Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Carbon

Author : Bernd Schultrich

Published in: Tetrahedrally Bonded Amorphous Carbon Films I

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Under all elements carbon represents an outstanding position concerning quantitative and qualitative aspects: On the one hand carbon is found in abundance in the universe and on the earth, on the other hand impressive top properties are realized by carbon materials. Both topics originate from carbon’s magic atomic number six.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.S. Barnard, Stability of nanodiamond, in Ultrananocrystalline Diamond, ed. by O.A. Shenderova, D.M. Gruen (Andrew Publ., New York, 2006), pp. 117–154 A.S. Barnard, Stability of nanodiamond, in Ultrananocrystalline Diamond, ed. by O.A. Shenderova, D.M. Gruen (Andrew Publ., New York, 2006), pp. 117–154
2.
go back to reference R. Berman, in Equilibrium of Diamond, ed by G. Davies. Properties and Growth of Diamond (Inspec, London, 1994), pp. 30–32 R. Berman, in Equilibrium of Diamond, ed by G. Davies. Properties and Growth of Diamond (Inspec, London, 1994), pp. 30–32
3.
go back to reference F.P. Bundy, Pressure-temperature phase diagram of elemental carbon. Phys. A 156, 169–178 (1989)CrossRef F.P. Bundy, Pressure-temperature phase diagram of elemental carbon. Phys. A 156, 169–178 (1989)CrossRef
4.
go back to reference T.D. Burchell (ed.), Carbon Materials for Advanced Technologies (Pergamon, Amsterdam, 1999) T.D. Burchell (ed.), Carbon Materials for Advanced Technologies (Pergamon, Amsterdam, 1999)
5.
go back to reference A.Yu. Basharin, M.V. Brykin, M.Yu. Marin, I.S. Pakhomov, S.F. Sitnikov, Measurement accuracy during the experimental determination of the melting point of graphite. High Temp. 42, 60–67 (2004)CrossRef A.Yu. Basharin, M.V. Brykin, M.Yu. Marin, I.S. Pakhomov, S.F. Sitnikov, Measurement accuracy during the experimental determination of the melting point of graphite. High Temp. 42, 60–67 (2004)CrossRef
6.
go back to reference F.P. Bundy, W.A. Bassett, M.S. Weathers, R.J. Hemley, H.K. Mao, A.F. Goncharov, The pressure-temperature phase and transformation diagram for carbon, updated through 1994. Carbon 34, 141–153 (1996)CrossRef F.P. Bundy, W.A. Bassett, M.S. Weathers, R.J. Hemley, H.K. Mao, A.F. Goncharov, The pressure-temperature phase and transformation diagram for carbon, updated through 1994. Carbon 34, 141–153 (1996)CrossRef
7.
go back to reference T. Baba, A. Cezairliyan, Thermal diffusivity of POCO AXM-5Q1 graphite in the range 1500 to 2500 K measured by a laser-pulse technique. Int. J. Thermophys. 15, 342–364 (1994)CrossRef T. Baba, A. Cezairliyan, Thermal diffusivity of POCO AXM-5Q1 graphite in the range 1500 to 2500 K measured by a laser-pulse technique. Int. J. Thermophys. 15, 342–364 (1994)CrossRef
8.
go back to reference D.K. Bradley, J.H. Eggert, D.G. Hicks, P.M. Celliers, S.J. Moon, R.C. Cauble, G.W. Collins, Shock compressing diamond to a conducting fluid. Phys. Rev. Lett. 93, 195506 (2004)CrossRef D.K. Bradley, J.H. Eggert, D.G. Hicks, P.M. Celliers, S.J. Moon, R.C. Cauble, G.W. Collins, Shock compressing diamond to a conducting fluid. Phys. Rev. Lett. 93, 195506 (2004)CrossRef
9.
