Skip to main content
Top
Published in: Journal of Electronic Materials 3/2021

11-01-2021 | Original Research Article

Cation Substitution of Copper by Silver in the Earth-Abundant Compound Cu2ZnSnS4: Comparative Study of Structural, Morphological, and Optical Properties

Authors: G. Bousselmi, Naoufel Khemiri, S. Ahmadi, A. Cantarero, M. Kanzari

Published in: Journal of Electronic Materials | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quaternary compound Cu2ZnSnS4 (CZTS) is widely recognized as a promising candidate for use as an absorber layer for photovoltaic applications. However, its efficiency is limited by the high density of antisite defects that shorten the performance of CZTS-based solar cells. Cation substitution of copper by other elements has been proposed as a potential solution in order to control and eliminate the cation disorder within the kesterite structure. In this work, Ag2ZnSnS4 (AZTS) and Cu2ZnSnS4 (CZTS) powders were successfully synthesized by solid state reaction. XRD and Raman measurements were performed to study the crystallographic structures and their lattice vibration spectrum. The results confirmed the presence of the pure phase of CZTS and the stannite phase of AZTS with an occurrence of the secondary phase Ag8SnS6. Morphological properties and the composition analysis of synthesized powders were analyzed by scanning electron microscopy and energy dispersive x-ray analysis. A significant change is noticed in the band gap energy value established by the diffuse reflectance spectroscopy from 1.44 eV for CZTS to 2.55 eV for AZTS. Lastly, measurements with the hot probe method indicate the p-type conductivity of CZTS and the n-type conductivity for AZTS as predicted by theoretical studies. These results highlight that the substitution of silver for copper in CZTS leads to significant changes in the properties of CZTS.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Prog. Photovoltaics Res. Appl., 2013, 21, p 827.CrossRef M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Prog. Photovoltaics Res. Appl., 2013, 21, p 827.CrossRef
2.
go back to reference A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, and A.N. Tiwari, Nature Mater, 2011, 10, p 857.CrossRef A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, and A.N. Tiwari, Nature Mater, 2011, 10, p 857.CrossRef
3.
go back to reference I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.-C. Hsu, A. Goodrich, and R. Noufi, Sol. Energy Mater. Sol. Cells, 2012, 101, p 154.CrossRef I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.-C. Hsu, A. Goodrich, and R. Noufi, Sol. Energy Mater. Sol. Cells, 2012, 101, p 154.CrossRef
4.
go back to reference H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Thin Solid Films, 2009, 517, p 2455.CrossRef H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Thin Solid Films, 2009, 517, p 2455.CrossRef
5.
go back to reference M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, and A.W.Y. Ho-Baillie, Prog. Photovoltaics Res. Appl., 2019, 27, p 3.CrossRef M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, and A.W.Y. Ho-Baillie, Prog. Photovoltaics Res. Appl., 2019, 27, p 3.CrossRef
