Skip to main content
Top
Published in:

22-04-2022 | Original Article

Case-based tuning of a metaheuristic algorithm exploiting sensitivity analysis and design of experiments for reverse engineering applications

Authors: Ghazanfar Ali Shah, Arnaud Polette, Jean-Philippe Pernot, Franca Giannini, Marina Monti

Published in: Engineering with Computers | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to its capacity to evolve in a large solution space, the Simulated Annealing (SA) algorithm has shown very promising results for the Reverse Engineering of editable CAD geometries including parametric 2D sketches, 3D CAD parts and assemblies. However, parameter setting is a key factor for its performance, but it is also awkward work. This paper addresses the way a SA-based Reverse Engineering technique can be enhanced by identifying its optimal default setting parameters for the fitting of CAD geometries to point clouds of digitized parts. The method integrates a sensitivity analysis to characterize the impact of the variations in the parameters of a CAD model on the evolution of the deviation between the CAD model itself and the point cloud to be fitted. The principles underpinning the adopted fitting algorithm are briefly recalled. A framework that uses design of experiments (DOEs) is introduced to identify and save in a database the best setting parameter values for given CAD models. This database is then exploited when considering the fitting of a new CAD model. Using similarity assessment, it is then possible to reuse the best setting parameter values of the most similar CAD model found in the database. The applied sensitivity analysis is described together with the comparison of the resulting sensitivity evolution curves with the changes in the CAD model parameters imposed by the SA algorithm. Possible improvements suggested by the analysis are implemented to enhance the efficiency of SA-based fitting. The overall approach is illustrated on the fitting of single mechanical parts but it can be directly extended to the fitting of parts’ assemblies. It is particularly interesting in the context of the Industry 4.0 to update and maintain the coherence of the digital twins with respect to the evolution of the associated physical products and systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lu Y (2017) Industry 4.0: a survey on technologies, applications and open research issues. J Ind Inf Integr 6:1–10 Lu Y (2017) Industry 4.0: a survey on technologies, applications and open research issues. J Ind Inf Integr 6:1–10
3.
go back to reference Louhichi B, Abenhaim GN, Tahan AS (2015) CAD/CAE integration: updating the CAD model after a fem analysis. Int J Adv Manuf Technol 76(1):391–400CrossRef Louhichi B, Abenhaim GN, Tahan AS (2015) CAD/CAE integration: updating the CAD model after a fem analysis. Int J Adv Manuf Technol 76(1):391–400CrossRef
4.
go back to reference Shah GA, Polette A, Pernot J-P, Giannini F, Monti M (2021) Simulated annealing-based fitting of CAD models to point clouds of mechanical parts’ assemblies. Eng Comput 37(4):2891–2909 Shah GA, Polette A, Pernot J-P, Giannini F, Monti M (2021) Simulated annealing-based fitting of CAD models to point clouds of mechanical parts’ assemblies. Eng Comput 37(4):2891–2909
6.
go back to reference Buonamici F, Carfagni M, Furferi R, Governi L, Lapini A, Volpe Y (2018) Reverse engineering of mechanical parts: a template-based approach. J Comput Des Eng 5(2):145–159 Buonamici F, Carfagni M, Furferi R, Governi L, Lapini A, Volpe Y (2018) Reverse engineering of mechanical parts: a template-based approach. J Comput Des Eng 5(2):145–159
7.
go back to reference Buonamici F, Carfagni M, Furferi R, Volpe Y, Governi L (2021) Reverse engineering by CAD template fitting: study of a fast and robust template-fitting strategy. Eng Comput 37(4):2803–2821CrossRef Buonamici F, Carfagni M, Furferi R, Volpe Y, Governi L (2021) Reverse engineering by CAD template fitting: study of a fast and robust template-fitting strategy. Eng Comput 37(4):2803–2821CrossRef
8.
go back to reference Kirkpatrick S, Gelatt C, Vecchi M (1982) Optimization by simulated annealing. IBM Research Report RC 9355, Acts of PTRC Summer Annual Meeting Kirkpatrick S, Gelatt C, Vecchi M (1982) Optimization by simulated annealing. IBM Research Report RC 9355, Acts of PTRC Summer Annual Meeting
9.
go back to reference Hutter F, Hoos HH, Leyton-Brown K, Murphy K (2010) Time-bounded sequential parameter optimization. In: International conference on learning and intelligent optimization. Springer, pp 281–298 Hutter F, Hoos HH, Leyton-Brown K, Murphy K (2010) Time-bounded sequential parameter optimization. In: International conference on learning and intelligent optimization. Springer, pp 281–298
10.
go back to reference Gunawan A, Lau HC et al (2011) Fine-tuning algorithm parameters using the design of experiments approach. In: International conference on learning and intelligent optimization. Springer, pp 278–292 Gunawan A, Lau HC et al (2011) Fine-tuning algorithm parameters using the design of experiments approach. In: International conference on learning and intelligent optimization. Springer, pp 278–292
11.
go back to reference Iooss B, Lemaître P (2015) A review on global sensitivity analysis methods. In: Uncertainty management in simulation-optimization of complex systems. Springer, pp 101–122 Iooss B, Lemaître P (2015) A review on global sensitivity analysis methods. In: Uncertainty management in simulation-optimization of complex systems. Springer, pp 101–122
