Skip to main content
Top

2019 | OriginalPaper | Chapter

40. Cellulose-Based Hydrogels in Topical Drug Delivery: A Challenge in Medical Devices

Authors : Andreza Maria Ribeiro, Mariana Magalhães, Francisco Veiga, Ana Figueiras

Published in: Cellulose-Based Superabsorbent Hydrogels

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Drug delivery is a difficult task in the field of dermal therapeutics mainly in the treatment of burns, ulcers, and wounds. Therefore, fundamental research and the development of novel advanced biomaterials as hydrogels are ongoing to overcome these issues. Currently, several approaches are starting to emerge aiming the stabilization of drug loaded in hydrogel material by increasing the mutual interactions between the polymers, the polymers, and the drug and by covalently cross-linking the polymers during hydrogel formation. Hydrogels provide mechanical support and control over architecture, topography, and biochemical characteristics that make them functionally appropriate to biomedical materials. In this regard, cellulose-based biomaterials can be considered as a gold standard for many topical pharmaceutical applications because of their versatility in fabrication, biodegradability, and biocompatibility. In open wounds, a curative ideal hydrogel is proposed for occlusion and maintenance of the moist environment. Healing through the wet medium has comparative advantages such as preventing dehydration of tissue leading to cell death, stimulating epithelization and formation of granulation tissue, facilitating the removal of necrotic tissue and fibrin, serving as a protective barrier against microorganism, and avoiding excessive fluid loss and can still take drugs. On the other hand, another recent challenge is the use of hydrogel in the manufacture of microneedles. The microneedles are able to, with little force, penetrate effectively in the tissues, maintaining the continuous contact, without causing damages in the tissue, providing a high force of adhesion. These devices may be an alternative to the infection-resistant staples used in surgeries to attach skin grafts to patients with severe wounds resulting from burns and to be used in drug release. In this chapter, we discuss recent developments in cellulose-based hydrogels with respect to drug delivery and current applications in the new devices and research settings for infections, inflammations, skin burns, and wound treatment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang Y, Chan HF, Leong KW (2013) Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 65:104–120CrossRefPubMed Zhang Y, Chan HF, Leong KW (2013) Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 65:104–120CrossRefPubMed
2.
go back to reference Pang C, Ibrahim A, Bulstrode NW, Ferretti P (2017) An overview of the therapeutic potential of regenerative medicine in cutaneous wound healing. Int Wound J 14:450–459CrossRefPubMedPubMedCentral Pang C, Ibrahim A, Bulstrode NW, Ferretti P (2017) An overview of the therapeutic potential of regenerative medicine in cutaneous wound healing. Int Wound J 14:450–459CrossRefPubMedPubMedCentral
3.
go back to reference Gantwerker EA, Hom DB (2011) Skin: histology and physiology of wound healing. Facial Plast Surg Clin North Am 19:441–453CrossRefPubMed Gantwerker EA, Hom DB (2011) Skin: histology and physiology of wound healing. Facial Plast Surg Clin North Am 19:441–453CrossRefPubMed
4.
go back to reference Doughty DB, Sparks B (2015) Wound-healing physiology and factors that affect the repair process. In: Bryant R, Nix D (eds) Acute and chronic wounds. Elsevier Health Sciences, St. Louis, pp 62–85 Doughty DB, Sparks B (2015) Wound-healing physiology and factors that affect the repair process. In: Bryant R, Nix D (eds) Acute and chronic wounds. Elsevier Health Sciences, St. Louis, pp 62–85
5.
go back to reference Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M (2014) Epithelialization in wound healing: a comprehensive review. Adv Wound Care 3:445–464CrossRef Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M (2014) Epithelialization in wound healing: a comprehensive review. Adv Wound Care 3:445–464CrossRef
6.
go back to reference Haury B, Rodeheaver G, Vensko J, Edgerton MT, Edlich RF (1978) Debridement: an essential component of traumatic wound care. Am J Surg 135:238–242CrossRefPubMed Haury B, Rodeheaver G, Vensko J, Edgerton MT, Edlich RF (1978) Debridement: an essential component of traumatic wound care. Am J Surg 135:238–242CrossRefPubMed
7.
go back to reference Boateng J, Catanzano O (2015) Advanced therapeutic dressings for effective wound healing – a review. J Pharm Sci 104:3653–3680CrossRefPubMed Boateng J, Catanzano O (2015) Advanced therapeutic dressings for effective wound healing – a review. J Pharm Sci 104:3653–3680CrossRefPubMed
8.
go back to reference Kennedy JF, Knill CJ, Thorley M (2001) Natural polymers for healing wounds. In: Kennedy JF, Phillips GO, Williams PA (eds) Recent advances in environmentally compatible polymers. Woodhead Publishing, Elsevier, St. Louis, pp 97–104CrossRef Kennedy JF, Knill CJ, Thorley M (2001) Natural polymers for healing wounds. In: Kennedy JF, Phillips GO, Williams PA (eds) Recent advances in environmentally compatible polymers. Woodhead Publishing, Elsevier, St. Louis, pp 97–104CrossRef
9.
go back to reference Mahmoudi N, Eslahi N, Mehdipour A, Mohammadi M, Akbari M, Samadikuchaksaraei A, Simchi A (2017) Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models. J Mater Sci Mater Med 28:73–86CrossRefPubMed Mahmoudi N, Eslahi N, Mehdipour A, Mohammadi M, Akbari M, Samadikuchaksaraei A, Simchi A (2017) Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models. J Mater Sci Mater Med 28:73–86CrossRefPubMed
10.
go back to reference Mele E (2016) Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings. J Mater Chem B 4:4801–4812CrossRefPubMed Mele E (2016) Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings. J Mater Chem B 4:4801–4812CrossRefPubMed
11.
go back to reference Tummalapalli M, Berthet M, Verrier B, Deopura B, Alam M, Gupta B (2016) Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. Int J Biol Macromol 82:104–113CrossRefPubMed Tummalapalli M, Berthet M, Verrier B, Deopura B, Alam M, Gupta B (2016) Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. Int J Biol Macromol 82:104–113CrossRefPubMed
12.
go back to reference Dyson M, Young S, Pendle CL, Webster DF, Lang SM (1988) Comparison of the effects of moist and dry conditions on dermal repair. J Invest Dermatol 91:434–439CrossRefPubMed Dyson M, Young S, Pendle CL, Webster DF, Lang SM (1988) Comparison of the effects of moist and dry conditions on dermal repair. J Invest Dermatol 91:434–439CrossRefPubMed
13.
go back to reference Helfman T, Ovington L, Falanga V (1994) Occlusive dressings and wound healing. Clin Dermatol 12:121–127CrossRefPubMed Helfman T, Ovington L, Falanga V (1994) Occlusive dressings and wound healing. Clin Dermatol 12:121–127CrossRefPubMed
14.
go back to reference Hoffman AS (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 65:10–16CrossRefPubMed Hoffman AS (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 65:10–16CrossRefPubMed
15.
go back to reference Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7:569–579CrossRefPubMed Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7:569–579CrossRefPubMed
16.
go back to reference Ribeiro AM, Figueiras A, Freire C, Santos D, Veiga F (2010) Combining strategies to optimize a gel formulation containing miconazole: the influence of modified cyclodextrin on textural properties and drug release. Drug Dev Ind Pharm 36:705–714CrossRefPubMed Ribeiro AM, Figueiras A, Freire C, Santos D, Veiga F (2010) Combining strategies to optimize a gel formulation containing miconazole: the influence of modified cyclodextrin on textural properties and drug release. Drug Dev Ind Pharm 36:705–714CrossRefPubMed
17.
