Skip to main content
Top
Published in: Topics in Catalysis 18-20/2013

01-12-2013 | Original Paper

Catalysis in Energy Generation and Conversion: How Insight Into Nanostructure, Composition, and Electronic Structure Leads to Better Catalysts (Perspective)

Authors: William D. Michalak, Gabor A. Somorjai

Published in: Topics in Catalysis | Issue 18-20/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Catalysts are essential for the generation of energy carriers like hydrocarbon fuels, hydrogen, and electrical current. The performance of catalysts can be related to their nanostructure (i.e., size and shape) and composition. To rationally design catalysts by tuning these properties, they should be measured in a meaningful way using surface-sensitive spectroscopic tools under reaction conditions. In this perspective, we provide case histories of recently published research aimed at understanding these properties using a spectroscopic strategy under reaction conditions. We limit this perspective to studies whose main focus was to understand how the nanostructure and composition impact the active phase and/or efficiency of catalysts for the generation and conversion of energy carriers. We discuss studies of a Pd/Ga2O3 catalyst for the generation of hydrogen fuel from methanol and water, a PtMo catalyst for the generation of hydrogen fuel from biomass and water, Pt/Rh catalysts for the conversion of hydrogen into electrical current, a CeO x catalyst for the conversion of hydrogen into electrical current, and Fe and Co/CoPt catalysts for the generation of hydrocarbon fuel from carbon monoxide and hydrogen. Each study emphasizes how the use of spectroscopic tools under reactive conditions is beneficial for making rational decisions for improving catalysts. The studies demonstrate how different synthesis methods dictate the nanostructure and distribution of alloy components in the catalyst, certain pretreatment conditions create the active surface phase, while reactions and post-treatments can destroy it, and the nanostructure and composition change the electronic structure and alter the selectivity and activity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Basic Resarch Needs: Catalysis for Energy. United States Deparment of Energy, 2007 Basic Resarch Needs: Catalysis for Energy. United States Deparment of Energy, 2007
2.
go back to reference Tao F et al (2010) Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327(5967):850–853CrossRef Tao F et al (2010) Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327(5967):850–853CrossRef
3.
go back to reference Zhu ZW et al (2012) Formation of nanometer-sized surface platinum oxide clusters on a stepped Pt(557) single crystal surface induced by oxygen: a high-pressure STM and ambient-pressure XPS study. Nano Lett 12(3):1491–1497CrossRef Zhu ZW et al (2012) Formation of nanometer-sized surface platinum oxide clusters on a stepped Pt(557) single crystal surface induced by oxygen: a high-pressure STM and ambient-pressure XPS study. Nano Lett 12(3):1491–1497CrossRef
4.
go back to reference Tao F et al (2008) Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles. Science 322(5903):932–934CrossRef Tao F et al (2008) Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles. Science 322(5903):932–934CrossRef
5.
go back to reference Renzas JR et al (2011) Rh1−x Pd x nanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems. Phys Chem Chem Phys 13(7):2556–2562CrossRef Renzas JR et al (2011) Rh1−x Pd x nanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems. Phys Chem Chem Phys 13(7):2556–2562CrossRef
6.
go back to reference Tao F et al (2009) Reaction-driven restructuring of bimetallic nanoparticle systems. Abstr Pap Am Chem Soc 237:833 Tao F et al (2009) Reaction-driven restructuring of bimetallic nanoparticle systems. Abstr Pap Am Chem Soc 237:833
7.