go back to reference S. Brygoo, E. Henry, B. Loubeyre, J. Eggert, M. Koenig, B. Loupias, A. Benuzzi-Meounaix, M. Rabec le Gloahec, Laser-shock compression of diamond and evidence of a negative-slope melting curve. Nat. Mater. 6, 274–277 (2007)CrossRef S. Brygoo, E. Henry, B. Loubeyre, J. Eggert, M. Koenig, B. Loupias, A. Benuzzi-Meounaix, M. Rabec le Gloahec, Laser-shock compression of diamond and evidence of a negative-slope melting curve. Nat. Mater. 6, 274–277 (2007)CrossRef
10.
go back to reference R. Biswas, R.M. Martin, R.J. Needs, O.H. Nielson, Complex tetrahedral structures of silicon and carbon under pressure. Phys. Rev. B 30, 3210–3213 (1984)CrossRef R. Biswas, R.M. Martin, R.J. Needs, O.H. Nielson, Complex tetrahedral structures of silicon and carbon under pressure. Phys. Rev. B 30, 3210–3213 (1984)CrossRef
11.
go back to reference O.L. Blakslee, D.G. Proctor, E.J. Seldin, G.B. Spence, T. Weng, Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41, 3373–3382 (1970)CrossRef O.L. Blakslee, D.G. Proctor, E.J. Seldin, G.B. Spence, T. Weng, Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41, 3373–3382 (1970)CrossRef
12.
go back to reference M.W. Chase, NIST-JANAF Thermochemical Tables, fourth edn., Part I, Al-Co. J. Phys. Chem. Reference Data, Monograph 9 (Springer, 1998) M.W. Chase, NIST-JANAF Thermochemical Tables, fourth edn., Part I, Al-Co. J. Phys. Chem. Reference Data, Monograph 9 (Springer, 1998)
13.
go back to reference M.W. Chase, J.R. Downey, D.J. Frurip, R.A. McDonald, A.N. Syverud (eds.): JANAF Thermochemical Tables, 3rd. edn. (American Institute Physics, New York, 1985) M.W. Chase, J.R. Downey, D.J. Frurip, R.A. McDonald, A.N. Syverud (eds.): JANAF Thermochemical Tables, 3rd. edn. (American Institute Physics, New York, 1985)
14.
go back to reference A. Cezairliyan, A.P. Müller, Heat capacity and electrical resistivity of POCO AXM-5Q1 graphite in the range 1500-3000 K by a pulse-heating technique. Int. J. Thermophys. 6, 285–300 (1985)CrossRef A. Cezairliyan, A.P. Müller, Heat capacity and electrical resistivity of POCO AXM-5Q1 graphite in the range 1500-3000 K by a pulse-heating technique. Int. J. Thermophys. 6, 285–300 (1985)CrossRef
15.
go back to reference G. Davies (ed.), Properties and Growth of Diamond (Inspec, London, 1994) G. Davies (ed.), Properties and Growth of Diamond (Inspec, London, 1994)
16.
go back to reference H.W. Day, A revised diamond-graphite transition curve. Am. Miner. 97, 52–62 (2012)CrossRef H.W. Day, A revised diamond-graphite transition curve. Am. Miner. 97, 52–62 (2012)CrossRef
17.
go back to reference J. Drowart, R.P. Burns, G. DeMaria, M.G. Inghram, Mass spectrometric study of carbon vapor. J. Chem. Phys. 31, 1131–1132 (1959)CrossRef J. Drowart, R.P. Burns, G. DeMaria, M.G. Inghram, Mass spectrometric study of carbon vapor. J. Chem. Phys. 31, 1131–1132 (1959)CrossRef
18.
go back to reference G. Davies, T. Evans, Graphitization of diamond at zero pressure and at a high pressure. Proc. R. Soc. A 328, 413–427 (1972)CrossRef G. Davies, T. Evans, Graphitization of diamond at zero pressure and at a high pressure. Proc. R. Soc. A 328, 413–427 (1972)CrossRef
19.