go back to reference Rodriguez-Tenreiro C, Alvarez-Lorenzo C, Rodriguez-Perez A, Concheiro A, Torres-Labandeira JJ (2006) New cyclodextrin hydrogels cross-linked with diglycidylethers with a high drug loading and controlled release ability. Pharm Res 23:121–130CrossRefPubMed Rodriguez-Tenreiro C, Alvarez-Lorenzo C, Rodriguez-Perez A, Concheiro A, Torres-Labandeira JJ (2006) New cyclodextrin hydrogels cross-linked with diglycidylethers with a high drug loading and controlled release ability. Pharm Res 23:121–130CrossRefPubMed
18.
go back to reference Kanjickal D, Lopina S, Evancho Chapman MM, Schmidt S, Donovan D (2005) Improving delivery of hydrophobic drugs from hydrogels through cyclodextrins. J Biomed Mater Res A 74:454–460CrossRefPubMed Kanjickal D, Lopina S, Evancho Chapman MM, Schmidt S, Donovan D (2005) Improving delivery of hydrophobic drugs from hydrogels through cyclodextrins. J Biomed Mater Res A 74:454–460CrossRefPubMed
19.
go back to reference Kundu B, Kundu SC (2012) Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction. Biomaterials 33:7456–7467CrossRefPubMed Kundu B, Kundu SC (2012) Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction. Biomaterials 33:7456–7467CrossRefPubMed
20.
go back to reference Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL (2010) Challenges and opportunities in dermal/transdermal delivery. Ther Deliv 1:109–131CrossRefPubMed Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL (2010) Challenges and opportunities in dermal/transdermal delivery. Ther Deliv 1:109–131CrossRefPubMed
21.
go back to reference Kashyap N, Kumar N, Kumar MR (2005) Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst 22:107–149CrossRefPubMed Kashyap N, Kumar N, Kumar MR (2005) Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst 22:107–149CrossRefPubMed
22.
go back to reference Liu W, Teng L, Yu K, Sun X, Fan C, Long C, Liu N, Li S, Wu B, Xu Q (2017) Design of hydrogels of 5-hydroxymethyl tolterodine and their studies on pharmacokinetics, pharmacodynamics and transdermal mechanism. Eur J Pharm Sci 96:530–541CrossRefPubMed Liu W, Teng L, Yu K, Sun X, Fan C, Long C, Liu N, Li S, Wu B, Xu Q (2017) Design of hydrogels of 5-hydroxymethyl tolterodine and their studies on pharmacokinetics, pharmacodynamics and transdermal mechanism. Eur J Pharm Sci 96:530–541CrossRefPubMed
23.
go back to reference Vlaia L, Coneac G, Olariu I, Vlaia V, Lupuleasa D (2016) Cellulose-derivatives-based hydrogels as vehicles for dermal and transdermal drug delivery. In: Majee SB (ed) Emerging concepts in analysis and applications of hydrogels. InTech, Rijeka, pp 159–200 Vlaia L, Coneac G, Olariu I, Vlaia V, Lupuleasa D (2016) Cellulose-derivatives-based hydrogels as vehicles for dermal and transdermal drug delivery. In: Majee SB (ed) Emerging concepts in analysis and applications of hydrogels. InTech, Rijeka, pp 159–200
24.
go back to reference Kong BJ, Kim A, Park SN (2016) Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin. Carbohydr Polym 147:473–481CrossRefPubMed Kong BJ, Kim A, Park SN (2016) Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin. Carbohydr Polym 147:473–481CrossRefPubMed
25.
go back to reference Namazi H, Rakhshaei R, Hamishehkar H, Kafil HS (2016) Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing. Int J Biol Macromol 85:327–334CrossRefPubMed Namazi H, Rakhshaei R, Hamishehkar H, Kafil HS (2016) Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing. Int J Biol Macromol 85:327–334CrossRefPubMed
26.
go back to reference Barbosa MA (2013) Soft tissue response. In: Black J, Hastings G (eds) Handbook of biomaterial properties. Springer Science & Business Media, New York, p 571 Barbosa MA (2013) Soft tissue response. In: Black J, Hastings G (eds) Handbook of biomaterial properties. Springer Science & Business Media, New York, p 571
27.
go back to reference Schuurman W, Levett PA, Pot MW, Van Weeren PR, Dhert WJ, Hutmacher DW, Melchels FP, Klein TJ, Malda J (2013) Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13:551–561CrossRefPubMed Schuurman W, Levett PA, Pot MW, Van Weeren PR, Dhert WJ, Hutmacher DW, Melchels FP, Klein TJ, Malda J (2013) Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13:551–561CrossRefPubMed
29.
go back to reference Hu MS, Maan ZN, Wu J-C, Rennert RC, Hong WX, Lai TS, Cheung AT, Walmsley GG, Chung MT, Mcardle A (2014) Tissue engineering and regenerative repair in wound healing. Ann Biomed Eng 42:1494–1507CrossRefPubMedPubMedCentral Hu MS, Maan ZN, Wu J-C, Rennert RC, Hong WX, Lai TS, Cheung AT, Walmsley GG, Chung MT, Mcardle A (2014) Tissue engineering and regenerative repair in wound healing. Ann Biomed Eng 42:1494–1507CrossRefPubMedPubMedCentral
30.
go back to reference GhobriL C, Grinstaff M (2015) The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem Soc Rev 44:1820–1835CrossRefPubMed GhobriL C, Grinstaff M (2015) The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem Soc Rev 44:1820–1835CrossRefPubMed
31.
go back to reference Kamoun EA, Chen X, Eldin MSM, Kenawy E-RS (2015) Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab J Chem 8:1–14CrossRef Kamoun EA, Chen X, Eldin MSM, Kenawy E-RS (2015) Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab J Chem 8:1–14CrossRef
32.
go back to reference Ribeiro A, Veiga F, Santos D, Torres-Labandeira JJ, Concheiro A, Alvarez-Lorenzo C (2011) Receptor-based biomimetic NVP/DMA contact lenses for loading/eluting carbonic anhydrase inhibitors. J Membr Sci 383:60–69CrossRef Ribeiro A, Veiga F, Santos D, Torres-Labandeira JJ, Concheiro A, Alvarez-Lorenzo C (2011) Receptor-based biomimetic NVP/DMA contact lenses for loading/eluting carbonic anhydrase inhibitors. J Membr Sci 383:60–69CrossRef
33.
go back to reference Wu W, Cheng R, Das Neves J, Tang J, Xiao J, Ni Q, Liu X, Pan G, Li D, Cui W (2017) Advances in biomaterials for preventing tissue adhesion. J Control Release 261:318–336CrossRefPubMed Wu W, Cheng R, Das Neves J, Tang J, Xiao J, Ni Q, Liu X, Pan G, Li D, Cui W (2017) Advances in biomaterials for preventing tissue adhesion. J Control Release 261:318–336CrossRefPubMed
34.
go back to reference Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRef Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRef
35.
go back to reference Mahato R (2017) Microneedles in drug delivery. In: Mitra A, Cholkar K, Mandal A (eds) Emerging nanotechnologies for diagnostics, drug delivery and medical devices. Elsevier, St. Louis, pp 331–353 Mahato R (2017) Microneedles in drug delivery. In: Mitra A, Cholkar K, Mandal A (eds) Emerging nanotechnologies for diagnostics, drug delivery and medical devices. Elsevier, St. Louis, pp 331–353
36.