6.
go back to reference Y.-C. Wang, T.-T. Wu, and Y.-L. Chueh, Mater. Chem. Phys., 2019, 234, p 329.CrossRef Y.-C. Wang, T.-T. Wu, and Y.-L. Chueh, Mater. Chem. Phys., 2019, 234, p 329.CrossRef
7.
go back to reference K. Sardashti, R. Haight, T. Gokmen, W. Wang, L.-Y. Chang, D.B. Mitzi, and A.C. Kummel, Adv. Energy Mater., 2015, 5, p 1402180.CrossRef K. Sardashti, R. Haight, T. Gokmen, W. Wang, L.-Y. Chang, D.B. Mitzi, and A.C. Kummel, Adv. Energy Mater., 2015, 5, p 1402180.CrossRef
8.
go back to reference T. Gokmen, O. Gunawan, T.K. Todorov, and D.B. Mitzi, Appl. Phys. Lett., 2013, 103, p 103506.CrossRef T. Gokmen, O. Gunawan, T.K. Todorov, and D.B. Mitzi, Appl. Phys. Lett., 2013, 103, p 103506.CrossRef
9.
go back to reference S. Chen, A. Walsh, X.-G. Gong, and S.-H. Wei, Adv. Mater., 2013, 25, p 1522.CrossRef S. Chen, A. Walsh, X.-G. Gong, and S.-H. Wei, Adv. Mater., 2013, 25, p 1522.CrossRef
10.
11.
go back to reference S. Chen, X.G. Gong, A. Walsh, and S.-H. Wei, Appl. Phys. Lett., 2010, 96, p 021902.CrossRef S. Chen, X.G. Gong, A. Walsh, and S.-H. Wei, Appl. Phys. Lett., 2010, 96, p 021902.CrossRef
12.
go back to reference T. Gershon, T. Gokmen, O. Gunawan, R. Haight, S. Guha, and B. Shin, MRS Commun., 2014, 4, p 159.CrossRef T. Gershon, T. Gokmen, O. Gunawan, R. Haight, S. Guha, and B. Shin, MRS Commun., 2014, 4, p 159.CrossRef
13.
14.
go back to reference Z. Yuan, S. Chen, H. Xiang, X.-G. Gong, A. Walsh, J.-S. Park, I. Repins, and S.-H. Wei, Adv. Func. Mater., 2015, 25, p 6733.CrossRef Z. Yuan, S. Chen, H. Xiang, X.-G. Gong, A. Walsh, J.-S. Park, I. Repins, and S.-H. Wei, Adv. Func. Mater., 2015, 25, p 6733.CrossRef
15.
go back to reference J. Li, D. Wang, X. Li, Y. Zeng, and Y. Zhang, Adv. Sci., 2018, 5, p 1700744.CrossRef J. Li, D. Wang, X. Li, Y. Zeng, and Y. Zhang, Adv. Sci., 2018, 5, p 1700744.CrossRef
16.
go back to reference T. Gershon, Y.S. Lee, P. Antunez, R. Mankad, S. Singh, D. Bishop, O. Gunawan, M. Hopstaken, and R. Haight, Adv. Energy Mater., 2016, 6, p 1502468.CrossRef T. Gershon, Y.S. Lee, P. Antunez, R. Mankad, S. Singh, D. Bishop, O. Gunawan, M. Hopstaken, and R. Haight, Adv. Energy Mater., 2016, 6, p 1502468.CrossRef
17.
go back to reference X. Liang, P. Wang, B. Huang, Q. Zhang, Z. Wang, Y. Liu, Z. Zheng, X. Qin, X. Zhang, and Y. Dai, ChemPhotoChem, 2018, 2, p 811.CrossRef X. Liang, P. Wang, B. Huang, Q. Zhang, Z. Wang, Y. Liu, Z. Zheng, X. Qin, X. Zhang, and Y. Dai, ChemPhotoChem, 2018, 2, p 811.CrossRef
18.
go back to reference Y. Zhao, X. Han, B. Xu, W. Li, J. Li, J. Li, M. Wang, C. Dong, P. Ju, and J. Li, IEEE J. Photovoltaics, 2017, 7, p 874.CrossRef Y. Zhao, X. Han, B. Xu, W. Li, J. Li, J. Li, M. Wang, C. Dong, P. Ju, and J. Li, IEEE J. Photovoltaics, 2017, 7, p 874.CrossRef
19.
go back to reference W. Li, X. Liu, H. Cui, S. Huang, and X. Hao, J. Alloys Compd., 2015, 625, p 277.CrossRef W. Li, X. Liu, H. Cui, S. Huang, and X. Hao, J. Alloys Compd., 2015, 625, p 277.CrossRef
20.
