Skip to main content
Top
Published in: Cellulose 2/2014

01-04-2014 | Original Paper

Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy

Authors: Kabindra Kafle, Xiaoning Xi, Christopher M. Lee, Bernhard R. Tittmann, Daniel J. Cosgrove, Yong Bum Park, Seong H. Kim

Published in: Cellulose | Issue 2/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cellulose microfibril orientation in plant cell walls changes during cell expansion and development. The cellulose microfibril orientation in the abaxial epidermis of onion scales was studied by atomic force microscopy (AFM) and sum frequency generation (SFG) vibrational spectroscopy. Onion epidermal cells in all scales are elongated along the onion bulb axis. AFM images showed that cellulose microfibrils exposed at the innermost surface of the abaxial epidermis are oriented perpendicular to the bulb axis in the outer scales and more dispersed in the inner scales of onion bulb. SFG analyses can determine the orientation of cellulose microfibrils averaged over the entire thickness of the cell wall. We found that the average orientation of cellulose microfibrils inside onion abaxial epidermal cell walls as revealed by SFG is similar to the orientation observed at the innermost cell wall surface by AFM. The capability to determine the average orientation of cellulose microfibrils in intact cell walls will be useful to study how cellulose microfibril orientation is related to biomechanical properties and the growth mechanism of plant cell walls.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Anderson CT, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152(2):787–796CrossRef Anderson CT, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152(2):787–796CrossRef
go back to reference Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12(7):2434–2439CrossRef Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12(7):2434–2439CrossRef
go back to reference Barnette AL, Lee C, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89(3):802–809CrossRef Barnette AL, Lee C, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89(3):802–809CrossRef
go back to reference Baskin T (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222CrossRef Baskin T (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222CrossRef
go back to reference Brown RM Jr, Millard AC, Campagnola PJ (2003) Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy. Opt Lett 28(22):2207–2209CrossRef Brown RM Jr, Millard AC, Campagnola PJ (2003) Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy. Opt Lett 28(22):2207–2209CrossRef
go back to reference Chen L, Wilson RH, McCann MC (1997) Investigation of macromolecule orientation in dry and hydrated walls of single onion epidermal cells by FTIR microspectroscopy. J Mol Struct 408:257–260CrossRef Chen L, Wilson RH, McCann MC (1997) Investigation of macromolecule orientation in dry and hydrated walls of single onion epidermal cells by FTIR microspectroscopy. J Mol Struct 408:257–260CrossRef
go back to reference Cosgrove DJ (2000) Expansive growth of plant cell walls. Plant Physiol Biochem 38(1):109–124CrossRef Cosgrove DJ (2000) Expansive growth of plant cell walls. Plant Physiol Biochem 38(1):109–124CrossRef
go back to reference Cox G, Moreno N, Feijó J (2005) Second-harmonic imaging of plant polysaccharides. J Biomed Opt 10(2):024013CrossRef Cox G, Moreno N, Feijó J (2005) Second-harmonic imaging of plant polysaccharides. J Biomed Opt 10(2):024013CrossRef
go back to reference Davies LM, Harris PJ (2003) Atomic force microscopy of microfibrils in primary cell walls. Planta 217(2):283–289 Davies LM, Harris PJ (2003) Atomic force microscopy of microfibrils in primary cell walls. Planta 217(2):283–289
go back to reference Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54(3):597–606CrossRef Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54(3):597–606CrossRef
go back to reference Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356CrossRef Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356CrossRef
go back to reference Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS 108(47):E1195–E1203CrossRef Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS 108(47):E1195–E1203CrossRef