go back to reference Garland MJ, Migalska K, Mahmood TMT, Singh TRR, Woolfson AD, Donnelly RF (2011) Microneedle arrays as medical devices for enhanced transdermal drug delivery. Expert Rev Med Devices 8:459–482CrossRefPubMed Garland MJ, Migalska K, Mahmood TMT, Singh TRR, Woolfson AD, Donnelly RF (2011) Microneedle arrays as medical devices for enhanced transdermal drug delivery. Expert Rev Med Devices 8:459–482CrossRefPubMed
37.
go back to reference Kalluri H, Choi SO, Guo XD, Lee JW, Norman J, Prausnitz MR (2017) Evaluation of microneedles in human subjects. In: Dragicevic N, Maibach HI (eds) Percutaneous penetration enhancers physical methods in penetration enhancement. Springer, Berlin, pp 325–340CrossRef Kalluri H, Choi SO, Guo XD, Lee JW, Norman J, Prausnitz MR (2017) Evaluation of microneedles in human subjects. In: Dragicevic N, Maibach HI (eds) Percutaneous penetration enhancers physical methods in penetration enhancement. Springer, Berlin, pp 325–340CrossRef
38.
39.
go back to reference Vemulapalli V, Yang Y, Friden PM, Banga AK (2008) Synergistic effect of iontophoresis and soluble microneedles for transdermal delivery of methotrexate. J Pharm Pharmacol 60:27–33CrossRefPubMed Vemulapalli V, Yang Y, Friden PM, Banga AK (2008) Synergistic effect of iontophoresis and soluble microneedles for transdermal delivery of methotrexate. J Pharm Pharmacol 60:27–33CrossRefPubMed
40.
go back to reference Pramanick B, Martinez-Chapa SO, Madou MJ (2016) Fabrication of biocompatible hollow microneedles using the C-MEMS process for transdermal drug delivery. ECS Trans 72:45–50CrossRef Pramanick B, Martinez-Chapa SO, Madou MJ (2016) Fabrication of biocompatible hollow microneedles using the C-MEMS process for transdermal drug delivery. ECS Trans 72:45–50CrossRef
41.
go back to reference Sivaraman A, Banga AK (2017) Novel in situ forming hydrogel microneedles for transdermal drug delivery. Drug Deliv Transl Res 7:16–26CrossRefPubMed Sivaraman A, Banga AK (2017) Novel in situ forming hydrogel microneedles for transdermal drug delivery. Drug Deliv Transl Res 7:16–26CrossRefPubMed
42.
go back to reference Hardy JG, Larrañeta E, Donnelly RF, Mcgoldrick N, Migalska K, Mccrudden MT, Irwin NJ, Donnelly L, Mccoy CP (2016) Hydrogel-forming microneedle arrays made from light-responsive materials for on-demand transdermal drug delivery. Mol Pharm 13:907–914CrossRefPubMed Hardy JG, Larrañeta E, Donnelly RF, Mcgoldrick N, Migalska K, Mccrudden MT, Irwin NJ, Donnelly L, Mccoy CP (2016) Hydrogel-forming microneedle arrays made from light-responsive materials for on-demand transdermal drug delivery. Mol Pharm 13:907–914CrossRefPubMed
43.
go back to reference Demir YK, Metin AÜ, Şatıroğlu B, Solmaz ME, Kayser V, Mäder K (2017) Poly (methyl vinyl ether-co-maleic acid)–Pectin based hydrogel-forming systems: gel, film, and microneedles. Eur J Pharm Biopharm 117:182–194CrossRefPubMed Demir YK, Metin AÜ, Şatıroğlu B, Solmaz ME, Kayser V, Mäder K (2017) Poly (methyl vinyl ether-co-maleic acid)–Pectin based hydrogel-forming systems: gel, film, and microneedles. Eur J Pharm Biopharm 117:182–194CrossRefPubMed
44.
go back to reference Khavkin J, Ellis DA (2011) Aging skin: histology, physiology, and pathology. Facial Plast Surg Clin North Am 19:229–234CrossRefPubMed Khavkin J, Ellis DA (2011) Aging skin: histology, physiology, and pathology. Facial Plast Surg Clin North Am 19:229–234CrossRefPubMed
45.
go back to reference Montagna W (2012) The epidermis. The structure and function of skin. Elsevier, Academic, New York, pp 18–74 Montagna W (2012) The epidermis. The structure and function of skin. Elsevier, Academic, New York, pp 18–74
47.
48.
go back to reference Holick MF, Chen TC, Lu Z, Sauter E (2007) Vitamin d and skin physiology: a D-lightful story. J Bone Miner Res 22:28–33CrossRef Holick MF, Chen TC, Lu Z, Sauter E (2007) Vitamin d and skin physiology: a D-lightful story. J Bone Miner Res 22:28–33CrossRef
49.
go back to reference Zaidi Z, Lanigan SW (2010) Skin: structure and function. Dermatology in clinical practice. Springer, New York, pp 1–14CrossRef Zaidi Z, Lanigan SW (2010) Skin: structure and function. Dermatology in clinical practice. Springer, New York, pp 1–14CrossRef
50.
go back to reference Agache P, Humbert P (2004) Measuring the skin. Skin and structural: physiology and metrology. Springer, New York, pp 17–399CrossRef Agache P, Humbert P (2004) Measuring the skin. Skin and structural: physiology and metrology. Springer, New York, pp 17–399CrossRef
51.
go back to reference Madison KC (2003) Barrier function of the skin: “la raison d’etre” of the epidermis. J Invest Dermatol 121:231–241CrossRefPubMed Madison KC (2003) Barrier function of the skin: “la raison d’etre” of the epidermis. J Invest Dermatol 121:231–241CrossRefPubMed
52.
go back to reference Breitkreutz D, Koxholt I, Thiemann K, Nischt R (2013) Skin basement membrane: the foundation of epidermal integrity – BM functions and diverse roles of bridging molecules nidogen and perlecan. Biomed Res Int 2013:179784CrossRefPubMedPubMedCentral Breitkreutz D, Koxholt I, Thiemann K, Nischt R (2013) Skin basement membrane: the foundation of epidermal integrity – BM functions and diverse roles of bridging molecules nidogen and perlecan. Biomed Res Int 2013:179784CrossRefPubMedPubMedCentral
54.
go back to reference Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321CrossRefPubMed Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321CrossRefPubMed
55.
go back to reference Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542CrossRefPubMed Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542CrossRefPubMed
56.
go back to reference Simmons BP (1982) Guideline for prevention of surgical wound infections. Infect Control Hosp Epidemiol 3:188–196CrossRef Simmons BP (1982) Guideline for prevention of surgical wound infections. Infect Control Hosp Epidemiol 3:188–196CrossRef
57.
go back to reference Martin Y, Lali F, Metcalfe A (2016) Modelling wound healing. In: Ågren M (ed) Wound healing biomaterials-volume 1: therapies and regeneration. Elsevier, St. Louis, pp 151–173CrossRef Martin Y, Lali F, Metcalfe A (2016) Modelling wound healing. In: Ågren M (ed) Wound healing biomaterials-volume 1: therapies and regeneration. Elsevier, St. Louis, pp 151–173CrossRef
58.
go back to reference Alvarez OM, Kalinski C, Nusbaum J, Hernandez L, Pappous E, Kyriannis C, Parker R, Chrzanowski G, Comfort CP (2007) Incorporating wound healing strategies to improve palliation (symptom management) in patients with chronic wounds. J Palliat Med 10: 1161–1189CrossRefPubMed Alvarez OM, Kalinski C, Nusbaum J, Hernandez L, Pappous E, Kyriannis C, Parker R, Chrzanowski G, Comfort CP (2007) Incorporating wound healing strategies to improve palliation (symptom management) in patients with chronic wounds. J Palliat Med 10: 1161–1189CrossRefPubMed
60.
go back to reference James GA, Swogger E, Wolcott R, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16:37–44CrossRefPubMed James GA, Swogger E, Wolcott R, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16:37–44CrossRefPubMed
61.
