Skip to main content
Top

2017 | OriginalPaper | Chapter

Catalytic Hydro-Cracking of Bio-Oil to Bio-Fuel

Authors : Amir Ahmad Forghani, David M. Lewis, Phillip Pendleton

Published in: Biodegradation and Bioconversion of Hydrocarbons

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Over the last hundred years, fossil fuels consumption has increased dramatically leading to a significant increase in greenhouse gas emissions, the depletion of natural reserves of fossil fuels and increase fuel production costs. Consequently, renewable and sustainable fuel sources such as bio-oil are receiving increased attention. In bio-oils, such as microalgae oil, triglycerides and fatty acids are sustainable resources with high energy densities that can be converted into liquid hydrocarbon fuels, efficiently. One of the efficient ways for bio-oil conversion to applicable fuels is catalytic hydro-cracking. This chapter presents research on the catalytic conversion of oleic acid (main component in all types of bio-oil) in bio-oil to liquid hydrocarbon fuels employing two catalysts. These catalysts include Ni-ZSM-5 and Ni-Zeolite β, which were prepared by impregnating cheap catalyst supports (ZSM-5 and Zeolite β) with Ni(NO3)2·6H2O calcined at a temperature of 500 °C. The catalysts were characterized using the Brunauer–Emmet–Teller Nitrogen Adsorption technique, scanning electron microscopy (SEM) and SEM–EDX (energy-dispersive X-ray spectroscopy) to analyse nickel impregnation and measure surface areas and pore size distribution. Conversion rates of oleic acid and product yields of liquid hydrocarbon fuels using each catalyst sample were determined via hydro-cracking reactions run at a temperature range of 300–450 °C and under a 30 bar pressure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adjaye JD, Bakhshi NN (1995a) Catalytic conversion of a biomass-derived oil to fuels and chemicals I: model compound studies and reaction pathways. Biomass Bioenergy 8(3):131–149CrossRef Adjaye JD, Bakhshi NN (1995a) Catalytic conversion of a biomass-derived oil to fuels and chemicals I: model compound studies and reaction pathways. Biomass Bioenergy 8(3):131–149CrossRef
go back to reference Adjaye JD, Bakhshi NN (1995b) Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: conversion over various catalysts. Fuel Process Technol 45(3):161–183CrossRef Adjaye JD, Bakhshi NN (1995b) Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: conversion over various catalysts. Fuel Process Technol 45(3):161–183CrossRef
go back to reference Anand M, Sinha AK (2012) Temperature-dependent reaction pathways for the anomalous hydrocracking of triglycerides in the presence of sulfided Co–Mo-catalyst. Bioresour Technol 126:148–155CrossRef Anand M, Sinha AK (2012) Temperature-dependent reaction pathways for the anomalous hydrocracking of triglycerides in the presence of sulfided Co–Mo-catalyst. Bioresour Technol 126:148–155CrossRef
go back to reference Arend M et al (2011) Catalytic deoxygenation of oleic acid in continuous gas flow for the production of diesel-like hydrocarbons. Appl Catal A 399(1–2):198–204CrossRef Arend M et al (2011) Catalytic deoxygenation of oleic acid in continuous gas flow for the production of diesel-like hydrocarbons. Appl Catal A 399(1–2):198–204CrossRef
go back to reference Benson TJ et al (2008) Heterogeneous cracking of an unsaturated fatty acid and reaction intermediates on H+ ZSM-5 catalyst. CLEAN–Soil Air Water 36(8):652–656CrossRef Benson TJ et al (2008) Heterogeneous cracking of an unsaturated fatty acid and reaction intermediates on H+ ZSM-5 catalyst. CLEAN–Soil Air Water 36(8):652–656CrossRef
go back to reference Bezergianni S et al (2010a) Hydrotreating of waste cooking oil for biodiesel production. Part I: effect of temperature on product yields and heteroatom removal. Bioresour Technol 101(17):6651–6656CrossRef Bezergianni S et al (2010a) Hydrotreating of waste cooking oil for biodiesel production. Part I: effect of temperature on product yields and heteroatom removal. Bioresour Technol 101(17):6651–6656CrossRef
