung, J.-H., Song, K.-S., Kim, J.-K., Choi, B.-S., Yu, I.-J., & Park, J.-D. (2019). Derivation of occupational exposure limits for multi-walled carbon nanotubes and graphene using subchronic inhalation toxicity data and a multi-path particle dosimetry model. Toxicology Research, 8(4), 580–586.PubMedPubMedCentralCrossRef
go back to reference Li, Y. J., Harroun, S. G., Su, Y. C., Huang, C. F., Unnikrishnan, B., Lin, H. J., et al. (2016). Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria. Advanced Healthcare Materials, 5(19), 2545–2554.PubMedCrossRef Li, Y. J., Harroun, S. G., Su, Y. C., Huang, C. F., Unnikrishnan, B., Lin, H. J., et al. (2016). Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria. Advanced Healthcare Materials, 5(19), 2545–2554.PubMedCrossRef
go back to reference Li, H., Huang, J., Song, Y., Zhang, M., Wang, H., Lu, F., et al. (2018a). Degradable carbon dots with broad-spectrum antibacterial activity. ACS Applied Materials & Interfaces, 10(32), 26936–26946.CrossRef Li, H., Huang, J., Song, Y., Zhang, M., Wang, H., Lu, F., et al. (2018a). Degradable carbon dots with broad-spectrum antibacterial activity. ACS Applied Materials & Interfaces, 10(32), 26936–26946.CrossRef
go back to reference Li, S., Guo, Z., Zeng, G., Zhang, Y., Xue, W., & Liu, Z. (2018b). Polyethylenimine-modified fluorescent carbon dots as vaccine delivery system for intranasal immunization. ACS Biomaterials Science & Engineering, 4(1), 142–150.CrossRef Li, S., Guo, Z., Zeng, G., Zhang, Y., Xue, W., & Liu, Z. (2018b). Polyethylenimine-modified fluorescent carbon dots as vaccine delivery system for intranasal immunization. ACS Biomaterials Science & Engineering, 4(1), 142–150.CrossRef
go back to reference Li, Y., Liu, W., Sun, C., Zheng, M., Zhang, J., Liu, B., et al. (2018c). Hybrids of carbon dots with subunit B of ricin toxin for enhanced immunomodulatory activity. Journal of Colloid and Interface Science, 523, 226–233.PubMedCrossRef Li, Y., Liu, W., Sun, C., Zheng, M., Zhang, J., Liu, B., et al. (2018c). Hybrids of carbon dots with subunit B of ricin toxin for enhanced immunomodulatory activity. Journal of Colloid and Interface Science, 523, 226–233.PubMedCrossRef
go back to reference Li, L., Chen, L., Lu, Y., Li, B., Hu, R., Huang, L., et al. (2022a). Aggregated carbon dots-loaded macrophages treat sepsis by eliminating multidrug-resistant bacteria and attenuating inflammation. Aggregate, e200. Li, L., Chen, L., Lu, Y., Li, B., Hu, R., Huang, L., et al. (2022a). Aggregated carbon dots-loaded macrophages treat sepsis by eliminating multidrug-resistant bacteria and attenuating inflammation. Aggregate, e200.
go back to reference Li, P., Sun, L., Xue, S., Qu, D., An, L., Wang, X., & Sun, Z. (2022b). Recent advances of carbon dots as new antimicrobial agents. Smart Mat, 3(2), 226–248. Li, P., Sun, L., Xue, S., Qu, D., An, L., Wang, X., & Sun, Z. (2022b). Recent advances of carbon dots as new antimicrobial agents. Smart Mat, 3(2), 226–248.