62.
go back to reference Dissemond J (2017) Chronic leg ulcers. Der Hautarzt. Zeitschrift Dermatol Venerologie verwandte Gebiete 68:614–620CrossRef Dissemond J (2017) Chronic leg ulcers. Der Hautarzt. Zeitschrift Dermatol Venerologie verwandte Gebiete 68:614–620CrossRef
63.
go back to reference Nguyen T, Prudhomme K, Yamamoto R, Lowe AG, Green AM (2017) Methods and compositions for wound treatment. US Patent No. 8709393 B2 Nguyen T, Prudhomme K, Yamamoto R, Lowe AG, Green AM (2017) Methods and compositions for wound treatment. US Patent No. 8709393 B2
64.
go back to reference O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellul 4:173–207CrossRef O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellul 4:173–207CrossRef
65.
go back to reference Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol J-F (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301–306CrossRef Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol J-F (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301–306CrossRef
66.
go back to reference Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellul 16:999–1015CrossRef Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellul 16:999–1015CrossRef
67.
go back to reference Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRef
68.
go back to reference Park S, Venditti RA, Jameel H, Pawlak JJ (2007) Studies of the heat of vaporization of water associated with cellulose fibers characterized by thermal analysis. Cellul 14:195–204CrossRef Park S, Venditti RA, Jameel H, Pawlak JJ (2007) Studies of the heat of vaporization of water associated with cellulose fibers characterized by thermal analysis. Cellul 14:195–204CrossRef
69.
go back to reference Kafy A, Sadasivuni KK, Kim H-C, Akther A, Kim J (2015) Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Phys Chem Chem Phys 17:5923–5931CrossRefPubMed Kafy A, Sadasivuni KK, Kim H-C, Akther A, Kim J (2015) Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Phys Chem Chem Phys 17:5923–5931CrossRefPubMed
70.
go back to reference Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76:431–438CrossRefPubMed Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76:431–438CrossRefPubMed
71.
go back to reference Lin S-P, Calvar IL, Catchmark JM, Liu J-R, Demirci A, Cheng K-C (2013) Biosynthesis, production and applications of bacterial cellulose. Cellul 20:2191–2219CrossRef Lin S-P, Calvar IL, Catchmark JM, Liu J-R, Demirci A, Cheng K-C (2013) Biosynthesis, production and applications of bacterial cellulose. Cellul 20:2191–2219CrossRef
72.
go back to reference Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-H (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611CrossRefPubMed Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-H (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611CrossRefPubMed
73.
go back to reference Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol Adv 33:1547–1571CrossRefPubMed Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol Adv 33:1547–1571CrossRefPubMed
74.
go back to reference Hon DN-S (1996) Cellulose and its derivatives: structures, reactions, and medical uses. In: Dumitriu S (ed) Polysaccharides in medicinal applications. Marcel Dekker, New York, pp 87–105 Hon DN-S (1996) Cellulose and its derivatives: structures, reactions, and medical uses. In: Dumitriu S (ed) Polysaccharides in medicinal applications. Marcel Dekker, New York, pp 87–105
75.
go back to reference Heinze T (2015) Cellulose: structure and properties. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer, Berlin, pp 1–52 Heinze T (2015) Cellulose: structure and properties. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer, Berlin, pp 1–52
76.
go back to reference Ramos LDA, Frollini E, Heinze T (2005) Carboxymethylation of cellulose in the new solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Carbohydr Polym 60:259–267CrossRef Ramos LDA, Frollini E, Heinze T (2005) Carboxymethylation of cellulose in the new solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Carbohydr Polym 60:259–267CrossRef
77.
go back to reference Bozaci E, Akar E, Ozdogan E, Demir A, Altinisik A, Seki Y (2015) Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydr Polym 134:128–135CrossRefPubMed Bozaci E, Akar E, Ozdogan E, Demir A, Altinisik A, Seki Y (2015) Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydr Polym 134:128–135CrossRefPubMed
78.
go back to reference El-sakhawy M, Kamel S, Salama A, Sarhan H-A (2014) Carboxymethyl cellulose acetate butyrate: a review of the preparations, properties, and applications. J Drug Deliv 2014:575969CrossRefPubMedPubMedCentral El-sakhawy M, Kamel S, Salama A, Sarhan H-A (2014) Carboxymethyl cellulose acetate butyrate: a review of the preparations, properties, and applications. J Drug Deliv 2014:575969CrossRefPubMedPubMedCentral
79.
go back to reference Babu VR, Kanth VR, Mukund JM, Aminabhavi TM (2010) Novel methyl cellulose-grafted-acrylamide/gelatin microspheres for controlled release of nifedipine. J Appl Polym Sci 115:3542–3549CrossRef Babu VR, Kanth VR, Mukund JM, Aminabhavi TM (2010) Novel methyl cellulose-grafted-acrylamide/gelatin microspheres for controlled release of nifedipine. J Appl Polym Sci 115:3542–3549CrossRef
80.
go back to reference Lin C-P, Boehnke M (1999) Influences of methylcellulose on corneal epithelial wound healing. J Ocul Pharmacol Ther 15:59–63CrossRefPubMed Lin C-P, Boehnke M (1999) Influences of methylcellulose on corneal epithelial wound healing. J Ocul Pharmacol Ther 15:59–63CrossRefPubMed
81.
go back to reference Iqbal HM, Kyazze G, Locke IC, Tron T, Keshavarz T (2015) Poly (3-hydroxybutyrate)-ethyl cellulose based bio-composites with novel characteristics for infection free wound healing application. Int J Biol Macromol 81:552–559CrossRefPubMed Iqbal HM, Kyazze G, Locke IC, Tron T, Keshavarz T (2015) Poly (3-hydroxybutyrate)-ethyl cellulose based bio-composites with novel characteristics for infection free wound healing application. Int J Biol Macromol 81:552–559CrossRefPubMed
82.
go back to reference Jedvert K, Heinze T (2017) Cellulose modification and shaping–a review. J Polym Eng 37:845–860CrossRef Jedvert K, Heinze T (2017) Cellulose modification and shaping–a review. J Polym Eng 37:845–860CrossRef
83.
go back to reference Marcos X, Pérez-Casas S, Llovo J, Concheiro A, Alvarez-Lorenzo C (2016) Poloxamer-hydroxyethyl cellulose-α-cyclodextrin supramolecular gels for sustained release of griseofulvin. Int J Pharm 500:11–19CrossRefPubMed Marcos X, Pérez-Casas S, Llovo J, Concheiro A, Alvarez-Lorenzo C (2016) Poloxamer-hydroxyethyl cellulose-α-cyclodextrin supramolecular gels for sustained release of griseofulvin. Int J Pharm 500:11–19CrossRefPubMed
84.