go back to reference Dietrich PJ et al (2012) Aqueous phase glycerol reforming by PtMo bimetallic nano-particle catalyst: product selectivity and structural characterization. Top Catal 55(1–2):53–69CrossRef Dietrich PJ et al (2012) Aqueous phase glycerol reforming by PtMo bimetallic nano-particle catalyst: product selectivity and structural characterization. Top Catal 55(1–2):53–69CrossRef
8.
go back to reference Haghofer A et al (2012) In situ study of the formation and stability of supported Pd2Ga methanol steam reforming catalysts. J Catal 286:13–21CrossRef Haghofer A et al (2012) In situ study of the formation and stability of supported Pd2Ga methanol steam reforming catalysts. J Catal 286:13–21CrossRef
9.
go back to reference Zhang C et al (2012) Multielement activity mapping and potential mapping in solid oxide electrochemical cells through the use of operando XPS. ACS Catal 2(11):2297–2304CrossRef Zhang C et al (2012) Multielement activity mapping and potential mapping in solid oxide electrochemical cells through the use of operando XPS. ACS Catal 2(11):2297–2304CrossRef
10.
go back to reference Friebel D et al (2012) Balance of nanostructure and bimetallic interactions in Pt model fuel cell catalysts: in situ XAS and DFT study. J Am Chem Soc 134(23):9664–9671CrossRef Friebel D et al (2012) Balance of nanostructure and bimetallic interactions in Pt model fuel cell catalysts: in situ XAS and DFT study. J Am Chem Soc 134(23):9664–9671CrossRef
11.
go back to reference de Smit E et al (2011) On the surface chemistry of iron oxides in reactive gas atmospheres. Angew Chem Int Ed 50(7):1584–1588CrossRef de Smit E et al (2011) On the surface chemistry of iron oxides in reactive gas atmospheres. Angew Chem Int Ed 50(7):1584–1588CrossRef
12.
go back to reference Zheng F et al (2011) In situ X-ray absorption study of evolution of oxidation states and structure of cobalt in Co and CoPt bimetallic nanoparticles (4 nm) under reducing (H-2) and oxidizing (O-2) environments. Nano Lett 11(2):847–853CrossRef Zheng F et al (2011) In situ X-ray absorption study of evolution of oxidation states and structure of cobalt in Co and CoPt bimetallic nanoparticles (4 nm) under reducing (H-2) and oxidizing (O-2) environments. Nano Lett 11(2):847–853CrossRef
13.
go back to reference Maris EP, Davis RJ (2007) Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts. J Catal 249(2):328–337CrossRef Maris EP, Davis RJ (2007) Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts. J Catal 249(2):328–337CrossRef
14.
go back to reference Zhang L et al (2012) Correlation of Pt–Re surface properties with reaction pathways for the aqueous-phase reforming of glycerol. J Catal 287:37–43CrossRef Zhang L et al (2012) Correlation of Pt–Re surface properties with reaction pathways for the aqueous-phase reforming of glycerol. J Catal 287:37–43CrossRef
15.
go back to reference Chia M et al (2011) Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium–rhenium catalysts. J Am Chem Soc 133(32):12675–12689CrossRef Chia M et al (2011) Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium–rhenium catalysts. J Am Chem Soc 133(32):12675–12689CrossRef
16.
go back to reference Zheng F et al (2012) In situ study of oxidation states and structure of 4 nm CoPt bimetallic nanoparticles during CO oxidation using X-ray spectroscopies in comparison with reaction turnover frequency. Catal Today 182(1):54–59CrossRef Zheng F et al (2012) In situ study of oxidation states and structure of 4 nm CoPt bimetallic nanoparticles during CO oxidation using X-ray spectroscopies in comparison with reaction turnover frequency. Catal Today 182(1):54–59CrossRef
17.
go back to reference Bayer A et al (2006) Electronic properties of thin Zn layers on Pd(111) during growth and alloying. Surf Sci 600(1):78–94CrossRef Bayer A et al (2006) Electronic properties of thin Zn layers on Pd(111) during growth and alloying. Surf Sci 600(1):78–94CrossRef
18.