go back to reference Lin, Y.-C., Tsai, D.-C., Chang, Z.-C., & Shieu, F.-S. (2018). Ultrasonic chemical synthesis of CdS-reduced graphene oxide nanocomposites with an enhanced visible light photoactivity. Applied Surface Science, 440, 1227–1234.CrossRef Lin, Y.-C., Tsai, D.-C., Chang, Z.-C., & Shieu, F.-S. (2018). Ultrasonic chemical synthesis of CdS-reduced graphene oxide nanocomposites with an enhanced visible light photoactivity. Applied Surface Science, 440, 1227–1234.CrossRef
go back to reference Liu, Y., Huang, H., Cao, W., Mao, B., Liu, Y., & Kang, Z. (2020). Advances in carbon dots: From the perspective of traditional quantum dots. Materials Chemistry Frontiers, 4(6), 1586–1613.CrossRef Liu, Y., Huang, H., Cao, W., Mao, B., Liu, Y., & Kang, Z. (2020). Advances in carbon dots: From the perspective of traditional quantum dots. Materials Chemistry Frontiers, 4(6), 1586–1613.CrossRef
go back to reference Łoczechin, A., Séron, K., Barras, A., Giovanelli, E., Belouzard, S., Chen, Y.-T., et al. (2019). Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Applied Materials & Interfaces, 11(46), 42964–42974.CrossRef Łoczechin, A., Séron, K., Barras, A., Giovanelli, E., Belouzard, S., Chen, Y.-T., et al. (2019). Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Applied Materials & Interfaces, 11(46), 42964–42974.CrossRef
go back to reference Luo, L., Liu, C., He, T., Zeng, L., Xing, J., Xia, Y., et al. (2018). Engineered fluorescent carbon dots as promising immune adjuvants to efficiently enhance cancer immunotherapy. Nanoscale, 10(46), 22035–22043.PubMedCrossRef Luo, L., Liu, C., He, T., Zeng, L., Xing, J., Xia, Y., et al. (2018). Engineered fluorescent carbon dots as promising immune adjuvants to efficiently enhance cancer immunotherapy. Nanoscale, 10(46), 22035–22043.PubMedCrossRef
go back to reference Miller, S. I. (2016). Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules. MBio, 7(5), e01541–e01516.PubMedPubMedCentralCrossRef Miller, S. I. (2016). Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules. MBio, 7(5), e01541–e01516.PubMedPubMedCentralCrossRef
go back to reference Nanaki, S. G., Spyrou, K., Veneti, P., Karouta, N., Gournis, D., Baroud, T. N., et al. (2022). L-cysteine modified chitosan nanoparticles and carbon-based nanostructures for the intranasal delivery of Galantamine. Polymers, 14(19), 4004.PubMedPubMedCentralCrossRef Nanaki, S. G., Spyrou, K., Veneti, P., Karouta, N., Gournis, D., Baroud, T. N., et al. (2022). L-cysteine modified chitosan nanoparticles and carbon-based nanostructures for the intranasal delivery of Galantamine. Polymers, 14(19), 4004.PubMedPubMedCentralCrossRef
go back to reference Organization, W. H. (2014). Antimicrobial resistance global report on surveillance: 2014 summary. World Health. Organization. Organization, W. H. (2014). Antimicrobial resistance global report on surveillance: 2014 summary. World Health. Organization.
go back to reference Pierrat, P., Wang, R., Kereselidze, D., Lux, M., Didier, P., Kichler, A., et al. (2015). Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials, 51, 290–302.PubMedCrossRef Pierrat, P., Wang, R., Kereselidze, D., Lux, M., Didier, P., Kichler, A., et al. (2015). Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials, 51, 290–302.PubMedCrossRef
go back to reference Raghunath, A., & Perumal, E. (2017). Metal oxide nanoparticles as antimicrobial agents: A promise for the future. International Journal of Antimicrobial Agents, 49(2), 137–152.PubMedCrossRef Raghunath, A., & Perumal, E. (2017). Metal oxide nanoparticles as antimicrobial agents: A promise for the future. International Journal of Antimicrobial Agents, 49(2), 137–152.PubMedCrossRef
go back to reference Reina, G., Peng, S., Jacquemin, L., Andrade, A. F., & Bianco, A. (2020). Hard nanomaterials in time of viral pandemics. ACS Nano, 14(8), 9364–9388.PubMedCrossRef Reina, G., Peng, S., Jacquemin, L., Andrade, A. F., & Bianco, A. (2020). Hard nanomaterials in time of viral pandemics. ACS Nano, 14(8), 9364–9388.PubMedCrossRef
go back to reference Salman, B. I., Ibrahim, A. E., El Deeb, S., & Saraya, R. E. (2022). Fabrication of novel quantum dots for the estimation of COVID-19 antiviral drug using green chemistry: Application to real human plasma. RSC Advances, 12(26), 16624–16631.PubMedPubMedCentralCrossRef Salman, B. I., Ibrahim, A. E., El Deeb, S., & Saraya, R. E. (2022). Fabrication of novel quantum dots for the estimation of COVID-19 antiviral drug using green chemistry: Application to real human plasma. RSC Advances, 12(26), 16624–16631.PubMedPubMedCentralCrossRef
go back to reference Santajit, S., & Indrawattana, N. (2016). Mechanisms of antimicrobial resistance in ESKAPE pathogens (Vol. 2016, p. 1). BioMed Research International. Santajit, S., & Indrawattana, N. (2016). Mechanisms of antimicrobial resistance in ESKAPE pathogens (Vol. 2016, p. 1). BioMed Research International.
