Skip to main content
Top
Published in: Meccanica 9/2023

24-08-2023

Cavitation induced hysteresis of a pitching hydrofoil near free surface

Authors: Bing Zhu, Feilin Wang, Luyi Wang

Published in: Meccanica | Issue 9/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper investigates the hysteresis characteristics of force coefficients of an oscillating hydrofoil in a near-free surface cavitation flow field by utilizing unsteady numerical simulation methods. The study primarily focuses on analyzing the effects of dynamic stall conditions, reduced frequency, cavitation number, immersion depth, and Froude number on the hysteresis curve. By comparing the vortex distribution, volume fraction, velocity streamlines, and fluctuating pressure coefficient in the flow field, the authors also examine the reasons for the differences in the hysteresis curve at the same angle of attack under different conditions. The results suggest that cavitation significantly impacts the fluctuation of the hysteresis curve, mainly due to the shedding and collapse of the cavity on the hydrofoil pressure surface, which results in pressure fluctuations at the trailing edge. This issue can be addressed by reducing the stall angle of attack, Froude number, and increasing the reduced frequency, cavitation number, and immersion depth to slow down cavitation in the flow field, thus reducing the fluctuation of the hysteresis loop. Furthermore, the structure of the cavitation flow field under different conditions is clearly distinguished, and the hysteresis loop experiences obvious fluctuations when there is obvious vortex separation in the flow field and many small cavities remaining above the pressure surface. As the immersion depth decreases and the corresponding Froude number increases, the effect of the free surface becomes stronger, leading to an increase in the free surface wave amplitude. This effect causes the hydrofoil pressure surface to gradually evolve into super-cavitation, and the fluctuation of the hysteresis curve tends to be stable.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wu X, Zhang X, Tian X et al (2020) A review on fluid dynamics of flapping foils. Ocean Eng 195:106712CrossRef Wu X, Zhang X, Tian X et al (2020) A review on fluid dynamics of flapping foils. Ocean Eng 195:106712CrossRef
2.
go back to reference Mo W, He G, Wang J et al (2022) Hydrodynamic analysis of three oscillating hydrofoils with wing-in-ground effect on power extraction performance. Ocean Eng 246:110642CrossRef Mo W, He G, Wang J et al (2022) Hydrodynamic analysis of three oscillating hydrofoils with wing-in-ground effect on power extraction performance. Ocean Eng 246:110642CrossRef
3.
go back to reference Zhu B, Cheng W, Geng J et al (2022) Energy-harvesting characteristics of flapping wings with the free-surface effect. J Renew Sustain Energy 14(1):014501CrossRef Zhu B, Cheng W, Geng J et al (2022) Energy-harvesting characteristics of flapping wings with the free-surface effect. J Renew Sustain Energy 14(1):014501CrossRef
4.
go back to reference Che B, Chu N, Schmidt SJ et al (2019) Control effect of micro vortex generators on leading edge of attached cavitation. Phys Fluids 31(4):044102CrossRef Che B, Chu N, Schmidt SJ et al (2019) Control effect of micro vortex generators on leading edge of attached cavitation. Phys Fluids 31(4):044102CrossRef
5.
go back to reference Sezen S, Uzun D, Turan O et al (2021) Influence of roughness on propeller performance with a view to mitigating tip vortex cavitation. Ocean Eng 239:109703CrossRef Sezen S, Uzun D, Turan O et al (2021) Influence of roughness on propeller performance with a view to mitigating tip vortex cavitation. Ocean Eng 239:109703CrossRef
6.
go back to reference Shengwang ZHU, Guijian X, Yi HE et al (2022) Tip vortex cavitation of propeller bionic noise reduction surface based on precision abrasive belt grinding. J Adv Manuf Sci Technol 2(1):2022003–2022003 Shengwang ZHU, Guijian X, Yi HE et al (2022) Tip vortex cavitation of propeller bionic noise reduction surface based on precision abrasive belt grinding. J Adv Manuf Sci Technol 2(1):2022003–2022003