go back to reference L. Edman, B. Sundqvist, E. McRae, E. Litvin-Staszewska, Electrical resistivity of single-crystal graphite under pressure: an anisotropic three-dimensional semimetal. Phys. Rev. B 57, 6227–6230 (1998)CrossRef L. Edman, B. Sundqvist, E. McRae, E. Litvin-Staszewska, Electrical resistivity of single-crystal graphite under pressure: an anisotropic three-dimensional semimetal. Phys. Rev. B 57, 6227–6230 (1998)CrossRef
20.
go back to reference J.E. Field (ed.), The Properties of Natural and Synthetic Diamond (Academic Press, London, 1999) J.E. Field (ed.), The Properties of Natural and Synthetic Diamond (Academic Press, London, 1999)
21.
go back to reference R.E. Franklin, Crystallite growth in graphitizing and non-graphitizing carbons. Proc. R. Soc. A 209, 196–218 (1951)CrossRef R.E. Franklin, Crystallite growth in graphitizing and non-graphitizing carbons. Proc. R. Soc. A 209, 196–218 (1951)CrossRef
22.
go back to reference M.Y. Gamarnik, Energetical preference of diamond nanoparticles. Phys. Rev. B 54, 2150–2156 (1996)CrossRef M.Y. Gamarnik, Energetical preference of diamond nanoparticles. Phys. Rev. B 54, 2150–2156 (1996)CrossRef
23.
go back to reference L.V. Gurvich, V.S. Iorish, D.V. Chekhovsioi, V.S. Yungman, NIST Special Database 5, “IVTANTHERMO” (CRC, Boca Raton/FL, 1993) L.V. Gurvich, V.S. Iorish, D.V. Chekhovsioi, V.S. Yungman, NIST Special Database 5, “IVTANTHERMO” (CRC, Boca Raton/FL, 1993)
24.
go back to reference L.M. Ghiringhelli, J.H. Los, E.J. Meijer, A. Fasolini, D. Frenkel, Modeling the phase diagram of carbon. Phys. Rev. Lett. 94, 145701 (2005)CrossRef L.M. Ghiringhelli, J.H. Los, E.J. Meijer, A. Fasolini, D. Frenkel, Modeling the phase diagram of carbon. Phys. Rev. Lett. 94, 145701 (2005)CrossRef
25.
go back to reference L.M. Ghiringhelli, E.J. Meijer, Liquid carbon: freezing line and structure near freezing, in Computer-Based Modelling of Novel Carbon Systems and Their Properties, ed. by L. Colombo, A. Fasolino (Springer, Dordrecht, 2010), pp. 1–36 L.M. Ghiringhelli, E.J. Meijer, Liquid carbon: freezing line and structure near freezing, in Computer-Based Modelling of Novel Carbon Systems and Their Properties, ed. by L. Colombo, A. Fasolino (Springer, Dordrecht, 2010), pp. 1–36
26.
go back to reference L.V. Gurvich, I.V. Veits, V.A. Medvedev, G.A. Khachkuruzov, V.S. Yungman, G.A. Bergman, Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1979), vol. 2, Parts 1–2 L.V. Gurvich, I.V. Veits, V.A. Medvedev, G.A. Khachkuruzov, V.S. Yungman, G.A. Bergman, Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1979), vol. 2, Parts 1–2
27.
go back to reference P.J.F. Harris, Structure of non-graphitising carbons. Int. Mater. Rev. 42, 206–218 (1997)CrossRef P.J.F. Harris, Structure of non-graphitising carbons. Int. Mater. Rev. 42, 206–218 (1997)CrossRef
28.
go back to reference A. Harada, F. Shimojo, K. Hoshino, Structural and electronic properties of liquid carbon: ab initio molecular-dynamics simulation. J. Phys. Conf. Ser. 98, 042014 (2008)CrossRef A. Harada, F. Shimojo, K. Hoshino, Structural and electronic properties of liquid carbon: ab initio molecular-dynamics simulation. J. Phys. Conf. Ser. 98, 042014 (2008)CrossRef
29.
