Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 3/2019

24-01-2019 | Original Article

Catalytic hydrolysis of cellulose to levulinic acid by partly replacing sulfuric acid with Nafion® NR50 catalyst

Authors: Yongjun Xu, Guiheng Liu, Jinxia Fu, Shimin Kang, Yukui Xiao, Pingju Yang, Wenbo Liao

Published in: Biomass Conversion and Biorefinery | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Acid catalytic hydrolysis of cellulose to levulinic acid (LA) was conducted by partly replacing homogeneous catalyst sulfuric acid (H2SO4) with solid acid Nafion® NR50. With the presence of Nafion® NR50, 75% of H2SO4 catalyst can be saved, and a high LA yield, 40.4 wt%, was realized even without stirring the reaction solution. Although stirring favored the LA yield and shortened the reaction time, the deactivation of Nafion® NR50 was observed. In fact, non-stirring condition is advocated, under which the Nafion® NR50 still maintains excellent catalytic activity and reusability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kang S, Fu J, Zhang G (2018) From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis. Renew Sust Energ Rev 94:340–362CrossRef Kang S, Fu J, Zhang G (2018) From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis. Renew Sust Energ Rev 94:340–362CrossRef
2.
go back to reference Pileidis FD, Titirici MM (2016) Levulinic acid biorefineries: new challenges for efficient utilization of biomass. ChemSusChem 47:562–582CrossRef Pileidis FD, Titirici MM (2016) Levulinic acid biorefineries: new challenges for efficient utilization of biomass. ChemSusChem 47:562–582CrossRef
3.
go back to reference Morone A, Apte M, Pandey RA (2015) Levulinic acid production from renewable waste resources: bottlenecks, potential remedies, advancements and applications. Renew Sust Energ Rev 51:548–565CrossRef Morone A, Apte M, Pandey RA (2015) Levulinic acid production from renewable waste resources: bottlenecks, potential remedies, advancements and applications. Renew Sust Energ Rev 51:548–565CrossRef
4.
go back to reference Isoni V, Kumbang D, Sharratt PN, Khoo HH (2018) Biomass to levulinic acid: a techno-economic analysis and sustainability of biorefinery processes in Southeast Asia. J Environ Manag 214:267–275CrossRef Isoni V, Kumbang D, Sharratt PN, Khoo HH (2018) Biomass to levulinic acid: a techno-economic analysis and sustainability of biorefinery processes in Southeast Asia. J Environ Manag 214:267–275CrossRef
5.
go back to reference Antonetti C, Licursi D, Fulignati S, Valentini G, Galletti AMR (2016) New frontiers in the catalytic synthesis of levulinic acid: from sugars to raw and waste biomass as starting feedstock. Catalysts 6:196CrossRef Antonetti C, Licursi D, Fulignati S, Valentini G, Galletti AMR (2016) New frontiers in the catalytic synthesis of levulinic acid: from sugars to raw and waste biomass as starting feedstock. Catalysts 6:196CrossRef
6.
go back to reference Bozell JJ (2010) Connecting biomass and petroleum processing with a chemical bridge. Science 329:522–523CrossRef Bozell JJ (2010) Connecting biomass and petroleum processing with a chemical bridge. Science 329:522–523CrossRef
7.
go back to reference Lange JP, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed Eng 122:4581–4585CrossRef Lange JP, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed Eng 122:4581–4585CrossRef
8.
go back to reference Freitas FA, Licursi D, Lachter ER, Raspolli-Galletti AM, Antonetti C, Brito TC, Nascimento RSV (2016) Heterogeneous catalysis for the ketalisation of ethyl levulinate with 1,2-dodecanediol: opening the way to a new class of bio-degradable surfactants. Catal Commun 73:84–87CrossRef Freitas FA, Licursi D, Lachter ER, Raspolli-Galletti AM, Antonetti C, Brito TC, Nascimento RSV (2016) Heterogeneous catalysis for the ketalisation of ethyl levulinate with 1,2-dodecanediol: opening the way to a new class of bio-degradable surfactants. Catal Commun 73:84–87CrossRef
9.
go back to reference Rivas S, Galletti AMR, Antonetti C, Licursi D, Santos V, Parajó JC (2018) A biorefinery cascade conversion of hemicellulose-free eucalyptus globulus wood: production of concentrated levulinic acid solutions for γ-valerolactone sustainable preparation. Catalysts 8:169–184CrossRef Rivas S, Galletti AMR, Antonetti C, Licursi D, Santos V, Parajó JC (2018) A biorefinery cascade conversion of hemicellulose-free eucalyptus globulus wood: production of concentrated levulinic acid solutions for γ-valerolactone sustainable preparation. Catalysts 8:169–184CrossRef
10.