go back to reference Pekel N, Yoshii F, Kume T, Güven O (2004) Radiation crosslinking of biodegradable hydroxypropylmethylcellulose. Carbohydr Polym 55:139–147CrossRef Pekel N, Yoshii F, Kume T, Güven O (2004) Radiation crosslinking of biodegradable hydroxypropylmethylcellulose. Carbohydr Polym 55:139–147CrossRef
85.
go back to reference Agubata CO, Okereke C, Nzekwe IT, Onoja RI, Obitte NC (2016) Development and evaluation of wound healing hydrogels based on a quinolone, hydroxypropyl methylcellulose and biodegradable microfibres. Eur J Pharm Sci 89:1–10CrossRefPubMed Agubata CO, Okereke C, Nzekwe IT, Onoja RI, Obitte NC (2016) Development and evaluation of wound healing hydrogels based on a quinolone, hydroxypropyl methylcellulose and biodegradable microfibres. Eur J Pharm Sci 89:1–10CrossRefPubMed
86.
go back to reference Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRefPubMed Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRefPubMed
87.
go back to reference Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46CrossRef Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46CrossRef
88.
go back to reference Alves L, Medronho B, Antunes FE, Topgaard D, Lindman B (2016) Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. Cellul 23:247–258CrossRef Alves L, Medronho B, Antunes FE, Topgaard D, Lindman B (2016) Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. Cellul 23:247–258CrossRef
89.
go back to reference Alves L, Medronho B, Antunes FE, Topgaard D, Lindman B (2016) Dissolution state of cellulose in aqueous systems. 2. Acidic solvents. Carbohydr Polym 151:707–715CrossRefPubMed Alves L, Medronho B, Antunes FE, Topgaard D, Lindman B (2016) Dissolution state of cellulose in aqueous systems. 2. Acidic solvents. Carbohydr Polym 151:707–715CrossRefPubMed
90.
go back to reference Ghasemi M, Tsianou M, Alexandridis P (2017) Assessment of solvents for cellulose dissolution. Bioresour Technol 228:330–338CrossRefPubMed Ghasemi M, Tsianou M, Alexandridis P (2017) Assessment of solvents for cellulose dissolution. Bioresour Technol 228:330–338CrossRefPubMed
91.
go back to reference Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75CrossRef Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75CrossRef
92.
go back to reference Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53CrossRef Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53CrossRef
93.
go back to reference Navarra MA, Dal Bosco C, Serra Moreno J, Vitucci FM, Paolone A, Panero S (2015) Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes 5:810–823CrossRefPubMedPubMedCentral Navarra MA, Dal Bosco C, Serra Moreno J, Vitucci FM, Paolone A, Panero S (2015) Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes 5:810–823CrossRefPubMedPubMedCentral
94.
go back to reference Escobar J, García D, Zaldivar D, Katime I (2002) Hidrogeles. Principales características en el diseño de sistemas de liberación controlada de fármacos. Rev Iberoam 3:1–25 Escobar J, García D, Zaldivar D, Katime I (2002) Hidrogeles. Principales características en el diseño de sistemas de liberación controlada de fármacos. Rev Iberoam 3:1–25
95.
go back to reference Maitra J, Shukla VK (2014) Cross-linking in hydrogels-a review. Am J Polym Sci 4:25–31 Maitra J, Shukla VK (2014) Cross-linking in hydrogels-a review. Am J Polym Sci 4:25–31
96.
go back to reference Wang Y, Wang Z, Wu K, Wu J, Meng G, Liu Z, Guo X (2017) Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties. Carbohydr Polym 168:112–120CrossRefPubMed Wang Y, Wang Z, Wu K, Wu J, Meng G, Liu Z, Guo X (2017) Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties. Carbohydr Polym 168:112–120CrossRefPubMed
97.
go back to reference Song H, Niu Y, Wang Z, Zhang J (2011) Liquid crystalline phase and gel−sol transitions for concentrated microcrystalline cellulose (MCC)/1-Ethyl-3-methylimidazolium acetate (EMIMAc) solutions. Biomacromolecules 12:1087–1096CrossRefPubMed Song H, Niu Y, Wang Z, Zhang J (2011) Liquid crystalline phase and gel−sol transitions for concentrated microcrystalline cellulose (MCC)/1-Ethyl-3-methylimidazolium acetate (EMIMAc) solutions. Biomacromolecules 12:1087–1096CrossRefPubMed
98.
go back to reference Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels … a review. Saudi Pharm J 24:554–559CrossRefPubMed Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels … a review. Saudi Pharm J 24:554–559CrossRefPubMed
99.
go back to reference Vasquez JMG, Tumolva TP (2015) Synthesis and characterization of a self-assembling hydrogel from water-soluble cellulose derivatives and sodium hydroxide/thiourea solution. Am J Chem 5:60–65 Vasquez JMG, Tumolva TP (2015) Synthesis and characterization of a self-assembling hydrogel from water-soluble cellulose derivatives and sodium hydroxide/thiourea solution. Am J Chem 5:60–65
100.
go back to reference Jensen BE, Dávila I, Zelikin AN (2016) Poly (vinyl alcohol) physical hydrogels: matrix-mediated drug delivery using spontaneously eroding substrate. J Phys Chem B 120: 5916–5926CrossRefPubMedPubMedCentral Jensen BE, Dávila I, Zelikin AN (2016) Poly (vinyl alcohol) physical hydrogels: matrix-mediated drug delivery using spontaneously eroding substrate. J Phys Chem B 120: 5916–5926CrossRefPubMedPubMedCentral
101.
go back to reference Lopez-Sanchez P, Wang D, Zhang Z, Flanagan B, Gidley MJ (2016) Microstructure and mechanical properties of arabinoxylan and (1, 3; 1, 4)-β-glucan gels produced by cryo-gelation. Carbohydr Polym 151:862–870CrossRefPubMed Lopez-Sanchez P, Wang D, Zhang Z, Flanagan B, Gidley MJ (2016) Microstructure and mechanical properties of arabinoxylan and (1, 3; 1, 4)-β-glucan gels produced by cryo-gelation. Carbohydr Polym 151:862–870CrossRefPubMed
102.
go back to reference Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373CrossRefPubMedCentral Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373CrossRefPubMedCentral
103.
go back to reference Stoyneva V, Momekova D, Kostova B, Petrov P (2014) Stimuli sensitive super-macroporous cryogels based on photo-crosslinked 2-hydroxyethylcellulose and chitosan. Carbohydr Polym 99:825–830CrossRefPubMed Stoyneva V, Momekova D, Kostova B, Petrov P (2014) Stimuli sensitive super-macroporous cryogels based on photo-crosslinked 2-hydroxyethylcellulose and chitosan. Carbohydr Polym 99:825–830CrossRefPubMed
104.
go back to reference Yue Z, Wen F, Gao S, Ang MY, Pallathadka PK, Liu L, Yu H (2010) Preparation of three-dimensional interconnected macroporous cellulosic hydrogels for soft tissue engineering. Biomaterials 31:8141–8152CrossRefPubMed Yue Z, Wen F, Gao S, Ang MY, Pallathadka PK, Liu L, Yu H (2010) Preparation of three-dimensional interconnected macroporous cellulosic hydrogels for soft tissue engineering. Biomaterials 31:8141–8152CrossRefPubMed
105.
go back to reference Chang C, He M, Zhou J, Zhang L (2011) Swelling behaviors of pH-and salt-responsive cellulose-based hydrogels. Macromolecules 44:1642–1648CrossRef Chang C, He M, Zhou J, Zhang L (2011) Swelling behaviors of pH-and salt-responsive cellulose-based hydrogels. Macromolecules 44:1642–1648CrossRef
106.