go back to reference H. Cui, X. Liu, F. Liu, X. Hao, N. Song, and C. Yan, Appl. Phys. Lett., 2014, 104, p 041115.CrossRef H. Cui, X. Liu, F. Liu, X. Hao, N. Song, and C. Yan, Appl. Phys. Lett., 2014, 104, p 041115.CrossRef
21.
go back to reference X. Hu, S. Pritchett-Montavon, C. Handwerker, and R. Agrawal, J. Mater. Res., 2019, 34, p 3810.CrossRef X. Hu, S. Pritchett-Montavon, C. Handwerker, and R. Agrawal, J. Mater. Res., 2019, 34, p 3810.CrossRef
22.
go back to reference I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, Chem. Mater., 2010, 22, p 1402.CrossRef I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, Chem. Mater., 2010, 22, p 1402.CrossRef
23.
24.
go back to reference S. Ikeda, T. Nakamura, T. Harada, and M. Matsumura, Phys. Chem. Chem. Phys., 2010, 12, p 13943.CrossRef S. Ikeda, T. Nakamura, T. Harada, and M. Matsumura, Phys. Chem. Chem. Phys., 2010, 12, p 13943.CrossRef
25.
26.
go back to reference T. Sasamura, T. Osaki, T. Kameyama, T. Shibayama, A. Kudo, S. Kuwabata, and T. Torimoto, Chem. Lett., 2012, 41, p 1009.CrossRef T. Sasamura, T. Osaki, T. Kameyama, T. Shibayama, A. Kudo, S. Kuwabata, and T. Torimoto, Chem. Lett., 2012, 41, p 1009.CrossRef
27.
go back to reference S. Yang, S. Wang, H. Liao, X. Xu, Z. Tang, X. Li, T. Wang, X. Li, and D. Liu, J. Mater. Sci. Mater. Electron., 2019, 30, p 11171.CrossRef S. Yang, S. Wang, H. Liao, X. Xu, Z. Tang, X. Li, T. Wang, X. Li, and D. Liu, J. Mater. Sci. Mater. Electron., 2019, 30, p 11171.CrossRef
28.
go back to reference H. Guo, C. Ma, K. Zhang, X. Jia, Y. Li, N. Yuan, and J. Ding, Sol. Energy Mater. Sol. Cells, 2018, 178, p 146.CrossRef H. Guo, C. Ma, K. Zhang, X. Jia, Y. Li, N. Yuan, and J. Ding, Sol. Energy Mater. Sol. Cells, 2018, 178, p 146.CrossRef
29.
go back to reference H. Dan, J. Zhi-Ping, L. Chang-Sheng, Y. Chun-Mei, and G. Jin, Acta. Phys. Sin.-Ch. Ed., 2014, 63, p 247101. H. Dan, J. Zhi-Ping, L. Chang-Sheng, Y. Chun-Mei, and G. Jin, Acta. Phys. Sin.-Ch. Ed., 2014, 63, p 247101.
31.
go back to reference P. Fernandes, P. Salomé, and A.F. da Cunha, J. Alloys Compd., 2011, 509, p 7600.CrossRef P. Fernandes, P. Salomé, and A.F. da Cunha, J. Alloys Compd., 2011, 509, p 7600.CrossRef
32.
go back to reference M. Dimitrievska, F. Boero, A.P. Litvinchuk, S. Delsante, G. Borzone, A. Perez-Rodriguez, and V. Izquierdo-Roca, Inorg. Chem., 2017, 56, p 3467.CrossRef M. Dimitrievska, F. Boero, A.P. Litvinchuk, S. Delsante, G. Borzone, A. Perez-Rodriguez, and V. Izquierdo-Roca, Inorg. Chem., 2017, 56, p 3467.CrossRef
33.
go back to reference C. Ma, H. Guo, K. Zhang, N. Yuan, and J. Ding, Mater. Lett., 2017, 186, p 390.CrossRef C. Ma, H. Guo, K. Zhang, N. Yuan, and J. Ding, Mater. Lett., 2017, 186, p 390.CrossRef
34.
35.
go back to reference O.A. Yassin, A.A. Abdelaziz, and A.Y. Jaber, Mater. Sci. Semicond. Process., 2015, 38, p 81.CrossRef O.A. Yassin, A.A. Abdelaziz, and A.Y. Jaber, Mater. Sci. Semicond. Process., 2015, 38, p 81.CrossRef
36.