go back to reference Giddings TH Jr, Staehelin LA (1988) Spatial relationship between microtubules and plasma-membrane rosettes during the deposition of primary wall microfibrils in Closterium sp. Planta 173(1):22–30CrossRef Giddings TH Jr, Staehelin LA (1988) Spatial relationship between microtubules and plasma-membrane rosettes during the deposition of primary wall microfibrils in Closterium sp. Planta 173(1):22–30CrossRef
go back to reference Green PB (1960) Multinet growth in the cell wall of Nitella. J Biophys Biochem Cytol 7(2):289–296CrossRef Green PB (1960) Multinet growth in the cell wall of Nitella. J Biophys Biochem Cytol 7(2):289–296CrossRef
go back to reference Green PB (1962) Mechanism for plant cellular morphogenesis. Science 138(3548):1404–1405CrossRef Green PB (1962) Mechanism for plant cellular morphogenesis. Science 138(3548):1404–1405CrossRef
go back to reference Green P (1964) Cell walls and the geometry of plant growth. Brookhaven Symp Biol 16:203–217 Green P (1964) Cell walls and the geometry of plant growth. Brookhaven Symp Biol 16:203–217
go back to reference Ha MA, Apperley DC, Jarvis MC (1997) Molecular rigidity in dry and hydrated onion cell walls. Plant Physiol 115(2):593–598 Ha MA, Apperley DC, Jarvis MC (1997) Molecular rigidity in dry and hydrated onion cell walls. Plant Physiol 115(2):593–598
go back to reference Heath IB (1974) A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J Theor Biol 48(2):445–449CrossRef Heath IB (1974) A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J Theor Biol 48(2):445–449CrossRef
go back to reference Hieu HC, Tuan NA, Li H, Miyauchi Y, Mizutani G (2011) Sum frequency generation microscopy study of cellulose fibers. Appl Spectrosc 65(11):1254–1259CrossRef Hieu HC, Tuan NA, Li H, Miyauchi Y, Mizutani G (2011) Sum frequency generation microscopy study of cellulose fibers. Appl Spectrosc 65(11):1254–1259CrossRef
go back to reference Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868CrossRef Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868CrossRef
go back to reference Kutschera U (2008) The growing outer epidermal wall: design and physiological role of a composite structure. Ann Bot 101(5):615–621CrossRef Kutschera U (2008) The growing outer epidermal wall: design and physiological role of a composite structure. Ann Bot 101(5):615–621CrossRef
go back to reference LaComb R, Nadiarnykh O, Townsend SS, Campagnola PJ (2008) Phase matching considerations in second harmonic generation from tissues: effects on emission directionality, conversion efficiency and observed morphology. Opt Commun 281(7):1823–1832CrossRef LaComb R, Nadiarnykh O, Townsend SS, Campagnola PJ (2008) Phase matching considerations in second harmonic generation from tissues: effects on emission directionality, conversion efficiency and observed morphology. Opt Commun 281(7):1823–1832CrossRef
go back to reference Lambert AG, Davies PB, Neivandt DJ (2005) Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl Spectrosc Rev 40(2):103–145CrossRef Lambert AG, Davies PB, Neivandt DJ (2005) Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl Spectrosc Rev 40(2):103–145CrossRef
go back to reference Lee CM, Mittal A, Barnette AL, Kafle K, Park Y, Shin H, Johnson DK, Park S, Kim SH (2013a) Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose 20(3):991–1000CrossRef Lee CM, Mittal A, Barnette AL, Kafle K, Park Y, Shin H, Johnson DK, Park S, Kim SH (2013a) Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose 20(3):991–1000CrossRef
go back to reference Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013b) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117(22):6681–6692CrossRef Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013b) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117(22):6681–6692CrossRef
go back to reference Li S, Gu Y (2012) Cellulose biosynthesis in higher plants and the role of the cytoskeleton. In: Hetherington AM (ed) eLS. Wiley, Chichester, pp 1–8 Li S, Gu Y (2012) Cellulose biosynthesis in higher plants and the role of the cytoskeleton. In: Hetherington AM (ed) eLS. Wiley, Chichester, pp 1–8
go back to reference Marechal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523(1):183–196CrossRef Marechal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523(1):183–196CrossRef