go back to reference Haghofer A et al (2012) Who is doing the job? Unraveling the role of Ga2O3 in methanol steam reforming on Pd2Ga/Ga2O3. ACS Catal 2(11):2305–2315CrossRef Haghofer A et al (2012) Who is doing the job? Unraveling the role of Ga2O3 in methanol steam reforming on Pd2Ga/Ga2O3. ACS Catal 2(11):2305–2315CrossRef
19.
go back to reference DeCaluwe SC et al (2010) In situ characterization of ceria oxidation states in high-temperature electrochemical cells with ambient pressure XPS. J Phys Chem C 114(46):19853–19861CrossRef DeCaluwe SC et al (2010) In situ characterization of ceria oxidation states in high-temperature electrochemical cells with ambient pressure XPS. J Phys Chem C 114(46):19853–19861CrossRef
20.
go back to reference Stamenkovic VR et al (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811):493–497CrossRef Stamenkovic VR et al (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811):493–497CrossRef
21.
go back to reference Norskov JK et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892CrossRef Norskov JK et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892CrossRef
22.
go back to reference Biloen P, Sachtler WMH (1981) Mechanism of hydrocarbon synthesis over Fischer–Tropsch catalysts. Adv Catal 30:165–216 Biloen P, Sachtler WMH (1981) Mechanism of hydrocarbon synthesis over Fischer–Tropsch catalysts. Adv Catal 30:165–216
23.
go back to reference Davis BH (2001) Fischer–Tropsch synthesis: current mechanism and futuristic needs. Fuel Process Technol 71(1–3):157–166CrossRef Davis BH (2001) Fischer–Tropsch synthesis: current mechanism and futuristic needs. Fuel Process Technol 71(1–3):157–166CrossRef
24.
go back to reference Gaube J, Klein HF (2008) Studies on the reaction mechanism of the Fischer–Tropsch synthesis on iron and cobalt. J Mol Catal A Chem 283(1–2):60–68CrossRef Gaube J, Klein HF (2008) Studies on the reaction mechanism of the Fischer–Tropsch synthesis on iron and cobalt. J Mol Catal A Chem 283(1–2):60–68CrossRef
25.
go back to reference Inderwildi OR, Jenkins SJ, King DA (2008) Fischer–Tropsch mechanism revisited: alternative pathways for the production of higher hydrocarbons from synthesis gas. J Phys Chem C 112(5):1305–1307CrossRef Inderwildi OR, Jenkins SJ, King DA (2008) Fischer–Tropsch mechanism revisited: alternative pathways for the production of higher hydrocarbons from synthesis gas. J Phys Chem C 112(5):1305–1307CrossRef
26.
go back to reference Casci JL, Lok CM, Shannon MD (2009) Fischer–Tropsch catalysis: the basis for an emerging industry with origins in the early 20th Century. Catal Today 145(1–2):38–44CrossRef Casci JL, Lok CM, Shannon MD (2009) Fischer–Tropsch catalysis: the basis for an emerging industry with origins in the early 20th Century. Catal Today 145(1–2):38–44CrossRef
27.
go back to reference van Santen RA et al (2011) Structure sensitivity of the Fischer–Tropsch reaction; molecular kinetics simulations. Catal Sci Technol 1(6):891–911CrossRef van Santen RA et al (2011) Structure sensitivity of the Fischer–Tropsch reaction; molecular kinetics simulations. Catal Sci Technol 1(6):891–911CrossRef
28.
go back to reference Li S et al (2001) Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer–Tropsch synthesis catalysts. Catal Lett 77(4):197–205CrossRef Li S et al (2001) Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer–Tropsch synthesis catalysts. Catal Lett 77(4):197–205CrossRef
Metadata
Title
Catalysis in Energy Generation and Conversion: How Insight Into Nanostructure, Composition, and Electronic Structure Leads to Better Catalysts (Perspective)
Authors
William D. Michalak
Gabor A. Somorjai
Publication date
01-12-2013
Publisher
Springer US
Published in
Topics in Catalysis / Issue 18-20/2013
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-013-0096-0

Other articles of this Issue 18-20/2013

Topics in Catalysis 18-20/2013 Go to the issue

Premium Partners