go back to reference Santos, I. D. A., Grosche, V. R., Bergamini, F. R. G., Sabino-Silva, R., & Jardim, A. C. G. (2020). Antivirals against coronaviruses: Candidate drugs for SARS-CoV-2 treatment? Frontiers in Microbiology, 11, 1818.PubMedPubMedCentralCrossRef Santos, I. D. A., Grosche, V. R., Bergamini, F. R. G., Sabino-Silva, R., & Jardim, A. C. G. (2020). Antivirals against coronaviruses: Candidate drugs for SARS-CoV-2 treatment? Frontiers in Microbiology, 11, 1818.PubMedPubMedCentralCrossRef
go back to reference Seabra, A. B., Paula, A. J., de Lima, R., Alves, O. L., & Durán, N. (2014). Nanotoxicity of graphene and graphene oxide. Chemical Research in Toxicology, 27(2), 159–168.PubMedCrossRef Seabra, A. B., Paula, A. J., de Lima, R., Alves, O. L., & Durán, N. (2014). Nanotoxicity of graphene and graphene oxide. Chemical Research in Toxicology, 27(2), 159–168.PubMedCrossRef
go back to reference Serrano-Aroca, Á., Takayama, K., Tuñón-Molina, A., Seyran, M., Hassan, S. S., Pal Choudhury, P., et al. (2021). Carbon-based nanomaterials: Promising antiviral agents to combat COVID-19 in the microbial-resistant era. ACS Nano, 15(5), 8069–8086.PubMedCrossRef Serrano-Aroca, Á., Takayama, K., Tuñón-Molina, A., Seyran, M., Hassan, S. S., Pal Choudhury, P., et al. (2021). Carbon-based nanomaterials: Promising antiviral agents to combat COVID-19 in the microbial-resistant era. ACS Nano, 15(5), 8069–8086.PubMedCrossRef
go back to reference Sima, M., Vrbova, K., Zavodna, T., Honkova, K., Chvojkova, I., Ambroz, A., et al. (2020). The differential effect of carbon dots on gene expression and DNA methylation of human embryonic lung fibroblasts as a function of surface charge and dose. International Journal of Molecular Sciences, 21(13), 4763.PubMedPubMedCentralCrossRef Sima, M., Vrbova, K., Zavodna, T., Honkova, K., Chvojkova, I., Ambroz, A., et al. (2020). The differential effect of carbon dots on gene expression and DNA methylation of human embryonic lung fibroblasts as a function of surface charge and dose. International Journal of Molecular Sciences, 21(13), 4763.PubMedPubMedCentralCrossRef
go back to reference Su, W., Tan, M., Wang, Z., Zhang, J., Huang, W., Song, H., et al. (2023). Targeted degradation of PD-L1 and activation of the STING pathway by carbon-dot-based PROTACs for cancer immunotherapy. Angewandte Chemie International Edition, 62(11), e202218128.PubMedCrossRef Su, W., Tan, M., Wang, Z., Zhang, J., Huang, W., Song, H., et al. (2023). Targeted degradation of PD-L1 and activation of the STING pathway by carbon-dot-based PROTACs for cancer immunotherapy. Angewandte Chemie International Edition, 62(11), e202218128.PubMedCrossRef
go back to reference Tao, H., Yang, K., Ma, Z., Wan, J., Zhang, Y., Kang, Z., & Liu, Z. (2012). In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small, 8(2), 281–290.PubMedCrossRef Tao, H., Yang, K., Ma, Z., Wan, J., Zhang, Y., Kang, Z., & Liu, Z. (2012). In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small, 8(2), 281–290.PubMedCrossRef
go back to reference Thakur, M., Pandey, S., Mewada, A., Patil, V., Khade, M., Goshi, E., & Sharon, M. (2014). Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. Journal of drug delivery, 2014. Thakur, M., Pandey, S., Mewada, A., Patil, V., Khade, M., Goshi, E., & Sharon, M. (2014). Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. Journal of drug delivery, 2014.