go back to reference K.T. Jacob, Determination of the Gibbs energy of diamond using a solid state cell. Solid State Commun. 94, 763–765 (1995)CrossRef K.T. Jacob, Determination of the Gibbs energy of diamond using a solid state cell. Solid State Commun. 94, 763–765 (1995)CrossRef
30.
go back to reference M. Joseph, N. Sivakumar, P. Manoravi, High temperature vapour studies on graphite using laser pulse heating. Carbon 40, 2031–2034 (2002)CrossRef M. Joseph, N. Sivakumar, P. Manoravi, High temperature vapour studies on graphite using laser pulse heating. Carbon 40, 2031–2034 (2002)CrossRef
31.
go back to reference D.J. Krajnovich, Laser sputtering of highly oriented pyrolytic graphite at 248 nm. J. Chem. Phys. 102, 726–743 (1995)CrossRef D.J. Krajnovich, Laser sputtering of highly oriented pyrolytic graphite at 248 nm. J. Chem. Phys. 102, 726–743 (1995)CrossRef
32.
go back to reference A. Krueger, Carbon Materials and Nanotechnology (Wiley-VCH, Weinheim, 2011) A. Krueger, Carbon Materials and Nanotechnology (Wiley-VCH, Weinheim, 2011)
33.
go back to reference C.A. Klein, G.F. Cardinale, Young’s modulus and Poisson’s ratio of CVD diamond. Diam. Relat. Mater. 2, 918–923 (1993)CrossRef C.A. Klein, G.F. Cardinale, Young’s modulus and Poisson’s ratio of CVD diamond. Diam. Relat. Mater. 2, 918–923 (1993)CrossRef
34.
go back to reference C.S. Kennedy, G.C. Kennedy, The equilibrium between graphite and diamond. J. Geophys. Res. 81, 2467–2470 (1976)CrossRef C.S. Kennedy, G.C. Kennedy, The equilibrium between graphite and diamond. J. Geophys. Res. 81, 2467–2470 (1976)CrossRef
35.
go back to reference A.V. Krillin, M.D. Kovalenko, M.A. Sheindlin, V.S. Zhivopistsev, Stationary laser heating in measuring the vapor pressure of carbon at 5000-7000 K. Teplofizika Vysokikh Temperaturov 23, 557–563 (1985) A.V. Krillin, M.D. Kovalenko, M.A. Sheindlin, V.S. Zhivopistsev, Stationary laser heating in measuring the vapor pressure of carbon at 5000-7000 K. Teplofizika Vysokikh Temperaturov 23, 557–563 (1985)
36.
go back to reference I.I. Klimonovskii, V.V. Markovets, The carbon phase diagram near the solid-liquid-vapor triple point. Int. Sci. J. Altern. Energy Ecol. 5(49), 111–116 (2007) I.I. Klimonovskii, V.V. Markovets, The carbon phase diagram near the solid-liquid-vapor triple point. Int. Sci. J. Altern. Energy Ecol. 5(49), 111–116 (2007)
37.
go back to reference E.A. Kellett, B.P. Richards, The thermal expansion of graphite within the layer planes. J. Nucl. Mater. 12, 184–192 (1964)CrossRef E.A. Kellett, B.P. Richards, The thermal expansion of graphite within the layer planes. J. Nucl. Mater. 12, 184–192 (1964)CrossRef
38.
go back to reference H. Kanda, T. Sekine, Direct conversion to diamond, in Properties and Growth of Diamond, ed. by G. Davies (Inspec, London, 1994), pp. 405–408 H. Kanda, T. Sekine, Direct conversion to diamond, in Properties and Growth of Diamond, ed. by G. Davies (Inspec, London, 1994), pp. 405–408
39.
go back to reference H. Kanda, T. Sekine: Catalytic conversion to diamond, in Properties and Growth of Diamond, ed. by G. Davies (Inspec, London, 1994), pp. 409–414 H. Kanda, T. Sekine: Catalytic conversion to diamond, in Properties and Growth of Diamond, ed. by G. Davies (Inspec, London, 1994), pp. 409–414
40.
