Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

02-04-2021 | Issue 1/2021

Wireless Personal Communications 1/2021

Cellular Licensed Band Sharing Technology Among Mobile Operators: A Reinforcement Learning Perspective

Journal:
Wireless Personal Communications > Issue 1/2021
Authors:
Minsu Shin, Danish Mehmood Mughal, Seungil Park, Sang-Hyo Kim, Min Young Chung
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Next-generation wireless networks will need to support of very high data rates and low–latency communications, which will require a new wireless radio technology paradigm. The growing number of mobile users is causing spectrum scarcity; and hence, an efficient spectrum utilization method is required. Conventional scheduling-based resource allocation scheme in wireless networks under limited resources is a challenging due to the complex network situations, dynamic network environment, and diverse needs for future networks. To overcome resource scarcity in mobile networks, spectrum sharing among multiple operators may be an efficient solution. Traditional methods of dynamic spectrum sharing are model-dependent, and they are not robust to the changing wireless environments. To enable low-latency communications for complex future wireless networks, efficient machine learning algorithms can be used across the wireless network infrastructure. Integrating machine learning for resource allocation can leverage intelligent and efficient mechanisms for dynamic wireless networks. To efficiently and intelligently utilize the scarce resources of dynamic networks, this paper proposes an efficient machine learning-based spectrum sharing method among multiple mobile network operators (MNOs). A mobile network operator uses the idle slots of the another operator and transmits the information efficiently. Using the neural network model, each MNO learns the spectrum utilization of other MNOs and selects the idle slots of other MNOs. Simulation results have been computed and compared with the conventional scheme where resources are not shared. These simulation results show that the proposed neural network model can efficiently learn the network quickly, and spectrum sharing can lead to improved network performance in terms of the delay, user-perceived throughput, resource usage, packet drop, and sum throughput of the network.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 1/2021

Wireless Personal Communications 1/2021 Go to the issue