go back to reference Bezergianni S et al (2010b) Hydrotreating of waste cooking oil for biodiesel production. Part II: effect of temperature on hydrocarbon composition. Bioresour Technol 101(19):7658–7660CrossRef Bezergianni S et al (2010b) Hydrotreating of waste cooking oil for biodiesel production. Part II: effect of temperature on hydrocarbon composition. Bioresour Technol 101(19):7658–7660CrossRef
go back to reference Bezergianni S, Kalogianni A (2009) Hydrocracking of used cooking oil for biofuels production. Bioresour Technol 100(17):3927–3932CrossRef Bezergianni S, Kalogianni A (2009) Hydrocracking of used cooking oil for biofuels production. Bioresour Technol 100(17):3927–3932CrossRef
go back to reference Bezergianni S et al (2009a) Hydrocracking of vacuum gas oil-vegetable oil mixtures for biofuels production. Bioresour Technol 100(12):3036–3042CrossRef Bezergianni S et al (2009a) Hydrocracking of vacuum gas oil-vegetable oil mixtures for biofuels production. Bioresour Technol 100(12):3036–3042CrossRef
go back to reference Bezergianni S et al (2009b) Catalytic hydrocracking of fresh and used cooking oil. Ind Eng Chem Res 48(18):8402–8406CrossRef Bezergianni S et al (2009b) Catalytic hydrocracking of fresh and used cooking oil. Ind Eng Chem Res 48(18):8402–8406CrossRef
go back to reference Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577CrossRef Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577CrossRef
go back to reference Brunauer S et al (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319CrossRef Brunauer S et al (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319CrossRef
go back to reference Bui VN et al (2011) Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: promoting effect of cobalt on HDO selectivity and activity. Appl Catal B 101(3–4):239–245CrossRef Bui VN et al (2011) Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: promoting effect of cobalt on HDO selectivity and activity. Appl Catal B 101(3–4):239–245CrossRef
go back to reference Caspeta L et al (2013) The role of biofuels in the future energy supply. Energy Environ Sci 6(4):1077–1082CrossRef Caspeta L et al (2013) The role of biofuels in the future energy supply. Energy Environ Sci 6(4):1077–1082CrossRef
go back to reference Choudhary TV, Phillips CB (2011) Renewable fuels via catalytic hydrodeoxygenation. Appl Catal A 397(1–2):1–12CrossRef Choudhary TV, Phillips CB (2011) Renewable fuels via catalytic hydrodeoxygenation. Appl Catal A 397(1–2):1–12CrossRef
go back to reference Chum H, et al (2011) Bioenergy. IPCC special report on renewable energy sources and climate change mitigation. In: O Edenhofer, R Pichs-Madruga, Y Sokona et al (eds) Cambridge University Press, Cambridge Chum H, et al (2011) Bioenergy. IPCC special report on renewable energy sources and climate change mitigation. In: O Edenhofer, R Pichs-Madruga, Y Sokona et al (eds) Cambridge University Press, Cambridge
go back to reference Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18(2):590–598CrossRef Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18(2):590–598CrossRef
go back to reference Demirbas A, Fatih Demirbas M (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52(1):163–170CrossRef Demirbas A, Fatih Demirbas M (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52(1):163–170CrossRef
go back to reference Díaz E et al (2007) Hydrogenation of phenol in aqueous phase with palladium on activated carbon catalysts. Chem Eng J 131(1–3):65–71CrossRef Díaz E et al (2007) Hydrogenation of phenol in aqueous phase with palladium on activated carbon catalysts. Chem Eng J 131(1–3):65–71CrossRef
