Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2023 | OriginalPaper | Chapter

14. Case Study 6: Urban Flood Susceptibility Modelling of Srinagar Using Novel Fuzzy Multi-layer Perceptron Neural Network

Authors : Manish Kumar, R. B. Singh, Anju Singh, Ram Pravesh, Syed Irtiza Majid, Akash Tiwari

Published in: Geographic Information Systems in Urban Planning and Management

Publisher: Springer Nature Singapore

Abstract

Urban flooding (often referred to as water logging) is defined as the submergence of normally dry city areas by a considerable volume of water caused by heavy precipitation or overflowing of water bodies. Flood susceptibility modelling, by combining the effects of natural and human factors, determines the sensitivity of the space to flood hazard. Urban flood modelling has gained attention recently and since the incidence of urban floods has increased rapidly, due attention needs to be given to the urban flood studies. In this case study, urban flood susceptibility modelling of Srinagar City, Jammu and Kashmir, India, using Fuzzy MLPNN, has been carried out in Geographic Information System (GIS) environment. Fuzzy MLPNN is a simple and straightforward approach that unifies the complexity of the phenomenon of urban flooding by integrating fuzzy mathematics and machine learning to build a predictive model for the analysis of urban flood susceptibility using geospatial data. Eight flood conditioning factors (elevation, slope, profile curvature, plan curvature, geology, distance from natural streams, MFI and LULC) were used as independent variables along with urban flood locations as the dependent variable. A precursory FSZ map of Srinagar City was created using the frequency ratio technique, and non-flooded locations were accordingly determined. The developed model reveals the susceptibility of each and every pixel (12.5 × 12.5 m area) in the study area. The FSI, illustrated by the FSZ Map of Srinagar, demonstrates considerable susceptibility of the city to urban flood hazard. The dominant influence of spatiality of precipitation and water bodies is indicated by the conclusion that highly susceptible regions of the city are those where MFI is high and proximity to natural drainage is low. The FSZ map was validated using Area under the ROC Curve (AUC) Analysis, which substantiates the efficiency of the Fuzzy MLPNN model. With 0.931 and 0.922 AUC values, the success rate and predictive performance of the FSZ map come out to be excellent, respectively.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
go back to reference Arnoldus HMJ (1980) An approximation of the rainfall factor in the Universal Soil Loss Equation, pp 127–132 Arnoldus HMJ (1980) An approximation of the rainfall factor in the Universal Soil Loss Equation, pp 127–132
go back to reference Bhat MS, Ahmad B, Alam A, Farooq H, Ahmad S (2019) Flood hazard assessment of the Kashmir Valley using historical hydrology. J Flood Risk Manage 12:e12521 CrossRef Bhat MS, Ahmad B, Alam A, Farooq H, Ahmad S (2019) Flood hazard assessment of the Kashmir Valley using historical hydrology. J Flood Risk Manage 12:e12521 CrossRef
go back to reference Bui DT, Tsnagaratos P, Ngo P, Pham TD, Pham TB (2019) Flash Flood Susceptibility modelling using an optimized fuzzy rule-based feature selection technique and tree based ensemble methods. Sci Total Environ 668:1038–1054 Bui DT, Tsnagaratos P, Ngo P, Pham TD, Pham TB (2019) Flash Flood Susceptibility modelling using an optimized fuzzy rule-based feature selection technique and tree based ensemble methods. Sci Total Environ 668:1038–1054
go back to reference Hong H, Ilia I, Tsangaratos P, Chen W, Xu C (2017) A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China. Geomorphology 290:1–16 CrossRef Hong H, Ilia I, Tsangaratos P, Chen W, Xu C (2017) A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China. Geomorphology 290:1–16 CrossRef
go back to reference König A, Sægrov S, Schilling W (2002) Damage assessment for urban flooding. In: Global solutions for urban drainage, pp 1–11 König A, Sægrov S, Schilling W (2002) Damage assessment for urban flooding. In: Global solutions for urban drainage, pp 1–11
go back to reference Meng XH, Huang YX, Rao DP, Zhang Q, Liu Q (2013) Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. Kaohsiung J Med Sci. 29(2):93–99. Meng XH, Huang YX, Rao DP, Zhang Q, Liu Q (2013) Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. Kaohsiung J Med Sci. 29(2):93–99.
go back to reference Pradhan AMS, Kim YT (2017) Spatial data analysis and application of evidential belief functions to shallow landslide susceptibility mapping at Mt. Umyeon, Seoul, Korea. Bull Eng Geol Environ 76(4):1263–1279s Pradhan AMS, Kim YT (2017) Spatial data analysis and application of evidential belief functions to shallow landslide susceptibility mapping at Mt. Umyeon, Seoul, Korea. Bull Eng Geol Environ 76(4):1263–1279s
go back to reference Rahmati O, Pourghasemi HR, Zeinivand H (2016) Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto Int 31(1):42–70 CrossRef Rahmati O, Pourghasemi HR, Zeinivand H (2016) Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto Int 31(1):42–70 CrossRef
go back to reference Ramesh V, Iqbal SS (2020) Urban flood susceptibility zonation mapping using evidential belief function, frequency ratio and fuzzy gamma operator models in GIS: a case study of Greater Mumbai, Maharashtra, India. Geocarto Int Ramesh V, Iqbal SS (2020) Urban flood susceptibility zonation mapping using evidential belief function, frequency ratio and fuzzy gamma operator models in GIS: a case study of Greater Mumbai, Maharashtra, India. Geocarto Int
go back to reference Tehrany MS, Lee MJ, Pradhan B, Jebur MN, Lee S (2014a) Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environ Earth Sci 72(10):4001–4015 CrossRef Tehrany MS, Lee MJ, Pradhan B, Jebur MN, Lee S (2014a) Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environ Earth Sci 72(10):4001–4015 CrossRef
go back to reference Tehrany MS, Pradhan B, Jebur MN (2014b) Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol 512:332–343 CrossRef Tehrany MS, Pradhan B, Jebur MN (2014b) Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol 512:332–343 CrossRef
Metadata
Title
Case Study 6: Urban Flood Susceptibility Modelling of Srinagar Using Novel Fuzzy Multi-layer Perceptron Neural Network
Authors
Manish Kumar
R. B. Singh
Anju Singh
Ram Pravesh
Syed Irtiza Majid
Akash Tiwari
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-7855-5_14

Premium Partner