go back to reference Domenico L, Claudia A, Sara F, Giannoni M, Galletti AMR (2018) Cascade strategy for the tunable catalytic valorization of levulinic acid and γ-valerolactone to 2-methyltetrahydrofuran and alcohols. Catalysts 8:277–292CrossRef Domenico L, Claudia A, Sara F, Giannoni M, Galletti AMR (2018) Cascade strategy for the tunable catalytic valorization of levulinic acid and γ-valerolactone to 2-methyltetrahydrofuran and alcohols. Catalysts 8:277–292CrossRef
11.
go back to reference Pan T, Deng J, Xu Q, Xu Y, Guo QX, Fu Y (2013) Catalytic conversion of biomass-derived levulinic acid to valerate esters as oxygenated fuels using supported ruthenium catalysts. Green Chem 15:2967–2974CrossRef Pan T, Deng J, Xu Q, Xu Y, Guo QX, Fu Y (2013) Catalytic conversion of biomass-derived levulinic acid to valerate esters as oxygenated fuels using supported ruthenium catalysts. Green Chem 15:2967–2974CrossRef
12.
go back to reference Rivas S, Raspolli-Galletti AM, Antonetti C, Santos V, Parajó JC (2018) Sustainable conversion of Pinus pinaster wood into biofuel precursors: a biorefinery approach. Fuel 164:51–58CrossRef Rivas S, Raspolli-Galletti AM, Antonetti C, Santos V, Parajó JC (2018) Sustainable conversion of Pinus pinaster wood into biofuel precursors: a biorefinery approach. Fuel 164:51–58CrossRef
13.
go back to reference Rivas S, Raspolli-Galletti AM, Antonetti C, Santos V, Parajó JC (2015) Sustainable production of levulinic acid from the cellulosic fraction of Pinus pinaster wood: operation in aqueous media under microwave irradiation. J Wood Chem Tech 35:315–324CrossRef Rivas S, Raspolli-Galletti AM, Antonetti C, Santos V, Parajó JC (2015) Sustainable production of levulinic acid from the cellulosic fraction of Pinus pinaster wood: operation in aqueous media under microwave irradiation. J Wood Chem Tech 35:315–324CrossRef
14.
go back to reference Licursi D, Antonetti C, Martinelli M, Ribechini E, Zanaboni M, Galletti AMR (2016) Monitoring/characterization of stickies contaminants coming from a papermaking plant-toward an innovative exploitation of the screen rejects to levulinic acid. Waste Manag 49:469–482CrossRef Licursi D, Antonetti C, Martinelli M, Ribechini E, Zanaboni M, Galletti AMR (2016) Monitoring/characterization of stickies contaminants coming from a papermaking plant-toward an innovative exploitation of the screen rejects to levulinic acid. Waste Manag 49:469–482CrossRef
15.
go back to reference Kang S, Yu J (2015) Effect of methanol on formation of levulinates from cellulosic biomass. Ind Eng Chem Res 54:11552–11559CrossRef Kang S, Yu J (2015) Effect of methanol on formation of levulinates from cellulosic biomass. Ind Eng Chem Res 54:11552–11559CrossRef
16.
go back to reference Kang S, Zhang G, Yang X, Yin H, Fu X, Liao J, Tu J, Huang X, Qin FGF, Xu Y (2017) Effects of p-toluenesulfonic acid in the conversion of glucose for levulinic acid and sulfonated carbon production. Energy Fuel 31:2847–2854CrossRef Kang S, Zhang G, Yang X, Yin H, Fu X, Liao J, Tu J, Huang X, Qin FGF, Xu Y (2017) Effects of p-toluenesulfonic acid in the conversion of glucose for levulinic acid and sulfonated carbon production. Energy Fuel 31:2847–2854CrossRef
17.
go back to reference Rinaldi R, Schüth F (2010) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 3:1096–1107 Rinaldi R, Schüth F (2010) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 3:1096–1107
18.
go back to reference Vyver SVD, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs PA, Sels BF (2011) Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s. Energy Environ Sci 4:3601–3610CrossRef Vyver SVD, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs PA, Sels BF (2011) Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s. Energy Environ Sci 4:3601–3610CrossRef
19.
go back to reference Girisuta B, Janssen LPBM, Heeres HJ (2007) Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Ind Eng Chem Res 46:1696–1708CrossRef Girisuta B, Janssen LPBM, Heeres HJ (2007) Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Ind Eng Chem Res 46:1696–1708CrossRef
20.