go back to reference Barros SC, Da Silva AA, Costa DB, Costa CM, Lanceros-Méndez S, Maciavello MT, Ribelles JG, Sentanin F, Pawlicka A, Silva MM (2015) Thermal–mechanical behaviour of chitosan–cellulose derivative thermoreversible hydrogel films. Cellul 22:1911–1929CrossRef Barros SC, Da Silva AA, Costa DB, Costa CM, Lanceros-Méndez S, Maciavello MT, Ribelles JG, Sentanin F, Pawlicka A, Silva MM (2015) Thermal–mechanical behaviour of chitosan–cellulose derivative thermoreversible hydrogel films. Cellul 22:1911–1929CrossRef
107.
go back to reference Jeong B, Kim SW, Bae YH (2012) Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev 64:154–162CrossRef Jeong B, Kim SW, Bae YH (2012) Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev 64:154–162CrossRef
108.
go back to reference Masrat R, Maswal M, Chat OA, Rather GM, Dar AA (2016) A rheological investigation of sol–gel transition of hydroxypropyl cellulose with nonionic surfactant sorbitan monopalmitate: modulation of gel strength by UV irradiation. Colloids Surf A Physicochem Eng Asp 489:113–121CrossRef Masrat R, Maswal M, Chat OA, Rather GM, Dar AA (2016) A rheological investigation of sol–gel transition of hydroxypropyl cellulose with nonionic surfactant sorbitan monopalmitate: modulation of gel strength by UV irradiation. Colloids Surf A Physicochem Eng Asp 489:113–121CrossRef
109.
go back to reference Moreira R, Chenlo F, Silva C, Torres MD (2017) Rheological behaviour of aqueous methylcellulose systems: effect of concentration, temperature and presence of tragacanth. LWT-Food Sci Technol 84:764–770CrossRef Moreira R, Chenlo F, Silva C, Torres MD (2017) Rheological behaviour of aqueous methylcellulose systems: effect of concentration, temperature and presence of tragacanth. LWT-Food Sci Technol 84:764–770CrossRef
110.
go back to reference Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z (2014) Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials 35:4969–4985CrossRefPubMed Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z (2014) Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials 35:4969–4985CrossRefPubMed
111.
go back to reference Onofrei M-D, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Méndez-Vilas A, Solano A (eds) Polymer science: research advances, practical applications, and educational aspects. Formatex Research Center, Badajoz, pp 108–120 Onofrei M-D, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Méndez-Vilas A, Solano A (eds) Polymer science: research advances, practical applications, and educational aspects. Formatex Research Center, Badajoz, pp 108–120
113.
go back to reference Liu L, Gao Q, Lu X, Zhou H (2016) In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J Pharmacol 11:673–683 Liu L, Gao Q, Lu X, Zhou H (2016) In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J Pharmacol 11:673–683
114.
go back to reference Hoarea TR, Kohaneb DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007CrossRef Hoarea TR, Kohaneb DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007CrossRef
115.
go back to reference Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRef Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRef
116.
go back to reference Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRef Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRef
117.
go back to reference Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99CrossRefPubMed Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99CrossRefPubMed
118.
go back to reference Peppas NA (1997) Hydrogels and drug delivery. Curr Opin Colloid Interface Sci 2:531–537CrossRef Peppas NA (1997) Hydrogels and drug delivery. Curr Opin Colloid Interface Sci 2:531–537CrossRef
119.
go back to reference El-Hag, Abd El-Rehim H, Kamal H, Hegazi D (2008) Synthesis of carboxymethyl cellulose based drug carrier hydrogel using ionizing radiation for possible use as specific delivery system. J Macromol Sci Pure Appl Chem 45:628–634CrossRef El-Hag, Abd El-Rehim H, Kamal H, Hegazi D (2008) Synthesis of carboxymethyl cellulose based drug carrier hydrogel using ionizing radiation for possible use as specific delivery system. J Macromol Sci Pure Appl Chem 45:628–634CrossRef
120.
go back to reference Vinatier C, Magne D, Weiss P, Trojani C, Rochet N, Carle GF, Vignes-Colombeix C, Chadjichristos C, Galera P, Daculsi G, Guicheux J (2005) A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes. Biomaterials 26:6643–6651CrossRefPubMed Vinatier C, Magne D, Weiss P, Trojani C, Rochet N, Carle GF, Vignes-Colombeix C, Chadjichristos C, Galera P, Daculsi G, Guicheux J (2005) A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes. Biomaterials 26:6643–6651CrossRefPubMed
121.
go back to reference Vinatier C, Magne D, Moreau A, Gauthier O, Malard O, Vignes-Colombeix C, Daculsi G, Weiss P, Guicheux J (2007) Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. J Biomed Mater Res A 80:66–74CrossRefPubMed Vinatier C, Magne D, Moreau A, Gauthier O, Malard O, Vignes-Colombeix C, Daculsi G, Weiss P, Guicheux J (2007) Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. J Biomed Mater Res A 80:66–74CrossRefPubMed
122.
go back to reference Zaki NM, Awad GA, Mortada ND, Abd ElHady SS (2007) Enhanced bioavailability of metoclopramide HCl by intranasal administration of mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur J Pharm Sci 32:296–307CrossRefPubMed Zaki NM, Awad GA, Mortada ND, Abd ElHady SS (2007) Enhanced bioavailability of metoclopramide HCl by intranasal administration of mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur J Pharm Sci 32:296–307CrossRefPubMed
123.
go back to reference Kapoor D, Vyas RB, Lad C, Patel M, Lal B (2015) Site specific drug delivery through nasal route using bioadhesive polymers. J Drug Deliv Ther 5:1–9 Kapoor D, Vyas RB, Lad C, Patel M, Lal B (2015) Site specific drug delivery through nasal route using bioadhesive polymers. J Drug Deliv Ther 5:1–9
124.
go back to reference Lazarus GS, Cooper DM, Knighton DR, Margolis DJ, Percoraro ER, Rodeheaver G, Robson MC (1994) Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol 130:489–493CrossRefPubMed Lazarus GS, Cooper DM, Knighton DR, Margolis DJ, Percoraro ER, Rodeheaver G, Robson MC (1994) Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol 130:489–493CrossRefPubMed
125.
go back to reference Moore K, McCallion R, Searle RJ, Stacey MC, Harding KG (2006) Prediction and monitoring the therapeutic response of chronic dermal wounds. Int Wound J 3:89–96CrossRefPubMedPubMedCentral Moore K, McCallion R, Searle RJ, Stacey MC, Harding KG (2006) Prediction and monitoring the therapeutic response of chronic dermal wounds. Int Wound J 3:89–96CrossRefPubMedPubMedCentral
126.
go back to reference Medaghiele M, Demitri C, Sannino A, Ambrosio L (2014) Polymeric hydrogels for burn wound care: advanced skin wound dressings and regenerative templates. Burns and Trauma 2:153–161CrossRef Medaghiele M, Demitri C, Sannino A, Ambrosio L (2014) Polymeric hydrogels for burn wound care: advanced skin wound dressings and regenerative templates. Burns and Trauma 2:153–161CrossRef
127.
go back to reference Dai T, Huang Y-Y, Sharma SK, Hashmi JT, Kurup DB, Hamblin MR (2010) Topical antimicrobials for burn wound infections. Recent Pat Antiinfect Drug Discov 5:124–151CrossRefPubMedPubMedCentral Dai T, Huang Y-Y, Sharma SK, Hashmi JT, Kurup DB, Hamblin MR (2010) Topical antimicrobials for burn wound infections. Recent Pat Antiinfect Drug Discov 5:124–151CrossRefPubMedPubMedCentral
128.