go back to reference Donnis B et al (2009) Hydroprocessing of bio-oils and oxygenates to hydrocarbons. understanding the reaction routes. Top Catal 52(3):229–240CrossRef Donnis B et al (2009) Hydroprocessing of bio-oils and oxygenates to hydrocarbons. understanding the reaction routes. Top Catal 52(3):229–240CrossRef
go back to reference Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energy Fuels 21(3):1792–1815CrossRef Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energy Fuels 21(3):1792–1815CrossRef
go back to reference Figueroa JD et al (2008) Advances in CO2 capture technology—the U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenh Gas Control 2(1):9–20CrossRef Figueroa JD et al (2008) Advances in CO2 capture technology—the U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenh Gas Control 2(1):9–20CrossRef
go back to reference Fisk CA et al (2009) Bio-oil upgrading over platinum catalysts using in situ generated hydrogen. Appl Catal A 358(2):150–156CrossRef Fisk CA et al (2009) Bio-oil upgrading over platinum catalysts using in situ generated hydrogen. Appl Catal A 358(2):150–156CrossRef
go back to reference Ford J et al (2012) Palladium catalysts for fatty acid deoxygenation: influence of the support and fatty acid chain length on decarboxylation kinetics. Top Catal 55(3–4):175–184CrossRef Ford J et al (2012) Palladium catalysts for fatty acid deoxygenation: influence of the support and fatty acid chain length on decarboxylation kinetics. Top Catal 55(3–4):175–184CrossRef
go back to reference Forghani AA et al (2014) Mathematical modelling of a hydrocracking reactor for triglyceride conversion to biofuel: model establishment and validation. Int J Energy Res 38(12):1624–1634CrossRef Forghani AA et al (2014) Mathematical modelling of a hydrocracking reactor for triglyceride conversion to biofuel: model establishment and validation. Int J Energy Res 38(12):1624–1634CrossRef
go back to reference Forghani AA, Lewis DM (2015) Hydro-conversion of oleic acid in bio-oil to liquid hydrocarbons: an experimental and modeling investigation. J Chem Technol Biotechnol doi:10.1002/jctb.4618 Forghani AA, Lewis DM (2015) Hydro-conversion of oleic acid in bio-oil to liquid hydrocarbons: an experimental and modeling investigation. J Chem Technol Biotechnol doi:10.​1002/​jctb.​4618
go back to reference Fu J et al (2011) Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C. ChemSusChem 4(4):481–486CrossRef Fu J et al (2011) Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C. ChemSusChem 4(4):481–486CrossRef
go back to reference Grillet Y et al (1993) Evaluation of the n-nonane preadsorption method with a well characterized model adsorbent: Silicalite-l. Pure Appl Chem 65(10):2157–2167CrossRef Grillet Y et al (1993) Evaluation of the n-nonane preadsorption method with a well characterized model adsorbent: Silicalite-l. Pure Appl Chem 65(10):2157–2167CrossRef
go back to reference Gusmão J et al (1989) Utilization of vegetable oils as an alternative source for diesel-type fuel: hydrocracking on reduced Ni/SiO2 and sulphided Ni–Mo/γ-Al2O3. Catal Today 5(4):533–544CrossRef Gusmão J et al (1989) Utilization of vegetable oils as an alternative source for diesel-type fuel: hydrocracking on reduced Ni/SiO2 and sulphided Ni–Mo/γ-Al2O3. Catal Today 5(4):533–544CrossRef
go back to reference Gutiérrez OY et al (2011) Influence of potassium on the synthesis of methanethiol from carbonyl sulfide on sulfided Mo/Al2O3 catalyst. ChemCatChem 3(9):1480–1490CrossRef Gutiérrez OY et al (2011) Influence of potassium on the synthesis of methanethiol from carbonyl sulfide on sulfided Mo/Al2O3 catalyst. ChemCatChem 3(9):1480–1490CrossRef
go back to reference Huber GW et al (2007) Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl Catal A 329:120–129CrossRef Huber GW et al (2007) Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl Catal A 329:120–129CrossRef