go back to reference Marga F, Grandbois M, Cosgrove DJ, Baskin TI (2005) Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant J 43(2):181–190CrossRef Marga F, Grandbois M, Cosgrove DJ, Baskin TI (2005) Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant J 43(2):181–190CrossRef
go back to reference McCann M, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96(2):323–334 McCann M, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96(2):323–334
go back to reference Mita T, Shibaoka H (1983) Changes in microtubules in onion leaf sheath cells during bulb development. Plant Cell Physiol 24(1):109–117 Mita T, Shibaoka H (1983) Changes in microtubules in onion leaf sheath cells during bulb development. Plant Cell Physiol 24(1):109–117
go back to reference Neville A (1985) Molecular and mechanical aspects of helicoid development in plant cell walls. BioEssays 3(1):4–8CrossRef Neville A (1985) Molecular and mechanical aspects of helicoid development in plant cell walls. BioEssays 3(1):4–8CrossRef
go back to reference Neville A, Gubb D, Crawford R (1976) A new model for cellulose architecture in some plant cell walls. Protoplasma 90(3–4):307–317CrossRef Neville A, Gubb D, Crawford R (1976) A new model for cellulose architecture in some plant cell walls. Protoplasma 90(3–4):307–317CrossRef
go back to reference Ng A, Parker ML, Parr AJ, Saunders PK, Smith AC, Waldron KW (2000) Physicochemical characteristics of onion (Allium cepa L.) tissues. J Agric Food Chem 48(11):5612–5617CrossRef Ng A, Parker ML, Parr AJ, Saunders PK, Smith AC, Waldron KW (2000) Physicochemical characteristics of onion (Allium cepa L.) tissues. J Agric Food Chem 48(11):5612–5617CrossRef
go back to reference Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312(5779):1491–1495CrossRef Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312(5779):1491–1495CrossRef
go back to reference Park YB, Lee CM, Koo B-W, Park S, Cosgrove DJ, Kim SH (2013) Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy. Plant Physiol 163(2):907–913CrossRef Park YB, Lee CM, Koo B-W, Park S, Cosgrove DJ, Kim SH (2013) Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy. Plant Physiol 163(2):907–913CrossRef
go back to reference Preston RD (1974) The physical biology of plant cell walls. Chapman & Hall, London Preston RD (1974) The physical biology of plant cell walls. Chapman & Hall, London
go back to reference Richmond PA, Métraux JP, Taiz L (1980) Cell expansion patterns and directionality of wall mechanical properties in Nitella. Plant Physiol 65(2):211–217CrossRef Richmond PA, Métraux JP, Taiz L (1980) Cell expansion patterns and directionality of wall mechanical properties in Nitella. Plant Physiol 65(2):211–217CrossRef
go back to reference Roelofsen PA, Houwink A (1953) Architecture and growth of the primary cell wall in some plant hairs and in the Phycomyces sporangiophore. Acta Bot Ner 2:218–225CrossRef Roelofsen PA, Houwink A (1953) Architecture and growth of the primary cell wall in some plant hairs and in the Phycomyces sporangiophore. Acta Bot Ner 2:218–225CrossRef
go back to reference Roland J-C, Vian B, Reis D (1977) Further observations on cell wall morphogenesis and polysaccharide arrangement during plant growth. Protoplasma 91(2):125–141CrossRef Roland J-C, Vian B, Reis D (1977) Further observations on cell wall morphogenesis and polysaccharide arrangement during plant growth. Protoplasma 91(2):125–141CrossRef
go back to reference Satiat-Jeunemaifre B, Martin B, Hawes C (1992) Plant cell wall architecture is revealed by rapid-freezing and deep-etching. Protoplasma 167(1–2):33–42CrossRef Satiat-Jeunemaifre B, Martin B, Hawes C (1992) Plant cell wall architecture is revealed by rapid-freezing and deep-etching. Protoplasma 167(1–2):33–42CrossRef
go back to reference Sugimoto K, Williamson RE, Wasteneys GO (2000) New techniques enable comparative analysis of microtubule orientation, wall texture, and growth rate in intact roots of Arabidopsis. Plant Physiol 124(4):1493–1506CrossRef Sugimoto K, Williamson RE, Wasteneys GO (2000) New techniques enable comparative analysis of microtubule orientation, wall texture, and growth rate in intact roots of Arabidopsis. Plant Physiol 124(4):1493–1506CrossRef