go back to reference Kang S, Pan J, Gu G, Wang C, Wang Z, Tan J, Liu G (2018) Sequential production of levulinic acid and porous carbon material from cellulose. Materials 11:1408–1423CrossRef Kang S, Pan J, Gu G, Wang C, Wang Z, Tan J, Liu G (2018) Sequential production of levulinic acid and porous carbon material from cellulose. Materials 11:1408–1423CrossRef
21.
go back to reference Kang S, Yu J (2018) Maintenance of a highly active solid acid catalyst in sugar beet molasses for levulinic acid production. Sugar Tech 20:182–193CrossRef Kang S, Yu J (2018) Maintenance of a highly active solid acid catalyst in sugar beet molasses for levulinic acid production. Sugar Tech 20:182–193CrossRef
22.
go back to reference Son J, Wilson J (2012) Mesoporous niobium phosphate: an excellent solid acid for the dehydration of fructose to 5-hydroxymethylfurfural in water. Catal Sci Tech 2:2485–2491CrossRef Son J, Wilson J (2012) Mesoporous niobium phosphate: an excellent solid acid for the dehydration of fructose to 5-hydroxymethylfurfural in water. Catal Sci Tech 2:2485–2491CrossRef
23.
go back to reference Ramli NAS, Amin NAS (2015) Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: characterization and catalytic performance. Appl Catal B Environ 163:487–498CrossRef Ramli NAS, Amin NAS (2015) Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: characterization and catalytic performance. Appl Catal B Environ 163:487–498CrossRef
24.
go back to reference Shen J, Wyman CE (2011) Hydrochloric acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields. AICHE J 58:236–246CrossRef Shen J, Wyman CE (2011) Hydrochloric acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields. AICHE J 58:236–246CrossRef
25.
go back to reference Le Guenic S, Gergela D, Ceballos C, Delbecq F, Len C (2016) Furfural production from d-xylose and xylan by using stable NafionNR50 and NaCl in a microwave-assisted biphasic reaction. Molecules 21:1102–1113CrossRef Le Guenic S, Gergela D, Ceballos C, Delbecq F, Len C (2016) Furfural production from d-xylose and xylan by using stable NafionNR50 and NaCl in a microwave-assisted biphasic reaction. Molecules 21:1102–1113CrossRef
26.
go back to reference Kang S, Li X, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Ind Eng Chem Res 51:9023–9031CrossRef Kang S, Li X, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Ind Eng Chem Res 51:9023–9031CrossRef
27.
go back to reference Siesler HW, Ozaki Y, Kawata S, Heise HM (2008) Near-infrared spectroscopy: principles, instruments, applications. John Wiley & Sons, Hoboken Siesler HW, Ozaki Y, Kawata S, Heise HM (2008) Near-infrared spectroscopy: principles, instruments, applications. John Wiley & Sons, Hoboken
28.
go back to reference Kang S, Lai W, Yin X, Peng Z, Tu J, Huang S (2018) Sequential production of xylose, levulinic acid and activated carbon from pine wood. Chemistryselect 3:9819–9825CrossRef Kang S, Lai W, Yin X, Peng Z, Tu J, Huang S (2018) Sequential production of xylose, levulinic acid and activated carbon from pine wood. Chemistryselect 3:9819–9825CrossRef
29.
go back to reference Kang S, Jiang S, Peng Z, Lu Y, Guo J, Li J, Zeng W, Lin X (2018) Valorization of humins by phosphoric acid activation for activated carbon production. Biomass Conver Bioref 8:889–897CrossRef Kang S, Jiang S, Peng Z, Lu Y, Guo J, Li J, Zeng W, Lin X (2018) Valorization of humins by phosphoric acid activation for activated carbon production. Biomass Conver Bioref 8:889–897CrossRef
30.
go back to reference Kang S, Fu J, Deng Z, Jiang S, Zhong G, Xu Y, Guo J, Zhou J (2018) Valorization of biomass hydrolysis waste: activated carbon from humins as exceptional sorbent for wastewater treatment. Sustainability 10:1795–1814CrossRef Kang S, Fu J, Deng Z, Jiang S, Zhong G, Xu Y, Guo J, Zhou J (2018) Valorization of biomass hydrolysis waste: activated carbon from humins as exceptional sorbent for wastewater treatment. Sustainability 10:1795–1814CrossRef
31.
go back to reference Son PA, Nishimura S, Ebitani K (2012) Synthesis of levulinic acid from fructose using Amberlyst-15 as a solid acid catalyst. React Kinet Mech Cat 106:185–192CrossRef Son PA, Nishimura S, Ebitani K (2012) Synthesis of levulinic acid from fructose using Amberlyst-15 as a solid acid catalyst. React Kinet Mech Cat 106:185–192CrossRef
32.
go back to reference Shen F, Smith RL Jr, Li L, Yan L, Qi X (2017) Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst. ACS Sustain Chem Eng 5:2421–2427CrossRef Shen F, Smith RL Jr, Li L, Yan L, Qi X (2017) Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst. ACS Sustain Chem Eng 5:2421–2427CrossRef
33.
go back to reference Girisuta B, Janssen LPBM, Heeres HJ (2006) Green chemicals: a kinetic study on the conversion of glucose to levulinic acid. Chem Eng Res Des 84:339–349CrossRef Girisuta B, Janssen LPBM, Heeres HJ (2006) Green chemicals: a kinetic study on the conversion of glucose to levulinic acid. Chem Eng Res Des 84:339–349CrossRef
34.
go back to reference Ding D, Wang J, Xi J, Liu X, Lu G, Wang Y (2014) High-yield production of levulinic acid from cellulose and its upgrading to γ-valerolactone. Green Chem 16:685–693CrossRef Ding D, Wang J, Xi J, Liu X, Lu G, Wang Y (2014) High-yield production of levulinic acid from cellulose and its upgrading to γ-valerolactone. Green Chem 16:685–693CrossRef
35.
go back to reference Joshi SS, Zodge AD, Pandare KV, Kulkarni BD (2014) Efficient conversion of cellulose to levulinic acid by hydrothermal treatment using zirconium dioxide as a recyclable solid acid catalyst. Ind Eng Chem Res 53:18796–18805CrossRef Joshi SS, Zodge AD, Pandare KV, Kulkarni BD (2014) Efficient conversion of cellulose to levulinic acid by hydrothermal treatment using zirconium dioxide as a recyclable solid acid catalyst. Ind Eng Chem Res 53:18796–18805CrossRef
36.
go back to reference Girisuta B, Janssen LPBM, Heeres HJ (2007) Kinetic study on the acid-catalyzed hydro-lysis of cellulose to levulinic acid. Ind Eng Chem Res 46:1696–1708CrossRef Girisuta B, Janssen LPBM, Heeres HJ (2007) Kinetic study on the acid-catalyzed hydro-lysis of cellulose to levulinic acid. Ind Eng Chem Res 46:1696–1708CrossRef
37.
go back to reference Liu W, Hou Y, Wu W, Liu Z, Liu Q, Tian S, Marsh KN (2012) Efficient conversion of cellulose to glucose, levulinic acid, and other products in hot water using SO2 as a recoverable catalyst. Ind Eng Chem Res 51:15503–15508CrossRef Liu W, Hou Y, Wu W, Liu Z, Liu Q, Tian S, Marsh KN (2012) Efficient conversion of cellulose to glucose, levulinic acid, and other products in hot water using SO2 as a recoverable catalyst. Ind Eng Chem Res 51:15503–15508CrossRef
38.
go back to reference Dussan K, Girisuta B, Haverty D, Leahy JJ, Hayes MHB (2013) Kinetics of levulinic acid and furfural production from Miscanthus × giganteus. Bioresour Technol 149:216–224CrossRef Dussan K, Girisuta B, Haverty D, Leahy JJ, Hayes MHB (2013) Kinetics of levulinic acid and furfural production from Miscanthus × giganteus. Bioresour Technol 149:216–224CrossRef
39.
go back to reference Yan L, Greenwood A, Hossain A, Yang B (2014) A comprehensive mechanistic kinetic model for dilute acid hydrolysis of switchgrass cellulose to glucose, 5-HMF and levulinic acid. RSC Adv 4:23492–23504CrossRef Yan L, Greenwood A, Hossain A, Yang B (2014) A comprehensive mechanistic kinetic model for dilute acid hydrolysis of switchgrass cellulose to glucose, 5-HMF and levulinic acid. RSC Adv 4:23492–23504CrossRef
40.
go back to reference Adamson MJ (1980) Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials. J Mater Sci 15:1736–1745CrossRef Adamson MJ (1980) Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials. J Mater Sci 15:1736–1745CrossRef
41.
go back to reference Nandi S, Winter HH (2004) Swelling behavior of partially cross-linked polymers: a ternary system. Macromolecules 38:4447–4455CrossRef Nandi S, Winter HH (2004) Swelling behavior of partially cross-linked polymers: a ternary system. Macromolecules 38:4447–4455CrossRef
Metadata
Title
Catalytic hydrolysis of cellulose to levulinic acid by partly replacing sulfuric acid with Nafion® NR50 catalyst
Authors
Yongjun Xu
Guiheng Liu
Jinxia Fu
Shimin Kang
Yukui Xiao
Pingju Yang
Wenbo Liao
Publication date
24-01-2019
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 3/2019
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-019-00373-w

Other articles of this Issue 3/2019

Biomass Conversion and Biorefinery 3/2019 Go to the issue