go back to reference Idem RO et al (1997) Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape selectivity on product distribution. Fuel Process Technol 51(1–2):101–125CrossRef Idem RO et al (1997) Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape selectivity on product distribution. Fuel Process Technol 51(1–2):101–125CrossRef
go back to reference Immer JG et al (2010) Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Appl Catal A 375(1):134–139CrossRef Immer JG et al (2010) Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Appl Catal A 375(1):134–139CrossRef
go back to reference Immer JG, Lamb HH (2010) Fed-batch catalytic deoxygenation of free fatty acids. Energy Fuels 24(10):5291–5299CrossRef Immer JG, Lamb HH (2010) Fed-batch catalytic deoxygenation of free fatty acids. Energy Fuels 24(10):5291–5299CrossRef
go back to reference James GS, Jorge A (2007) Hydroprocessing chemistry. Hydroprocessing of heavy oils and residua. CRC Press, Boca Raton, pp 35–50 James GS, Jorge A (2007) Hydroprocessing chemistry. Hydroprocessing of heavy oils and residua. CRC Press, Boca Raton, pp 35–50
go back to reference Katikaneni SPR et al (1995) Catalytic conversion of canola oil to fuels and chemicals over various cracking catalysts. Can J Chem Eng 73(4):484–497CrossRef Katikaneni SPR et al (1995) Catalytic conversion of canola oil to fuels and chemicals over various cracking catalysts. Can J Chem Eng 73(4):484–497CrossRef
go back to reference Kubička D, Kaluža L (2010) Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl Catal A 372(2):199–208CrossRef Kubička D, Kaluža L (2010) Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl Catal A 372(2):199–208CrossRef
go back to reference Kubičková I et al (2005) Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catal Today 106(1–4):197–200CrossRef Kubičková I et al (2005) Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catal Today 106(1–4):197–200CrossRef
go back to reference Kumar R et al (2010) Hydroprocessing of jatropha oil and its mixtures with gas oil. Green Chem 12(12):2232–2239CrossRef Kumar R et al (2010) Hydroprocessing of jatropha oil and its mixtures with gas oil. Green Chem 12(12):2232–2239CrossRef
go back to reference Lestari S et al (2009a) Catalytic Deoxygenation of stearic acid in a continuous reactor over a mesoporous carbon-supported Pd catalyst. Energy Fuels 23(8):3842–3845CrossRef Lestari S et al (2009a) Catalytic Deoxygenation of stearic acid in a continuous reactor over a mesoporous carbon-supported Pd catalyst. Energy Fuels 23(8):3842–3845CrossRef
go back to reference Lestari S et al (2009b) Catalytic deoxygenation of stearic acid and palmitic acid in semibatch mode. Catal Lett 130(1–2):48–51CrossRef Lestari S et al (2009b) Catalytic deoxygenation of stearic acid and palmitic acid in semibatch mode. Catal Lett 130(1–2):48–51CrossRef
go back to reference Lestari S et al (2008) Synthesis of biodiesel via deoxygenation of stearic acid over supported Pd/C catalyst. Catal Lett 122(3–4):247–251CrossRef Lestari S et al (2008) Synthesis of biodiesel via deoxygenation of stearic acid over supported Pd/C catalyst. Catal Lett 122(3–4):247–251CrossRef
go back to reference Leung A et al (1995) Pathway for the catalytic conversion of carboxylic acids to hydrocarbons over activated alumina. Energy Fuels 9(5):913–920CrossRef Leung A et al (1995) Pathway for the catalytic conversion of carboxylic acids to hydrocarbons over activated alumina. Energy Fuels 9(5):913–920CrossRef
go back to reference Luque R et al (2008) Biofuels: a technological perspective. Energy Environ Sci 1(5):542–564CrossRef Luque R et al (2008) Biofuels: a technological perspective. Energy Environ Sci 1(5):542–564CrossRef
go back to reference Maier WF et al (1982) Hydrogenolysis, IV. Gas phase decarboxylation of carboxylic acids. Chem Ber 115(2):808–812CrossRef Maier WF et al (1982) Hydrogenolysis, IV. Gas phase decarboxylation of carboxylic acids. Chem Ber 115(2):808–812CrossRef