go back to reference Suslov D, Verbelen JP, Vissenberg K (2009) Onion epidermis as a new model to study the control of growth anisotropy in higher plants. J Exp Bot 60(14):4175–4187CrossRef Suslov D, Verbelen JP, Vissenberg K (2009) Onion epidermis as a new model to study the control of growth anisotropy in higher plants. J Exp Bot 60(14):4175–4187CrossRef
go back to reference Thimm JC, Burritt DJ, Ducker WA, Melton LD (2000) Celery (Apium graveolens L.) parenchyma cell walls examined by atomic force microscopy: effect of dehydration on cellulose microfibrils. Planta 212(1):25–32CrossRef Thimm JC, Burritt DJ, Ducker WA, Melton LD (2000) Celery (Apium graveolens L.) parenchyma cell walls examined by atomic force microscopy: effect of dehydration on cellulose microfibrils. Planta 212(1):25–32CrossRef
go back to reference Thomas LH, Forsyth VT, Šturcová A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161(1):465–476CrossRef Thomas LH, Forsyth VT, Šturcová A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161(1):465–476CrossRef
go back to reference Wang H-F, Gan W, Lu R, Rao Y, Wu B-H (2005) Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). Int Rev Phys Chem 24(2):191–256CrossRef Wang H-F, Gan W, Lu R, Rao Y, Wu B-H (2005) Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). Int Rev Phys Chem 24(2):191–256CrossRef
go back to reference Wellner N, Kačuráková M, Malovíková A, Wilson RH, Belton PS (1998) FT-IR study of pectate and pectinate gels formed by divalent cations. Carbohydr Res 308(1):123–131CrossRef Wellner N, Kačuráková M, Malovíková A, Wilson RH, Belton PS (1998) FT-IR study of pectate and pectinate gels formed by divalent cations. Carbohydr Res 308(1):123–131CrossRef
go back to reference Wells B, McCann M, Shedletzky E, Delmer D, Roberts K (1994) Structural features of cell walls from tomato cells adapted to grow on the herbicide 2,6-dichlorobenzonitrile. J Microsc 173(2):155–164CrossRef Wells B, McCann M, Shedletzky E, Delmer D, Roberts K (1994) Structural features of cell walls from tomato cells adapted to grow on the herbicide 2,6-dichlorobenzonitrile. J Microsc 173(2):155–164CrossRef
go back to reference Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129CrossRef Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129CrossRef
go back to reference Wilson RH, Smith AC, Kačuráková M, Saunders PK, Wellner N, Waldron KW (2000) The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol 124(1):397–406CrossRef Wilson RH, Smith AC, Kačuráková M, Saunders PK, Wellner N, Waldron KW (2000) The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol 124(1):397–406CrossRef
go back to reference Wood PJ (1980) Specificity in the interaction of direct dyes with polysaccharides. Carbohydr Res 85(2):271–287CrossRef Wood PJ (1980) Specificity in the interaction of direct dyes with polysaccharides. Carbohydr Res 85(2):271–287CrossRef
go back to reference Wood PJ, Fulcher R, Stone BA (1983) Studies on the specificity of interaction of cereal cell wall components with Congo Red and Calcofluor. Specific detection and histochemistry of (1 → 3), (1 → 4),-β-D-glucan. J Cereal Sci 1(2):95–110CrossRef Wood PJ, Fulcher R, Stone BA (1983) Studies on the specificity of interaction of cereal cell wall components with Congo Red and Calcofluor. Specific detection and histochemistry of (1 → 3), (1 → 4),-β-D-glucan. J Cereal Sci 1(2):95–110CrossRef
go back to reference Yoneda A, Ito T, Higaki T, Kutsuna N, Saito T, Ishimizu T, Osada H, Hasezawa S, Matsui M, Demura T (2010) Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules. Plant J 64(4):657–667CrossRef Yoneda A, Ito T, Higaki T, Kutsuna N, Saito T, Ishimizu T, Osada H, Hasezawa S, Matsui M, Demura T (2010) Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules. Plant J 64(4):657–667CrossRef
go back to reference Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove D (2013) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 1–10. doi:10.1007/s10570-013-9996-1 Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove D (2013) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 1–10. doi:10.​1007/​s10570-013-9996-1
go back to reference Zugenmaier P (2008) Crystalline cellulose and derivatives. In: Timell TE, Wimmer R (eds) Springer series in wood science. Springer, Berlin, pp 101–174 Zugenmaier P (2008) Crystalline cellulose and derivatives. In: Timell TE, Wimmer R (eds) Springer series in wood science. Springer, