Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-09-2018 | Research Paper | Issue 9/2018

Journal of Nanoparticle Research 9/2018

Catalytic graphitization of kraft lignin to graphene-based structures with four different transitional metals

Journal:
Journal of Nanoparticle Research > Issue 9/2018
Authors:
Qiangu Yan, Jinghao Li, Xuefeng Zhang, El Barbary Hassan, Chuji Wang, Jilei Zhang, Zhiyong Cai
Important notes
Qiangu Yan and Jinghao Li contributed equally to this work.

Abstract

Catalytic graphitization of kraft lignin to nano-materials was investigated over four transitional metal catalysts (Ni, Cu, Fe, and Mo) through a thermal treatment process under an argon flow at 1000 °C. The catalytic thermal process was examined using thermal gravimetric analysis (TGA) and temperature-programmed decomposition (TPD) experiments. The crystal structure and morphology of the thermal-treated metal-lignin samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. Catalytic graphitization of kraft lignin to nano-materials was investigated over four transitional metal catalysts (Ni, Cu, Fe, and Mo) through a catalytic thermal treatment process. It was observed that multi-layer graphene-encapsulated metal nanoparticles were the main products, beside along with some graphene sheets/flakes. The particle sizes and graphene shell layers were significantly affected by the promoted metals. BET surface areas of samples obtained from different metal precursors were in the range of 88–115 m2/g within the order of Ni- > Fe- > Mo- > Cu-. Thermal gravimetric analysis (TGA) and temperature-programmed decomposition (TPD) experimental results showed that adding transitional metals could promote the decomposition and carbonization of kraft lignin. The catalytic activity increased with an order of Mo≅Cu < Ni≅Fe. XRD results show that face-centered cubic (fcc) Cu crystals is formed in the thermal-treated Cu-lignin sample, fcc nickel phase for the Ni-lignin sample, β-Mo2C hexagonal phase for the Mo-lignin sample and α-Fe, γ-iron, and cementite(Fe3C) for the Fe-lignin sample. Average particle sizes of these crystal phases calculated using the Scherrer formula are 52.4 nm, 56.2 nm, 21.0 nm, 23.3 nm, 11.3 nm, and 32.8 nm for Ni, Cu, β-Mo2C, α-Fe, γ-iron, and Fe3C, respectively. Raman results prove that the graphitization activity of these four metals is in the order of Cu < Mo < Ni < Fe. Metal properties such as catalytic activity, carbon solubility, and tendency of metal carbide formation were related to the graphene-based structure formation during catalytic graphitization of kraft lignin process.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 9/2018

Journal of Nanoparticle Research 9/2018 Go to the issue

Premium Partner

    Image Credits