go back to reference Mäki-Arvela P et al (2006) Catalytic deoxygenation of fatty acids and their derivatives. Energy Fuels 21(1):30–41CrossRef Mäki-Arvela P et al (2006) Catalytic deoxygenation of fatty acids and their derivatives. Energy Fuels 21(1):30–41CrossRef
go back to reference Metz B (2005) Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge Metz B (2005) Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
go back to reference Milne TA et al (1990) Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shape-selective Zeolites. Biomass 21(3):219–232CrossRef Milne TA et al (1990) Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shape-selective Zeolites. Biomass 21(3):219–232CrossRef
go back to reference Morgan T et al (2010) Conversion of triglycerides to hydrocarbons over supported metal catalysts. Top Catal 53(11–12):820–829CrossRef Morgan T et al (2010) Conversion of triglycerides to hydrocarbons over supported metal catalysts. Top Catal 53(11–12):820–829CrossRef
go back to reference Morgan T et al (2012) Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts. Chem Eng J 189–190:346–355CrossRef Morgan T et al (2012) Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts. Chem Eng J 189–190:346–355CrossRef
go back to reference Mortensen PM et al (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407(1–2):1–19CrossRef Mortensen PM et al (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407(1–2):1–19CrossRef
go back to reference Nava R et al (2009) Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts. Appl Catal B 92(1–2):154–167CrossRef Nava R et al (2009) Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts. Appl Catal B 92(1–2):154–167CrossRef
go back to reference Ooi Y-S et al (2005) Catalytic conversion of fatty acids mixture to liquid fuel and chemicals over composite microporous/mesoporous catalysts. Energy Fuels 19(3):736–743CrossRef Ooi Y-S et al (2005) Catalytic conversion of fatty acids mixture to liquid fuel and chemicals over composite microporous/mesoporous catalysts. Energy Fuels 19(3):736–743CrossRef
go back to reference Peng B et al (2012) Inside back cover: towards quantitative conversion of microalgae oil to diesel-range alkanes with bifunctional catalysts. Angew Chem Int Ed 51(9):2253CrossRef Peng B et al (2012) Inside back cover: towards quantitative conversion of microalgae oil to diesel-range alkanes with bifunctional catalysts. Angew Chem Int Ed 51(9):2253CrossRef
go back to reference Ping EW et al (2011) On the nature of the deactivation of supported palladium nanoparticle catalysts in the decarboxylation of fatty acids. Appl Catal A 396(1–2):85–90CrossRef Ping EW et al (2011) On the nature of the deactivation of supported palladium nanoparticle catalysts in the decarboxylation of fatty acids. Appl Catal A 396(1–2):85–90CrossRef
go back to reference Ping EW et al (2010) Highly dispersed palladium nanoparticles on ultra-porous silica mesocellular foam for the catalytic decarboxylation of stearic acid. Microporous Mesoporous Mater 132(1–2):174–180CrossRef Ping EW et al (2010) Highly dispersed palladium nanoparticles on ultra-porous silica mesocellular foam for the catalytic decarboxylation of stearic acid. Microporous Mesoporous Mater 132(1–2):174–180CrossRef
go back to reference Pragya N et al (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev 24:159–171CrossRef Pragya N et al (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev 24:159–171CrossRef
go back to reference Saxena SK, Viswanadham N (2014) Selective production of green gasoline by catalytic conversion of Jatropha oil. Fuel Process Technol 119:158–165CrossRef Saxena SK, Viswanadham N (2014) Selective production of green gasoline by catalytic conversion of Jatropha oil. Fuel Process Technol 119:158–165CrossRef
go back to reference Sharif Hossain A, Salleh A (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4(3):250–254CrossRef Sharif Hossain A, Salleh A (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4(3):250–254CrossRef
