Skip to main content
Top

2019 | OriginalPaper | Chapter

Cartesian Genetic Programing Applied to Equivalent Electric Circuit Identification

Authors : Marco André Abud Kappel, Roberto Pinheiro Domingos, Ivan Napoleão Bastos

Published in: EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Equivalent electric circuits are widely used in electrochemical impedance spectroscopy (EIS) data modeling. EIS modeling involves the identification of an electrical circuit physically equivalent to the system under analysis. This equivalence is based on the assumption that each phenomenon of the electrode interface and the electrolyte is represented by electrical components such as resistors, capacitors and inductors. This analogy allows impedance data to be used in simulations and predictions related to corrosion and electrochemistry. However, when no prior knowledge of the inner workings of the process under analysis is available, the identification of the circuit model is not a trivial task. The main objective of this work is to improve both the equivalent circuit topology identification and the parameter estimation by using a different approach than the usual Genetic Programming. In order to accomplish this goal, a methodology was developed to unify the application of Cartesian Genetic Programming to tackle system topology identification and Differential Evolution for optimization of the circuit parameters. The performance and effectiveness of this methodology were tested by performing the circuit identification on four different known systems, using numerically simulated impedance data. Results showed that the applied methodology was able to identify with satisfactory precision both the circuits and the values of the components. Results also indicated the necessity of using a stochastic method in the optimization process, since more than one electric circuit can fit the same dataset. The use of evolutionary adaptive metaheuristics such as the Cartesian Genetic Programming allows not only the estimation of the model parameters, but also the identification of its optimal topology. However, due to the possibility of multiple solutions, its application must be done with caution. Whenever possible, restrictions on the search space should be added, bearing in mind the correspondence of the model to the studied physical phenomena.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Orazen, M.E., Tribollet, B.: Electrochemical Impedance Spectroscopy. Wiley, New York (2008)CrossRef Orazen, M.E., Tribollet, B.: Electrochemical Impedance Spectroscopy. Wiley, New York (2008)CrossRef
2.
go back to reference Silverman, D.C.: Corrosion prediction in complex environments using electrochemical impedance spectroscopy. Electrochim. Acta 38, 2075–2078 (1993)CrossRef Silverman, D.C.: Corrosion prediction in complex environments using electrochemical impedance spectroscopy. Electrochim. Acta 38, 2075–2078 (1993)CrossRef
3.
go back to reference Yang, Y., Wang, Z.-Y., Ding, Q., Huang, L., Wang, C., Zhu, D.-Z.: Moisture content prediction of porcine meat by bioelectrical impedance spectroscopy. Math. Comput. Model. 58, 819–825 (2013)CrossRef Yang, Y., Wang, Z.-Y., Ding, Q., Huang, L., Wang, C., Zhu, D.-Z.: Moisture content prediction of porcine meat by bioelectrical impedance spectroscopy. Math. Comput. Model. 58, 819–825 (2013)CrossRef
4.
go back to reference Jahnke, H.-G., Heimann, A., Azendorf, R., Mpoukouvalas, K., Kempski, O., Robitzki, A.A., Charalampaki, P.: Impedance spectroscopy: an outstanding method for label-free and real-time discrimination between brain and tumor tissue in vivo. Biosens. Bioelectron. 46, 8–14 (2013)CrossRef Jahnke, H.-G., Heimann, A., Azendorf, R., Mpoukouvalas, K., Kempski, O., Robitzki, A.A., Charalampaki, P.: Impedance spectroscopy: an outstanding method for label-free and real-time discrimination between brain and tumor tissue in vivo. Biosens. Bioelectron. 46, 8–14 (2013)CrossRef
5.
go back to reference Clemente, F., Romano, M., Bifulco, P., Cesarelli, M.: EIS measurements for characterization of muscular tissue by means of equivalent electrical parameters. Measurement 58, 476–482 (2014)CrossRef Clemente, F., Romano, M., Bifulco, P., Cesarelli, M.: EIS measurements for characterization of muscular tissue by means of equivalent electrical parameters. Measurement 58, 476–482 (2014)CrossRef
6.
go back to reference Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788–792 (2004)CrossRef Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788–792 (2004)CrossRef
7.
go back to reference Sgura, I., Bozzini, B.: Numerical issues related to the modelling of electrochemical impedance data by non-linear least-squares. Int. J. Nonlinear Mech. 40, 557–570 (2005)CrossRef Sgura, I., Bozzini, B.: Numerical issues related to the modelling of electrochemical impedance data by non-linear least-squares. Int. J. Nonlinear Mech. 40, 557–570 (2005)CrossRef
8.
go back to reference Buschel, P., Troltzsch, U., Kanoun, O.: Use of stochastic methods for robust parameter extraction from impedance spectra. Electrochim. Acta 56, 8069–8077 (2011)CrossRef Buschel, P., Troltzsch, U., Kanoun, O.: Use of stochastic methods for robust parameter extraction from impedance spectra. Electrochim. Acta 56, 8069–8077 (2011)CrossRef
9.