go back to reference S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J.H. Moon, J.H. Kim, and J.Y. Lee, Solar Energy Mater. Solar Cells, 2011, 95, p 3202.CrossRef S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J.H. Moon, J.H. Kim, and J.Y. Lee, Solar Energy Mater. Solar Cells, 2011, 95, p 3202.CrossRef
37.
go back to reference S. Abdullahi, S. Güner, Y. Koseoglu, I. Musa, B. Adamu, and M. Abdulhamid, J. Niger. Assoc. Math. Phys., 2016, 35, p 241. S. Abdullahi, S. Güner, Y. Koseoglu, I. Musa, B. Adamu, and M. Abdulhamid, J. Niger. Assoc. Math. Phys., 2016, 35, p 241.
38.
go back to reference V. Tallapally, R.J.A. Esteves, L. Nahar, and I.U. Arachchige, Chem. Mater., 2016, 28, p 5406.CrossRef V. Tallapally, R.J.A. Esteves, L. Nahar, and I.U. Arachchige, Chem. Mater., 2016, 28, p 5406.CrossRef
39.
40.
go back to reference V. Tallapally, T.A. Nakagawara, D.O. Demchenko, Ü. Özgür, and I.U. Arachchige, Nanoscale, 2018, 10, p 20296.CrossRef V. Tallapally, T.A. Nakagawara, D.O. Demchenko, Ü. Özgür, and I.U. Arachchige, Nanoscale, 2018, 10, p 20296.CrossRef
41.
go back to reference F. Yang, R. Ma, W. Zhao, X. Zhang, and X. Li, J. Alloys Compd., 2016, 689, p 849.CrossRef F. Yang, R. Ma, W. Zhao, X. Zhang, and X. Li, J. Alloys Compd., 2016, 689, p 849.CrossRef
42.
43.
go back to reference M.Z. Ansari, and N. Khare, Mater. Sci. Semicond. Process., 2017, 63, p 220.CrossRef M.Z. Ansari, and N. Khare, Mater. Sci. Semicond. Process., 2017, 63, p 220.CrossRef
44.
go back to reference L. Zhu, Y. Xu, H. Zheng, G. Liu, X. Xu, X. Pan, and S. Dai, Sci. China Mater., 2018, 61, p 1549.CrossRef L. Zhu, Y. Xu, H. Zheng, G. Liu, X. Xu, X. Pan, and S. Dai, Sci. China Mater., 2018, 61, p 1549.CrossRef
45.
go back to reference P. Boon-on, B.A. Aragaw, C.-Y. Lee, J.-B. Shi, and M.-W. Lee, RSC Adv., 2018, 8, p 39470.CrossRef P. Boon-on, B.A. Aragaw, C.-Y. Lee, J.-B. Shi, and M.-W. Lee, RSC Adv., 2018, 8, p 39470.CrossRef
46.
go back to reference X.H. Guo, C. Ma, K. Zhang, X. Jia, Y. Li, N. Yuan, and J. Ding, Solar Energy Mater. Solar Cells, 2018, 178, p 146.CrossRef X.H. Guo, C. Ma, K. Zhang, X. Jia, Y. Li, N. Yuan, and J. Ding, Solar Energy Mater. Solar Cells, 2018, 178, p 146.CrossRef
49.
go back to reference A. Khare, B. Himmetoglu, M. Johnson, D. Norris, M. Cococcioni, and E. Aydil, J. Appl. Phys., 2012, 111, p 083707.CrossRef A. Khare, B. Himmetoglu, M. Johnson, D. Norris, M. Cococcioni, and E. Aydil, J. Appl. Phys., 2012, 111, p 083707.CrossRef
Metadata
Title
Cation Substitution of Copper by Silver in the Earth-Abundant Compound Cu2ZnSnS4: Comparative Study of Structural, Morphological, and Optical Properties
Authors
G. Bousselmi
Naoufel Khemiri
S. Ahmadi
A. Cantarero
M. Kanzari
Publication date
11-01-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 3/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-020-08711-9

Other articles of this Issue 3/2021

Journal of Electronic Materials 3/2021 Go to the issue

TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder

Conductive and Transparent Properties of ZnO/Cu/ZnO Sandwich Structure

TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder

Whisker Growth in Sn Coatings: A Review of Current Status and Future Prospects