go back to reference Sharma RK et al (2012) Jatropha-oil conversion to liquid hydrocarbon fuels using mesoporous titanosilicate supported sulfide catalysts. Catal Today 198(1):314–320CrossRef Sharma RK et al (2012) Jatropha-oil conversion to liquid hydrocarbon fuels using mesoporous titanosilicate supported sulfide catalysts. Catal Today 198(1):314–320CrossRef
go back to reference Shi F et al (2012) Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations. RSC Adv 2(26):9727–9747CrossRef Shi F et al (2012) Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations. RSC Adv 2(26):9727–9747CrossRef
go back to reference Šimáček P et al (2010) Fuel properties of hydroprocessed rapeseed oil. Fuel 89(3):611–615CrossRef Šimáček P et al (2010) Fuel properties of hydroprocessed rapeseed oil. Fuel 89(3):611–615CrossRef
go back to reference Simakova I et al (2009) Deoxygenation of palmitic and stearic acid over supported Pd catalysts: effect of metal dispersion. Appl Catal A 355(1–2):100–108CrossRef Simakova I et al (2009) Deoxygenation of palmitic and stearic acid over supported Pd catalysts: effect of metal dispersion. Appl Catal A 355(1–2):100–108CrossRef
go back to reference Simakova IL et al (2008) Hydrogenation of vegetable oils over pd on nanocomposite carbon catalysts. Ind Eng Chem Res 47(19):7219–7225CrossRef Simakova IL et al (2008) Hydrogenation of vegetable oils over pd on nanocomposite carbon catalysts. Ind Eng Chem Res 47(19):7219–7225CrossRef
go back to reference Sing KSW (1968) Empirical method for analysis of adsorption isotherms. Chem Ind 44:1520–1521 Sing KSW (1968) Empirical method for analysis of adsorption isotherms. Chem Ind 44:1520–1521
go back to reference Smejkal Q et al (2009) Thermodynamic balance in reaction system of total vegetable oil hydrogenation. Chem Eng J 146(1):155–160 Smejkal Q et al (2009) Thermodynamic balance in reaction system of total vegetable oil hydrogenation. Chem Eng J 146(1):155–160
go back to reference Snåre M et al (2008) Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel 87(6):933–945CrossRef Snåre M et al (2008) Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel 87(6):933–945CrossRef
go back to reference Snåre M et al (2006) Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind Eng Chem Res 45(16):5708–5715CrossRef Snåre M et al (2006) Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind Eng Chem Res 45(16):5708–5715CrossRef
go back to reference Snåre M et al (2007) Production of diesel fuel from renewable feeds: kinetics of ethyl stearate decarboxylation. Chem Eng J 134(1–3):29–34CrossRef Snåre M et al (2007) Production of diesel fuel from renewable feeds: kinetics of ethyl stearate decarboxylation. Chem Eng J 134(1–3):29–34CrossRef
go back to reference Study GGJ (2008) Global market study on Jatropha—final report. GEXSI Global Jatropha Study Study GGJ (2008) Global market study on Jatropha—final report. GEXSI Global Jatropha Study
go back to reference Sumathi S et al (2008) Utilization of oil palm as a source of renewable energy in Malaysia. Renew Sustain Energy Rev 12(9):2404–2421CrossRef Sumathi S et al (2008) Utilization of oil palm as a source of renewable energy in Malaysia. Renew Sustain Energy Rev 12(9):2404–2421CrossRef
go back to reference Tiwari R et al (2011) Hydrotreating and hydrocracking catalysts for processing of waste soya-oil and refinery-oil mixtures. Catal Commun 12(6):559–562CrossRef Tiwari R et al (2011) Hydrotreating and hydrocracking catalysts for processing of waste soya-oil and refinery-oil mixtures. Catal Commun 12(6):559–562CrossRef
go back to reference Topsøe H, et al (1996) Hydrotreating catalysis. Catalysis. In: J Anderson, M Boudart (ed) Springer, Berlin 11:1–269 Topsøe H, et al (1996) Hydrotreating catalysis. Catalysis. In: J Anderson, M Boudart (ed) Springer, Berlin 11:1–269