go back to reference Ting, D., Dong, N., Fang, L., Lu, J., Bi, J., Xiao, S., & Han, H. (2018). Multisite inhibitors for enteric coronavirus: Antiviral cationic carbon dots based on curcumin. ACS Applied Nano Materials, 1(10), 5451–5459.CrossRef Ting, D., Dong, N., Fang, L., Lu, J., Bi, J., Xiao, S., & Han, H. (2018). Multisite inhibitors for enteric coronavirus: Antiviral cationic carbon dots based on curcumin. ACS Applied Nano Materials, 1(10), 5451–5459.CrossRef
go back to reference Tong, T., Hu, H., Zhou, J., Deng, S., Zhang, X., Tang, W., et al. (2020). Glycyrrhizic-acid-based carbon dots with high antiviral activity by multisite inhibition mechanisms. Small, 16(13), 1906206.PubMedPubMedCentralCrossRef Tong, T., Hu, H., Zhou, J., Deng, S., Zhang, X., Tang, W., et al. (2020). Glycyrrhizic-acid-based carbon dots with high antiviral activity by multisite inhibition mechanisms. Small, 16(13), 1906206.PubMedPubMedCentralCrossRef
go back to reference Truskewycz, A., Yin, H., Halberg, N., Lai, D. T., Ball, A. S., Truong, V. K., et al. (2022). Carbon dot therapeutic platforms: Administration, distribution, metabolism, excretion, toxicity, and therapeutic potential. Small, 18(16), 2106342.CrossRef Truskewycz, A., Yin, H., Halberg, N., Lai, D. T., Ball, A. S., Truong, V. K., et al. (2022). Carbon dot therapeutic platforms: Administration, distribution, metabolism, excretion, toxicity, and therapeutic potential. Small, 18(16), 2106342.CrossRef
go back to reference Windsor, I. W., Palte, M. J., Lukesh, J. C., III, Gold, B., Forest, K. T., & Raines, R. T. (2018). Sub-picomolar inhibition of HIV-1 protease with a boronic acid. Journal of the American Chemical Society, 140(43), 14015–14018.PubMedPubMedCentralCrossRef Windsor, I. W., Palte, M. J., Lukesh, J. C., III, Gold, B., Forest, K. T., & Raines, R. T. (2018). Sub-picomolar inhibition of HIV-1 protease with a boronic acid. Journal of the American Chemical Society, 140(43), 14015–14018.PubMedPubMedCentralCrossRef
go back to reference Wu, Y.-F., Wu, H.-C., Kuan, C.-H., Lin, C.-J., Wang, L.-W., Chang, C.-W., & Wang, T.-W. (2016). Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Scientific Reports, 6(1), 1–12. Wu, Y.-F., Wu, H.-C., Kuan, C.-H., Lin, C.-J., Wang, L.-W., Chang, C.-W., & Wang, T.-W. (2016). Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Scientific Reports, 6(1), 1–12.
go back to reference Wu, Z. L., Liu, Z. X., & Yuan, Y. H. (2017). Carbon dots: Materials, synthesis, properties and approaches to long-wavelength and multicolor emission. Journal of Materials Chemistry B, 5(21), 3794–3809.PubMedCrossRef Wu, Z. L., Liu, Z. X., & Yuan, Y. H. (2017). Carbon dots: Materials, synthesis, properties and approaches to long-wavelength and multicolor emission. Journal of Materials Chemistry B, 5(21), 3794–3809.PubMedCrossRef
go back to reference Wu, T., Wang, X., Chen, M., Zhang, X., Zhang, J., Cheng, J., et al. (2022). Respiratory exposure to graphene quantum dots causes fibrotic effects on lung, liver and kidney of mice. Food and Chemical Toxicology, 163, 112971.PubMedCrossRef Wu, T., Wang, X., Chen, M., Zhang, X., Zhang, J., Cheng, J., et al. (2022). Respiratory exposure to graphene quantum dots causes fibrotic effects on lung, liver and kidney of mice. Food and Chemical Toxicology, 163, 112971.PubMedCrossRef
go back to reference Yang, J., Zhang, X., Ma, Y.-H., Gao, G., Chen, X., Jia, H.-R., et al. (2016). Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Applied Materials & Interfaces, 8(47), 32170–32181.CrossRef Yang, J., Zhang, X., Ma, Y.-H., Gao, G., Chen, X., Jia, H.-R., et al. (2016). Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Applied Materials & Interfaces, 8(47), 32170–32181.CrossRef
go back to reference Zeng, H., Du, X. W., Singh, S. C., Kulinich, S. A., Yang, S., He, J., & Cai, W. (2012). Nanomaterials via laser ablation/irradiation in liquid: A review. Advanced Functional Materials, 22(7), 1333–1353.CrossRef Zeng, H., Du, X. W., Singh, S. C., Kulinich, S. A., Yang, S., He, J., & Cai, W. (2012). Nanomaterials via laser ablation/irradiation in liquid: A review. Advanced Functional Materials, 22(7), 1333–1353.CrossRef
go back to reference Zhao, C., Wu, L., Wang, X., Weng, S., Ruan, Z., Liu, Q., et al. (2020). Quaternary ammonium carbon quantum dots as an antimicrobial agent against gram-positive bacteria for the treatment of MRSA-infected pneumonia in mice. Carbon, 163, 70–84.CrossRef Zhao, C., Wu, L., Wang, X., Weng, S., Ruan, Z., Liu, Q., et al. (2020). Quaternary ammonium carbon quantum dots as an antimicrobial agent against gram-positive bacteria for the treatment of MRSA-infected pneumonia in mice. Carbon, 163, 70–84.CrossRef
Metadata
Title
Carbon Quantum Dots for Medical Applications
Authors
Chelladurai Karthikeyan Balavigneswaran
Vignesh Muthuvijayan
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50093-0_16

Premium Partners