go back to reference H.R. Leider, O.H. Krikorian, D.A. Young, Thermodynamic properties of carbon up to the critical point. Carbon 11, 63–555 (1973)CrossRef H.R. Leider, O.H. Krikorian, D.A. Young, Thermodynamic properties of carbon up to the critical point. Carbon 11, 63–555 (1973)CrossRef
41.
go back to reference B. McEnaney, Structure and bonding in carbon materials, in Carbon Materials for Advanced Technologies, ed. by T.D. Burchell (Pergamon, Amsterdam, 1999), pp. 1–34 B. McEnaney, Structure and bonding in carbon materials, in Carbon Materials for Advanced Technologies, ed. by T.D. Burchell (Pergamon, Amsterdam, 1999), pp. 1–34
42.
go back to reference V.V. Mirkovich, Electrical resistance anisotropy of a POCO AXM-5Q1 graphite. Int. J. Thermophys. 8, 795–801 (1987)CrossRef V.V. Mirkovich, Electrical resistance anisotropy of a POCO AXM-5Q1 graphite. Int. J. Thermophys. 8, 795–801 (1987)CrossRef
43.
go back to reference W.C. Morgan, Thermal expansion coefficients of graphite crystals. Carbon 10, 73–79 (1972)CrossRef W.C. Morgan, Thermal expansion coefficients of graphite crystals. Carbon 10, 73–79 (1972)CrossRef
44.
go back to reference B.K. Miremadi, K. Colbow, A hydrogen selective gas sensor from highly oriented films of carbon, obtained by fracturing charcoal. Sensors Actuators B 46, 30–34 (1998)CrossRef B.K. Miremadi, K. Colbow, A hydrogen selective gas sensor from highly oriented films of carbon, obtained by fracturing charcoal. Sensors Actuators B 46, 30–34 (1998)CrossRef
45.
go back to reference H. Marsh, E.A. Heintz, F. Rodriguez-Reinosa (eds.), Introduction to Carbon Technologies (University Alicante, 1997) H. Marsh, E.A. Heintz, F. Rodriguez-Reinosa (eds.), Introduction to Carbon Technologies (University Alicante, 1997)
46.
go back to reference L.F. Maltseva, E.N. Marmer, Determination of the electrical properties of graphite at high temperatures. Poroshkovaya Metallurgiya 1(7), 50–55 (1962) L.F. Maltseva, E.N. Marmer, Determination of the electrical properties of graphite at high temperatures. Poroshkovaya Metallurgiya 1(7), 50–55 (1962)
47.
go back to reference W.L. Mao, H.-K. Mao, P.J. Eng, T.P. Trainor, M. Newville, Ch.-Ch. Kao, D.L. Heinz, J. Shu, Y. Meng, R.J. Hemley, Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003)CrossRef W.L. Mao, H.-K. Mao, P.J. Eng, T.P. Trainor, M. Newville, Ch.-Ch. Kao, D.L. Heinz, J. Shu, Y. Meng, R.J. Hemley, Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003)CrossRef
48.
go back to reference M. Musella, C. Ronchi, M. Brykin, M. Sheindlin, The molten state of graphite: an experimental study. J. Appl. Phys. 84, 2530–2537 (1998)CrossRef M. Musella, C. Ronchi, M. Brykin, M. Sheindlin, The molten state of graphite: an experimental study. J. Appl. Phys. 84, 2530–2537 (1998)CrossRef
49.
go back to reference J.R. Morris, C.Z. Wang, K.M. Ho, Relationship between structure and conductivity in liquid carbon. Phys. Rev. B 52, 4138–4145 (1995)CrossRef J.R. Morris, C.Z. Wang, K.M. Ho, Relationship between structure and conductivity in liquid carbon. Phys. Rev. B 52, 4138–4145 (1995)CrossRef
50.