go back to reference Twaiq FA et al (1999) Catalytic conversion of palm oil to hydrocarbons: performance of various Zeolite catalysts. Ind Eng Chem Res 38(9):3230–3237CrossRef Twaiq FA et al (1999) Catalytic conversion of palm oil to hydrocarbons: performance of various Zeolite catalysts. Ind Eng Chem Res 38(9):3230–3237CrossRef
go back to reference Twaiq FAA et al (2004) Performance of composite catalysts in palm oil cracking for the production of liquid fuels and chemicals. Fuel Process Technol 85(11):1283–1300CrossRef Twaiq FAA et al (2004) Performance of composite catalysts in palm oil cracking for the production of liquid fuels and chemicals. Fuel Process Technol 85(11):1283–1300CrossRef
go back to reference Verma D et al (2011) Aviation fuel production from lipids by a single-step route using hierarchical mesoporous Zeolites. Energy Environ Sci 4(5):1667–1671CrossRef Verma D et al (2011) Aviation fuel production from lipids by a single-step route using hierarchical mesoporous Zeolites. Energy Environ Sci 4(5):1667–1671CrossRef
go back to reference Vorrath S (2014) Algae oil test plant launched in South Australia. Renew Economy, 3 Nov 2014 Vorrath S (2014) Algae oil test plant launched in South Australia. Renew Economy, 3 Nov 2014
go back to reference Wang S et al (2012) Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production. Biomass Bioenergy 45:138–143CrossRef Wang S et al (2012) Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production. Biomass Bioenergy 45:138–143CrossRef
go back to reference Wildschut J et al (2009) Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind Eng Chem Res 48(23):10324–10334CrossRef Wildschut J et al (2009) Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind Eng Chem Res 48(23):10324–10334CrossRef
go back to reference Xiu S, Shahbazi A (2012) Bio-oil production and upgrading research: a review. Renew Sustain Energy Rev 16(7):4406–4414CrossRef Xiu S, Shahbazi A (2012) Bio-oil production and upgrading research: a review. Renew Sustain Energy Rev 16(7):4406–4414CrossRef
go back to reference Yakovlev VA et al (2009) Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel. Catal Today 144(3–4):362–366CrossRef Yakovlev VA et al (2009) Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel. Catal Today 144(3–4):362–366CrossRef
go back to reference Yamasaki A (2003) An overview of CO2 mitigation options for global warming-emphasizing CO2 sequestration options. J Chem Eng Jpn 36(4):361–375CrossRef Yamasaki A (2003) An overview of CO2 mitigation options for global warming-emphasizing CO2 sequestration options. J Chem Eng Jpn 36(4):361–375CrossRef
go back to reference Yang Y et al (2009) Hydrodeoxygenation of bio-crude in supercritical hexane with sulfided CoMo and CoMoP catalysts supported on MgO: a model compound study using phenol. Appl Catal A 360(2):242–249CrossRef Yang Y et al (2009) Hydrodeoxygenation of bio-crude in supercritical hexane with sulfided CoMo and CoMoP catalysts supported on MgO: a model compound study using phenol. Appl Catal A 360(2):242–249CrossRef
go back to reference Zhang X et al (2013) Hydrotreatment of bio-oil over Ni-based catalyst. Bioresour Technol 127:306–311CrossRef Zhang X et al (2013) Hydrotreatment of bio-oil over Ni-based catalyst. Bioresour Technol 127:306–311CrossRef
go back to reference Zhao C et al (2013) Catalytic deoxygenation of microalgae oil to green hydrocarbons. Green Chem 15(7):1720–1739CrossRef Zhao C et al (2013) Catalytic deoxygenation of microalgae oil to green hydrocarbons. Green Chem 15(7):1720–1739CrossRef
go back to reference Zhao C et al (2009) Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew Chem Int Ed 48(22):3987–3990CrossRef Zhao C et al (2009) Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew Chem Int Ed 48(22):3987–3990CrossRef
Metadata
Title
Catalytic Hydro-Cracking of Bio-Oil to Bio-Fuel
Authors
Amir Ahmad Forghani
David M. Lewis
Phillip Pendleton
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-0201-4_6