go back to reference Sharifi-Asl, S., Taylor, M.L., Lu, Z., Engelhardt, G.R., Kursten, B., Macdonald, D.D.: Modeling of the electrochemical impedance spectroscopic behavior of passive iron using a genetic algorithm approach. Electrochim. Acta 102, 161–173 (2013)CrossRef Sharifi-Asl, S., Taylor, M.L., Lu, Z., Engelhardt, G.R., Kursten, B., Macdonald, D.D.: Modeling of the electrochemical impedance spectroscopic behavior of passive iron using a genetic algorithm approach. Electrochim. Acta 102, 161–173 (2013)CrossRef
10.
go back to reference Kappel, M.A.A., Fabbri, R., Domingos, R.P., Bastos, I.N.: Novel electrochemical impedance simulation design via stochastic algorithms for fitting equivalent circuits. Measurement 94, 344–354 (2016)CrossRef Kappel, M.A.A., Fabbri, R., Domingos, R.P., Bastos, I.N.: Novel electrochemical impedance simulation design via stochastic algorithms for fitting equivalent circuits. Measurement 94, 344–354 (2016)CrossRef
11.
go back to reference Kappel, M.A.A., Peixoto, F.C., Platt, G.M., Domingos, R.P., Bastos, I.N.: A study of equivalent electrical circuit fitting to electrochemical impedance using a stochastic method. Appl. Soft Comput. 50, 183–193 (2017)CrossRef Kappel, M.A.A., Peixoto, F.C., Platt, G.M., Domingos, R.P., Bastos, I.N.: A study of equivalent electrical circuit fitting to electrochemical impedance using a stochastic method. Appl. Soft Comput. 50, 183–193 (2017)CrossRef
12.
go back to reference Ramos, P.M., Janeiro, F.M.: Gene expression programming for automatic circuit model identification in impedance spectroscopy: performance evaluation. Measurement 46, 4379–4387 (2013)CrossRef Ramos, P.M., Janeiro, F.M.: Gene expression programming for automatic circuit model identification in impedance spectroscopy: performance evaluation. Measurement 46, 4379–4387 (2013)CrossRef
13.
go back to reference Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)MATH Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)MATH
14.
go back to reference Storn, R., Price, K.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)MathSciNetCrossRef Storn, R., Price, K.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)MathSciNetCrossRef
15.
go back to reference Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco (1999)MATH Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco (1999)MATH
16.
go back to reference Miller, J.F.: Cartesian Genetic Programming. Natural Computing Series. Springer, Berlin (2011)CrossRef Miller, J.F.: Cartesian Genetic Programming. Natural Computing Series. Springer, Berlin (2011)CrossRef
17.
go back to reference Miller, J.F., Thomson, P., Fogarty, T.C.: Designing electronic circuits using evolutionary algorithms: arithmetic circuits: a case study. In: Quagliarella, D., Periaux, J., Poloni, C., Winter, G. (eds.) Genetic Algorithms and Evolution Strategies in Engineering and Computer Science: Recent Advancements and Industrial Applications, pp. 105–131. Wiley, New York (1998) Miller, J.F., Thomson, P., Fogarty, T.C.: Designing electronic circuits using evolutionary algorithms: arithmetic circuits: a case study. In: Quagliarella, D., Periaux, J., Poloni, C., Winter, G. (eds.) Genetic Algorithms and Evolution Strategies in Engineering and Computer Science: Recent Advancements and Industrial Applications, pp. 105–131. Wiley, New York (1998)
18.
go back to reference Yu, T., Miller, J.F.: Neutrality and the evolvability of Boolean function landscape. In: Proceedings of European Conference on Genetic Programming. LNCS, vol. 2038, pp. 204–217. Springer (2001) Yu, T., Miller, J.F.: Neutrality and the evolvability of Boolean function landscape. In: Proceedings of European Conference on Genetic Programming. LNCS, vol. 2038, pp. 204–217. Springer (2001)
19.
go back to reference Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Trans. Evol. Comput. 10, 167–174 (2006)CrossRef Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Trans. Evol. Comput. 10, 167–174 (2006)CrossRef
20.
go back to reference Bousselmi, L., Fiaud, C., Tribollet, B., Triki, E.: Impedance spectroscopic study of a steel electrode in condition of scaling and corrosion: interphase model. Electrochim. Acta 44, 4357–4363 (1999)CrossRef Bousselmi, L., Fiaud, C., Tribollet, B., Triki, E.: Impedance spectroscopic study of a steel electrode in condition of scaling and corrosion: interphase model. Electrochim. Acta 44, 4357–4363 (1999)CrossRef
21.
go back to reference Huang, C., Chang, Y., Chen, S.C.: The electrochemical behavior of austenitic stainless steel with different degrees of sensitization in the transpassive potential region in 1 M H2SO4 containing chloride. Corros. Sci. 46, 1501–1513 (2004)CrossRef Huang, C., Chang, Y., Chen, S.C.: The electrochemical behavior of austenitic stainless steel with different degrees of sensitization in the transpassive potential region in 1 M H2SO4 containing chloride. Corros. Sci. 46, 1501–1513 (2004)CrossRef
22.
go back to reference Marcelin, S., Pébère, N., Régnier, S.: Electrochemical characterization of a martensitic stainless steel in a neutral chloride solution. Electrochim. Acta 87, 32–40 (2013)CrossRef Marcelin, S., Pébère, N., Régnier, S.: Electrochemical characterization of a martensitic stainless steel in a neutral chloride solution. Electrochim. Acta 87, 32–40 (2013)CrossRef
Metadata
Title
Cartesian Genetic Programing Applied to Equivalent Electric Circuit Identification
Authors
Marco André Abud Kappel
Roberto Pinheiro Domingos
Ivan Napoleão Bastos
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-97773-7_79

Premium Partners