8.
go back to reference Sun T, Wei Y, Zou L et al (2019) Numerical investigation on the unsteady cavitation shedding dynamics over a hydrofoil in thermo-sensitive fluid. Int J Multiph Flow 111:82–100MathSciNetCrossRef Sun T, Wei Y, Zou L et al (2019) Numerical investigation on the unsteady cavitation shedding dynamics over a hydrofoil in thermo-sensitive fluid. Int J Multiph Flow 111:82–100MathSciNetCrossRef
9.
go back to reference Ji B, Luo XW, Arndt REA et al (2015) Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil. Int J Multiph Flow 68:121–134MathSciNetCrossRef Ji B, Luo XW, Arndt REA et al (2015) Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil. Int J Multiph Flow 68:121–134MathSciNetCrossRef
10.
go back to reference Zhao X, Cheng H, Ji B (2022) LES investigation of the cavitating hydrofoils with various wavy leading edges. Ocean Eng 243:110331CrossRef Zhao X, Cheng H, Ji B (2022) LES investigation of the cavitating hydrofoils with various wavy leading edges. Ocean Eng 243:110331CrossRef
11.
go back to reference Timoshevskiy MV, Zapryagaev II, Pervunin KS et al (2018) Manipulating cavitation by a wall jet: experiments on a 2D hydrofoil. Int J Multiph Flow 99:312–328CrossRef Timoshevskiy MV, Zapryagaev II, Pervunin KS et al (2018) Manipulating cavitation by a wall jet: experiments on a 2D hydrofoil. Int J Multiph Flow 99:312–328CrossRef
12.
go back to reference Wang W, Tang T, Zhang QD et al (2020) Effect of water injection on the cavitation control: experiments on a NACA66 (MOD) hydrofoil. Acta Mech Sin 36(5):999–1017CrossRef Wang W, Tang T, Zhang QD et al (2020) Effect of water injection on the cavitation control: experiments on a NACA66 (MOD) hydrofoil. Acta Mech Sin 36(5):999–1017CrossRef
13.
go back to reference Hart DP, Brennen CE, Acosta AJ (1990) Observations of cavitation on a three-dimensional oscillating hydrofoil Hart DP, Brennen CE, Acosta AJ (1990) Observations of cavitation on a three-dimensional oscillating hydrofoil
14.
go back to reference Ducoin A, Astolfi JA, Deniset F et al (2009) Computational and experimental investigation of flow over a transient pitching hydrofoil. Eur J Mech B/Fluids 28(6):728–743MathSciNetCrossRefMATH Ducoin A, Astolfi JA, Deniset F et al (2009) Computational and experimental investigation of flow over a transient pitching hydrofoil. Eur J Mech B/Fluids 28(6):728–743MathSciNetCrossRefMATH
15.
go back to reference Amromin E, Kovinskaya S (2000) Vibration of cavitating elastic wing in a periodically perturbed flow: excitation of subharmonics. J Fluids Struct 14(5):735–751CrossRef Amromin E, Kovinskaya S (2000) Vibration of cavitating elastic wing in a periodically perturbed flow: excitation of subharmonics. J Fluids Struct 14(5):735–751CrossRef
16.
go back to reference Huang B, Ducoin A, Young YL (2013) Physical and numerical investigation of cavitating flows around a pitching hydrofoil. Phys Fluids 25(10):102109CrossRef Huang B, Ducoin A, Young YL (2013) Physical and numerical investigation of cavitating flows around a pitching hydrofoil. Phys Fluids 25(10):102109CrossRef
17.
go back to reference Kashyap SR, Jaiman RK (2023) Unsteady cavitation dynamics and frequency lock-in of a freely vibrating hydrofoil at high Reynolds number. Int J Multiph Flow 158:104276MathSciNetCrossRef Kashyap SR, Jaiman RK (2023) Unsteady cavitation dynamics and frequency lock-in of a freely vibrating hydrofoil at high Reynolds number. Int J Multiph Flow 158:104276MathSciNetCrossRef
18.
go back to reference Wu PC, Chen JH (2016) Numerical study on cavitating flow due to a hydrofoil near a free surface. J Ocean Eng Sci 1(3):238–245CrossRef Wu PC, Chen JH (2016) Numerical study on cavitating flow due to a hydrofoil near a free surface. J Ocean Eng Sci 1(3):238–245CrossRef
19.