go back to reference Monier M, Abdel-Latif DA, Ji HF (2016) Synthesis and application of photo-active carboxymethyl cellulose derivatives. React Funct Polym 102:137–146CrossRef Monier M, Abdel-Latif DA, Ji HF (2016) Synthesis and application of photo-active carboxymethyl cellulose derivatives. React Funct Polym 102:137–146CrossRef
129.
go back to reference Ng SF, Jumaat N (2014) Carboxymethyl cellulose wafers containing antimicrobials: a modern drug delivery system for wound infections. Eur J Pharm Sci 51:173–179CrossRefPubMed Ng SF, Jumaat N (2014) Carboxymethyl cellulose wafers containing antimicrobials: a modern drug delivery system for wound infections. Eur J Pharm Sci 51:173–179CrossRefPubMed
130.
go back to reference Furst T, Piette M, Lechanteur A, Evrard B, Piel G (2015) Mucoadhesive cellulosic derivative sponges as drug delivery system for vaginal application. Eur J Pharm Biopharm 95:128–135CrossRefPubMed Furst T, Piette M, Lechanteur A, Evrard B, Piel G (2015) Mucoadhesive cellulosic derivative sponges as drug delivery system for vaginal application. Eur J Pharm Biopharm 95:128–135CrossRefPubMed
131.
go back to reference Lin Q, Zheng Y, Ren L, Wu J, Wang H, An J, Fan W (2014) Preparation and characteristic of a sodium alginate/carboxymethylated bacterial cellulose composite with crosslinking semi-interpenetrating network. J Appl Polym Sci 131:3948–3957CrossRef Lin Q, Zheng Y, Ren L, Wu J, Wang H, An J, Fan W (2014) Preparation and characteristic of a sodium alginate/carboxymethylated bacterial cellulose composite with crosslinking semi-interpenetrating network. J Appl Polym Sci 131:3948–3957CrossRef
132.
go back to reference Sood S, Gupta VK, Agarwal S, Dev K, Pathania D (2017) Controlled release of antibiotic amoxicillin drug using carboxymethyl cellulose-cl-poly (lactic acid-co-itaconic acid) hydrogel. Int J Biol Macromol 101:612–620CrossRefPubMed Sood S, Gupta VK, Agarwal S, Dev K, Pathania D (2017) Controlled release of antibiotic amoxicillin drug using carboxymethyl cellulose-cl-poly (lactic acid-co-itaconic acid) hydrogel. Int J Biol Macromol 101:612–620CrossRefPubMed
133.
go back to reference Oliveira RN, Moreira APD, Thiré RMSM, Quilty B, Passos TM, Simon P, Mancini MC, McGuinness GB (2017) Absorbent polyvinyl alcohol–sodium carboxymethyl cellulose hydrogels for propolis delivery in wound healing applications. Polym Eng Sci 57:1224–1233 Oliveira RN, Moreira APD, Thiré RMSM, Quilty B, Passos TM, Simon P, Mancini MC, McGuinness GB (2017) Absorbent polyvinyl alcohol–sodium carboxymethyl cellulose hydrogels for propolis delivery in wound healing applications. Polym Eng Sci 57:1224–1233
134.
go back to reference Malik NS, Ahmad M, Minhas MU (2017) Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS One 12:e0172727CrossRefPubMedPubMedCentral Malik NS, Ahmad M, Minhas MU (2017) Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS One 12:e0172727CrossRefPubMedPubMedCentral
135.
go back to reference Huber D, Tegl G, Mensah A, Beer B, Baumann M, Borth N, Sygmund C, Ludwig R, Guebitz GM (2017) A dual-enzyme hydrogen peroxide generation machinery in hydrogels supports antimicrobial wound treatment. ACS Appl Mater Interfaces 9:15307–15316CrossRefPubMed Huber D, Tegl G, Mensah A, Beer B, Baumann M, Borth N, Sygmund C, Ludwig R, Guebitz GM (2017) A dual-enzyme hydrogen peroxide generation machinery in hydrogels supports antimicrobial wound treatment. ACS Appl Mater Interfaces 9:15307–15316CrossRefPubMed
136.
go back to reference Huang B, Liu M, Zhou C (2017) Cellulose–halloysite nanotube composite hydrogels for curcumin delivery. Cellul 24:2861–2875CrossRef Huang B, Liu M, Zhou C (2017) Cellulose–halloysite nanotube composite hydrogels for curcumin delivery. Cellul 24:2861–2875CrossRef
137.
go back to reference Sun N, Wang T, Yan X (2017) Self-assembled supermolecular hydrogel based on hydroxyethyl cellulose: formation, in vitro release and bacteriostasis application. Carbohydr Polym 172:49–59CrossRefPubMed Sun N, Wang T, Yan X (2017) Self-assembled supermolecular hydrogel based on hydroxyethyl cellulose: formation, in vitro release and bacteriostasis application. Carbohydr Polym 172:49–59CrossRefPubMed
138.
go back to reference Bang S, Ko YG, Kim WI, Cho D, Park WH, Kwon OH (2017) Preventing postoperative tissue adhesion using injectable carboxymethyl cellulose-pullulan hydrogels. Int J Biol Macromol S0141-8130:31292–31298 Bang S, Ko YG, Kim WI, Cho D, Park WH, Kwon OH (2017) Preventing postoperative tissue adhesion using injectable carboxymethyl cellulose-pullulan hydrogels. Int J Biol Macromol S0141-8130:31292–31298
139.
go back to reference Jeong D, Kim HK, Jeong J-P, Dindulkar SD, Cho E, Yang Y-H, Jung S (2016) Cyclosophoraose/cellulose hydrogels as an efficient delivery system for galangin, a hydrophobic antibacterial drug. Cellul 23:2609–2625CrossRef Jeong D, Kim HK, Jeong J-P, Dindulkar SD, Cho E, Yang Y-H, Jung S (2016) Cyclosophoraose/cellulose hydrogels as an efficient delivery system for galangin, a hydrophobic antibacterial drug. Cellul 23:2609–2625CrossRef
140.
go back to reference Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R (2017) Thermo-responsive poly(N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers 9:119–136CrossRefPubMedCentral Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R (2017) Thermo-responsive poly(N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers 9:119–136CrossRefPubMedCentral
141.
go back to reference Ahmed EM (2015) Hydrogel: preparation, characterization, and applications. A review. J Adv Res 6:105–121CrossRefPubMed Ahmed EM (2015) Hydrogel: preparation, characterization, and applications. A review. J Adv Res 6:105–121CrossRefPubMed
142.
go back to reference Fernandes EM (2013) Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 38:1415–1441CrossRef Fernandes EM (2013) Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 38:1415–1441CrossRef
143.
go back to reference Pillai AB, Nair JV, Gupta NK, Gupta S (2015) Microemulsion-loaded hydrogel formulation of butenafine hydrochloride for improved topical delivery. Arch Dermatol Res 307:625–633CrossRefPubMed Pillai AB, Nair JV, Gupta NK, Gupta S (2015) Microemulsion-loaded hydrogel formulation of butenafine hydrochloride for improved topical delivery. Arch Dermatol Res 307:625–633CrossRefPubMed
144.