go back to reference M.H. Nazarc, A.J. Neves (eds.), Properties, Growth and Applications of Diamond (Inspec, London, 2001) M.H. Nazarc, A.J. Neves (eds.), Properties, Growth and Applications of Diamond (Inspec, London, 2001)
51.
go back to reference A. Oberlin, High resolution TEM studies of carbonization and graphitization, in Chemistry and Physics of Carbon, ed. by P.A. Thrower, vol. 22 (Marcel Dekker, New York, 1989), pp. 1–144 A. Oberlin, High resolution TEM studies of carbonization and graphitization, in Chemistry and Physics of Carbon, ed. by P.A. Thrower, vol. 22 (Marcel Dekker, New York, 1989), pp. 1–144
52.
go back to reference A. Oya, High-density isotropic graphites and glassy carbons: Japanese situation: production, properties and applications. in Introduction to Carbon Technologies, ed. by H. Marsh, E.A. Heintz, F. Rodriguez-Reinosa (University Alicante, 1997), pp. 561–595 A. Oya, High-density isotropic graphites and glassy carbons: Japanese situation: production, properties and applications. in Introduction to Carbon Technologies, ed. by H. Marsh, E.A. Heintz, F. Rodriguez-Reinosa (University Alicante, 1997), pp. 561–595
53.
go back to reference D.J. Page, The Industrial Graphite Engineering Handbook (UCAR Carbon Company, Danbury/CT, 1991) D.J. Page, The Industrial Graphite Engineering Handbook (UCAR Carbon Company, Danbury/CT, 1991)
54.
go back to reference H.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes (Noyes Publications, Park Ridge/NJ, 1993) H.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes (Noyes Publications, Park Ridge/NJ, 1993)
55.
go back to reference R. Pflieger, M. Sheindlin, J.-Y. Colle, Advances in the mass spectrometric study of the laser vaporization of graphite. J. Appl. Phys. 104, 054902 (2008)CrossRef R. Pflieger, M. Sheindlin, J.-Y. Colle, Advances in the mass spectrometric study of the laser vaporization of graphite. J. Appl. Phys. 104, 054902 (2008)CrossRef
56.
go back to reference A.I. Savvatimskiy, Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003). Carbon 43, 1115–1142 (2005)CrossRef A.I. Savvatimskiy, Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003). Carbon 43, 1115–1142 (2005)CrossRef
57.
go back to reference M.M. Shukla, N.T. Padial, A calculation of the Debye characteristic temperature of cubic crystals. Revista Brasileira Fisica 3, 39–45 (1973) M.M. Shukla, N.T. Padial, A calculation of the Debye characteristic temperature of cubic crystals. Revista Brasileira Fisica 3, 39–45 (1973)
58.
go back to reference V.N. Senchenko, M.A. Sheindlin, Experimental investigation of caloric properties for tungsten and graphite in the vicinity of melting point. Teplofizika Vysokikh Temperaturov 25, 492–496 (1987) V.N. Senchenko, M.A. Sheindlin, Experimental investigation of caloric properties for tungsten and graphite in the vicinity of melting point. Teplofizika Vysokikh Temperaturov 25, 492–496 (1987)
59.
go back to reference M. Togaya, Pressure dependences of the melting temperature of graphite and the electrical resistivity of liquid carbon. Phys. Rev. Lett. 79, 2474–2477 (1997)CrossRef M. Togaya, Pressure dependences of the melting temperature of graphite and the electrical resistivity of liquid carbon. Phys. Rev. Lett. 79, 2474–2477 (1997)CrossRef
60.
go back to reference M. Togaya, Electrical property changes of liquid carbon under high pressures. J. Phys. Conf. Ser. 215, 012081 (2010)CrossRef M. Togaya, Electrical property changes of liquid carbon under high pressures. J. Phys. Conf. Ser. 215, 012081 (2010)CrossRef
61.