go back to reference Zhang M, Wu Q, Huang B et al (2018) Lagrangian-based numerical investigation of aerodynamic performance of an oscillating foil. Acta Mech Sin 34(5):839–854CrossRef Zhang M, Wu Q, Huang B et al (2018) Lagrangian-based numerical investigation of aerodynamic performance of an oscillating foil. Acta Mech Sin 34(5):839–854CrossRef
20.
go back to reference Wu Q, Huang B, Wang G (2016) Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil. Acta Mech Sin 32(1):64–74MathSciNetCrossRefMATH Wu Q, Huang B, Wang G (2016) Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil. Acta Mech Sin 32(1):64–74MathSciNetCrossRefMATH
21.
go back to reference Wu Q, Wang G, Huang B (2014) Numerical study of flow around oscillating hydrofoil and its transition characteristics. Chin J Theor Appl Mech 46(1):60–69 Wu Q, Wang G, Huang B (2014) Numerical study of flow around oscillating hydrofoil and its transition characteristics. Chin J Theor Appl Mech 46(1):60–69
22.
go back to reference Zhang M, Feng F, Wang M et al (2022) Investigation of hysteresis effect of cavitating flow over a pitching Clark-Y hydrofoil. Acta Mech Sin 38(6):321382MathSciNetCrossRef Zhang M, Feng F, Wang M et al (2022) Investigation of hysteresis effect of cavitating flow over a pitching Clark-Y hydrofoil. Acta Mech Sin 38(6):321382MathSciNetCrossRef
23.
go back to reference Zhu B, Tai Z, Du D et al (2022) Effect of incoming gravity waves on the energy extraction efficiency of flapping wing hydroelectric generators. Ocean Eng 245:110590CrossRef Zhu B, Tai Z, Du D et al (2022) Effect of incoming gravity waves on the energy extraction efficiency of flapping wing hydroelectric generators. Ocean Eng 245:110590CrossRef
24.
go back to reference Liu C, He J (2018) Improved application of Coupled algorithm in airfoil aerodynamic performance calculation. Sci Technol Eng 18(2):174–179 Liu C, He J (2018) Improved application of Coupled algorithm in airfoil aerodynamic performance calculation. Sci Technol Eng 18(2):174–179
25.
go back to reference Zhang R, Zhao J, Guo S (2016) Numerical simulation of airfoil dynamic aerodynamics and analysis of its influencing factors. Aeronaut Comput Tech 46(04):75–77+82 Zhang R, Zhao J, Guo S (2016) Numerical simulation of airfoil dynamic aerodynamics and analysis of its influencing factors. Aeronaut Comput Tech 46(04):75–77+82
26.
go back to reference Jiao Y, Fan J, Luo S (2011) Research on calculation of flow unsteadiness of multi-element airfoils. Sci Technol Eng 11(13):2994–2998 Jiao Y, Fan J, Luo S (2011) Research on calculation of flow unsteadiness of multi-element airfoils. Sci Technol Eng 11(13):2994–2998
27.
go back to reference McCroskey WJ, McAlister KW, Carr LW et al (1982) An experimental study of dynamic stall on advanced airfoil sections. Volume 1. Summary of the experiment. National Aeronuatics and Space Administration Moffett Field Ca Ames Research Center McCroskey WJ, McAlister KW, Carr LW et al (1982) An experimental study of dynamic stall on advanced airfoil sections. Volume 1. Summary of the experiment. National Aeronuatics and Space Administration Moffett Field Ca Ames Research Center
28.
go back to reference Guilmineau E, Piquet J, Queutey P (1997) Unsteady two-dimensional turbulent viscous flow past aerofoils. Int J Numer Methods Fluids 25(3):315–366MathSciNetCrossRefMATH Guilmineau E, Piquet J, Queutey P (1997) Unsteady two-dimensional turbulent viscous flow past aerofoils. Int J Numer Methods Fluids 25(3):315–366MathSciNetCrossRefMATH
29.
go back to reference Duncan JH (1983) The breaking and non-breaking wave resistance of a two-dimensional hydrofoil. J Fluid Mech 126:507–520CrossRef Duncan JH (1983) The breaking and non-breaking wave resistance of a two-dimensional hydrofoil. J Fluid Mech 126:507–520CrossRef
Metadata
Title
Cavitation induced hysteresis of a pitching hydrofoil near free surface
Authors
Bing Zhu
Feilin Wang
Luyi Wang
Publication date
24-08-2023
Publisher
Springer Netherlands
Published in
Meccanica / Issue 9/2023
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-023-01698-7

Other articles of this Issue 9/2023

Meccanica 9/2023 Go to the issue

Premium Partners