go back to reference Sabale V, Vora S (2012) Formulation and evaluation of microemulsion-based hydrogel for topical delivery. Int J Pharm Invest 2:140–149CrossRef Sabale V, Vora S (2012) Formulation and evaluation of microemulsion-based hydrogel for topical delivery. Int J Pharm Invest 2:140–149CrossRef
145.
go back to reference Jantharaprapap R, Stagni G (2007) Effects of penetration enhancers on in vitro permeability of meloxicam gels. Int J Pharm 343:26–33CrossRefPubMed Jantharaprapap R, Stagni G (2007) Effects of penetration enhancers on in vitro permeability of meloxicam gels. Int J Pharm 343:26–33CrossRefPubMed
146.
go back to reference Hosny KM, Tayeb MM, Fallatah OM, Mahmoud AA, Mandoura MS, Al-Sawahli MM (2013) Preparation and evaluation of ketorolac tromethamine hydrogel. Int J Pharm Sci Rev Res 20:269–274 Hosny KM, Tayeb MM, Fallatah OM, Mahmoud AA, Mandoura MS, Al-Sawahli MM (2013) Preparation and evaluation of ketorolac tromethamine hydrogel. Int J Pharm Sci Rev Res 20:269–274
147.
go back to reference Kouchak M, Handali S (2014) Effects of various penetration enhancers on penetration of aminophylline through shed snake skin. Jundishapur J Nat Pharm Prod 9:24–29CrossRefPubMedPubMedCentral Kouchak M, Handali S (2014) Effects of various penetration enhancers on penetration of aminophylline through shed snake skin. Jundishapur J Nat Pharm Prod 9:24–29CrossRefPubMedPubMedCentral
148.
go back to reference Arunkumar S, Shivakumar HN, Desai BG, Ashok P (2016) Effect of gel properties on transdermal iontophoretic delivery of diclofenac sodium. e-Polymers 16:25–32CrossRef Arunkumar S, Shivakumar HN, Desai BG, Ashok P (2016) Effect of gel properties on transdermal iontophoretic delivery of diclofenac sodium. e-Polymers 16:25–32CrossRef
149.
go back to reference Gupta A, Mishra AK, Singh AK, Gupta V, Bansal P (2010) Formulation and evaluation of topical gel of diclofenac sodium using different polymers. Drug Invent Today 2:250–253 Gupta A, Mishra AK, Singh AK, Gupta V, Bansal P (2010) Formulation and evaluation of topical gel of diclofenac sodium using different polymers. Drug Invent Today 2:250–253
150.
go back to reference Prakash PR, Rao NGR, Soujanya C (2010) Formulation, evaluation and anti-inflammatory activity of topical etoricoxib gel. Asian J Pharm Clin Res 3:126–129 Prakash PR, Rao NGR, Soujanya C (2010) Formulation, evaluation and anti-inflammatory activity of topical etoricoxib gel. Asian J Pharm Clin Res 3:126–129
151.
go back to reference Abdel-Mottaleb MMA, Mortada ND, Elshamy AA, Awad GAS (2007) Preparation and evaluation of fluconazole gels. Egypt J Biomed Sci 23:35–41 Abdel-Mottaleb MMA, Mortada ND, Elshamy AA, Awad GAS (2007) Preparation and evaluation of fluconazole gels. Egypt J Biomed Sci 23:35–41
152.
go back to reference Sawant PD, Luu D, Ye R, Buchta R (2010) Drug release from hydroethanolic gels. Effect of drug’s lipophilicity (log P), polymer-drug interactions and solvent lipophilicity. Int J Pharm 396:45–52CrossRefPubMed Sawant PD, Luu D, Ye R, Buchta R (2010) Drug release from hydroethanolic gels. Effect of drug’s lipophilicity (log P), polymer-drug interactions and solvent lipophilicity. Int J Pharm 396:45–52CrossRefPubMed
153.
go back to reference Cho CW, Choi JS, Shin SC (2011) Enhanced local anesthetic action of mepivacaine from the bioadhesive gels. Pak J Pharm Sci 24:87–93PubMed Cho CW, Choi JS, Shin SC (2011) Enhanced local anesthetic action of mepivacaine from the bioadhesive gels. Pak J Pharm Sci 24:87–93PubMed
154.
go back to reference Huang YC, Huang KY, Yang BY, Ko CH, Huang HM (2016) Fabrication of novel hydrogel with berberine-enriched carboxymethylcellulose and hyaluronic acid as an anti-inflammatory barrier membrane. Biomed Res Int 2016:3640182PubMedPubMedCentral Huang YC, Huang KY, Yang BY, Ko CH, Huang HM (2016) Fabrication of novel hydrogel with berberine-enriched carboxymethylcellulose and hyaluronic acid as an anti-inflammatory barrier membrane. Biomed Res Int 2016:3640182PubMedPubMedCentral
155.
go back to reference Vlaia L, Olariu I, Coneac G, Vlaia V, Popoiu C, Stănciulescu C, Muţ AM, Szabadai Z, Lupuleasa D (2014) Percutaneous penetration enhancement of propranolol hydrochloride from HPMC-based hydroethanolic gels containing terpenes. Farmacia 62:991–1008 Vlaia L, Olariu I, Coneac G, Vlaia V, Popoiu C, Stănciulescu C, Muţ AM, Szabadai Z, Lupuleasa D (2014) Percutaneous penetration enhancement of propranolol hydrochloride from HPMC-based hydroethanolic gels containing terpenes. Farmacia 62:991–1008
156.
go back to reference Guyot M, Fawaz F (2000) Design and in vitro evaluation of adhesive matrix for transdermal delivery of propranolol. Int J Pharm 204:171–182CrossRefPubMed Guyot M, Fawaz F (2000) Design and in vitro evaluation of adhesive matrix for transdermal delivery of propranolol. Int J Pharm 204:171–182CrossRefPubMed
157.
go back to reference Donnelly RF, Raj Singh TR, Woolfson AD (2010) Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv 17:187–207CrossRefPubMed Donnelly RF, Raj Singh TR, Woolfson AD (2010) Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv 17:187–207CrossRefPubMed
158.
go back to reference Nayak A, Das DB, Vladisavljević GT (2014) Microneedle-assisted permeation of lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel. Pharm Res 31:1170–1184CrossRefPubMed Nayak A, Das DB, Vladisavljević GT (2014) Microneedle-assisted permeation of lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel. Pharm Res 31:1170–1184CrossRefPubMed
159.
go back to reference Caffarel-Salvador E, Brady AJ, Eltayib E, Meng T, Alonso-Vicente A, Gonzalez-Vazquez P, Torrisi BM, Vicente-Perez EM, Mooney K, Jones DS, Bell SE, McCoy CP, McCarthy HO, McElnay JC, Donnelly RF (2015) Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: potential for use in diagnosis and therapeutic drug monitoring. PLoS One 10:e0145644CrossRefPubMedPubMedCentral Caffarel-Salvador E, Brady AJ, Eltayib E, Meng T, Alonso-Vicente A, Gonzalez-Vazquez P, Torrisi BM, Vicente-Perez EM, Mooney K, Jones DS, Bell SE, McCoy CP, McCarthy HO, McElnay JC, Donnelly RF (2015) Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: potential for use in diagnosis and therapeutic drug monitoring. PLoS One 10:e0145644CrossRefPubMedPubMedCentral
Metadata
Title
Cellulose-Based Hydrogels in Topical Drug Delivery: A Challenge in Medical Devices
Authors
Andreza Maria Ribeiro
Mariana Magalhães
Francisco Veiga
Ana Figueiras
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-77830-3_41

Premium Partners