go back to reference R.E. Taylor, H. Groot, Thermophysical properties of POCO graphite. High Temperatures-High Pressures 12, 147–160 (1980) R.E. Taylor, H. Groot, Thermophysical properties of POCO graphite. High Temperatures-High Pressures 12, 147–160 (1980)
62.
go back to reference D.K.L. Tsang, B.J. Marsden, S.L. Fok, G. Hall, Graphite thermal expansion relationship for different temperature ranges. Carbon 43, 2902–2906 (2005)CrossRef D.K.L. Tsang, B.J. Marsden, S.L. Fok, G. Hall, Graphite thermal expansion relationship for different temperature ranges. Carbon 43, 2902–2906 (2005)CrossRef
63.
go back to reference A.L. Verechshagin, Phase diagram of ultrafine diamond. Combust. Explosions Shock Waves 38, 358–359 (2002)CrossRef A.L. Verechshagin, Phase diagram of ultrafine diamond. Combust. Explosions Shock Waves 38, 358–359 (2002)CrossRef
64.
go back to reference M. Werner, S. Hein, E. Obermeier, Elastic properties of thin polycrystalline diamond films. Diam. Relat. Mater. 2, 939–942 (1993)CrossRef M. Werner, S. Hein, E. Obermeier, Elastic properties of thin polycrystalline diamond films. Diam. Relat. Mater. 2, 939–942 (1993)CrossRef
65.
go back to reference K.Y. Wen, T.J. Marrow, B.J. Marsden, The microstructure of nuclear graphite binders. Carbon 46, 62–71 (2008)CrossRef K.Y. Wen, T.J. Marrow, B.J. Marsden, The microstructure of nuclear graphite binders. Carbon 46, 62–71 (2008)CrossRef
66.
go back to reference X. Wang, S. Scandolo, R. Car, Carbon phase diagram from ab initio molecular dynamics. Phys. Rev. Lett. 95, 185701 (2005)CrossRef X. Wang, S. Scandolo, R. Car, Carbon phase diagram from ab initio molecular dynamics. Phys. Rev. Lett. 95, 185701 (2005)CrossRef
67.
go back to reference J. Wilks, E. Wilks, Properties and Applications of Diamond (Butterworth-Heimann, Oxford, 1991) J. Wilks, E. Wilks, Properties and Applications of Diamond (Butterworth-Heimann, Oxford, 1991)
68.
go back to reference C.X. Wang, Y.H. Yang, G.W. Yang, Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid. J. Appl. Phys. 97, 066104 (2005)CrossRef C.X. Wang, Y.H. Yang, G.W. Yang, Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid. J. Appl. Phys. 97, 066104 (2005)CrossRef
69.
go back to reference M.T. Yin, M.L. Cohen, Will diamond transform under Megabar pressures? Phys. Rev. Lett. 50, 2006–2009 (1983)CrossRef M.T. Yin, M.L. Cohen, Will diamond transform under Megabar pressures? Phys. Rev. Lett. 50, 2006–2009 (1983)CrossRef
70.
go back to reference A. Yoshida, Y. Kaburagi, Y. Hishiyama, Microtexture and magnetoresistance of glass-like carbons. Carbon 29, 1107–1111 (1991)CrossRef A. Yoshida, Y. Kaburagi, Y. Hishiyama, Microtexture and magnetoresistance of glass-like carbons. Carbon 29, 1107–1111 (1991)CrossRef
71.
go back to reference D.S. Zhao, M. Zhao, Q. Jiang, Size and temperature dependence of nanodiamond–nanographite transition related with surface stress. Diam. Relat. Mater. 11, 234–236 (2002)CrossRef D.S. Zhao, M. Zhao, Q. Jiang, Size and temperature dependence of nanodiamond–nanographite transition related with surface stress. Diam. Relat. Mater. 11, 234–236 (2002)CrossRef
Metadata
Title
Carbon
Author
Bernd Schultrich
Copyright Year
2018
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-55927-7_1

Premium Partners