12.
go back to reference Hamby DM (1994) A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32(2):135–154CrossRef Hamby DM (1994) A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32(2):135–154CrossRef
13.
go back to reference Jin Y, Meng X, Ziyou G (2009) Sensitivity analysis of simulated annealing for continuous network design problems. J Transport Syst Eng Inf Technol 9(3):64–70 Jin Y, Meng X, Ziyou G (2009) Sensitivity analysis of simulated annealing for continuous network design problems. J Transport Syst Eng Inf Technol 9(3):64–70
14.
go back to reference Gamboa F, Janon A, Klein T, Lagnoux A et al (2014) Sensitivity analysis for multidimensional and functional outputs. Electron J Stat 8(1):575–603MathSciNetCrossRefMATH Gamboa F, Janon A, Klein T, Lagnoux A et al (2014) Sensitivity analysis for multidimensional and functional outputs. Electron J Stat 8(1):575–603MathSciNetCrossRefMATH
15.
go back to reference Spagnol A, Riche RL, Veiga SD (2019) Global sensitivity analysis for optimization with variable selection. SIAM/ASA J Uncertain Quantif 7(2):417–443MathSciNetCrossRefMATH Spagnol A, Riche RL, Veiga SD (2019) Global sensitivity analysis for optimization with variable selection. SIAM/ASA J Uncertain Quantif 7(2):417–443MathSciNetCrossRefMATH
16.
go back to reference Lamboni M, Monod H, Makowski D (2011) Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliab Eng Syst Saf 96(4):450–459CrossRef Lamboni M, Monod H, Makowski D (2011) Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliab Eng Syst Saf 96(4):450–459CrossRef
17.
go back to reference Robinson TT, Armstrong CG, Chua HS, Othmer C, Grahs T (2012) Optimizing parameterized CAD geometries using sensitivities based on adjoint functions. Comput Aided Des Appl 9(3):253–268CrossRef Robinson TT, Armstrong CG, Chua HS, Othmer C, Grahs T (2012) Optimizing parameterized CAD geometries using sensitivities based on adjoint functions. Comput Aided Des Appl 9(3):253–268CrossRef
18.
go back to reference Zhan S-h, Lin J, Zhang Z-j, Zhong, Y-w (2016) List-based simulated annealing algorithm for traveling salesman problem. Comput Intell Neurosci 2016 Zhan S-h, Lin J, Zhang Z-j, Zhong, Y-w (2016) List-based simulated annealing algorithm for traveling salesman problem. Comput Intell Neurosci 2016
19.
go back to reference Bellio R, Ceschia S, Di Gaspero L, Schaerf A, Urli T (2016) Feature-based tuning of simulated annealing applied to the curriculum-based course timetabling problem. Comput Oper Res 65:83–92MathSciNetCrossRefMATH Bellio R, Ceschia S, Di Gaspero L, Schaerf A, Urli T (2016) Feature-based tuning of simulated annealing applied to the curriculum-based course timetabling problem. Comput Oper Res 65:83–92MathSciNetCrossRefMATH
20.
go back to reference Atiqullah MM, Rao S (2001) Tuned annealing for optimization. In: International conference on computational science. Springer, pp 669–679 Atiqullah MM, Rao S (2001) Tuned annealing for optimization. In: International conference on computational science. Springer, pp 669–679
21.
go back to reference Giannini F, Lupinetti K, Monti M (2017) Identification of similar and complementary subparts in B-rep mechanical models. J Comput Inf Sci Eng 17(4) Giannini F, Lupinetti K, Monti M (2017) Identification of similar and complementary subparts in B-rep mechanical models. J Comput Inf Sci Eng 17(4)
22.
go back to reference Montlahuc J, Shah GA, Polette A, Pernot J-P (2019) As-scanned point clouds generation for virtual reverse engineering of CAD assembly models. Comput Aided Des Appl 16(6):1171–1182CrossRef Montlahuc J, Shah GA, Polette A, Pernot J-P (2019) As-scanned point clouds generation for virtual reverse engineering of CAD assembly models. Comput Aided Des Appl 16(6):1171–1182CrossRef
23.
go back to reference (2021) Design of experiments via Taguchi methods-orthogonal arrays. University of Michigan. Online; Accessed 07 2022 Mar (2021) Design of experiments via Taguchi methods-orthogonal arrays. University of Michigan. Online; Accessed 07 2022 Mar
24.
go back to reference Roy RK (2010) A primer on the Taguchi method. Society of Manufacturing Engineers Roy RK (2010) A primer on the Taguchi method. Society of Manufacturing Engineers
25.
go back to reference Gonzales GV, Dos Santos ED, Emmendorfer LR, Isoldi LA, Rocha LAO, Estrada E (2015) A comparative study of simulated annealing with different cooling schedules for geometric optimization of a heat transfer problem according to constructual design. Sci Plena 11(8):11 Gonzales GV, Dos Santos ED, Emmendorfer LR, Isoldi LA, Rocha LAO, Estrada E (2015) A comparative study of simulated annealing with different cooling schedules for geometric optimization of a heat transfer problem according to constructual design. Sci Plena 11(8):11
26.
go back to reference Ingber L (1996) Adaptive simulated annealing (asa): lessons learned. Control and Cybern 25(1):32–54 (cited By 364) Ingber L (1996) Adaptive simulated annealing (asa): lessons learned. Control and Cybern 25(1):32–54 (cited By 364)
Metadata
Title
Case-based tuning of a metaheuristic algorithm exploiting sensitivity analysis and design of experiments for reverse engineering applications
Authors
Ghazanfar Ali Shah
Arnaud Polette
Jean-Philippe Pernot
Franca Giannini
Marina Monti
Publication date
22-04-2022
Publisher
Springer London
Published in
Engineering with Computers / Issue 4/2023
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01650-5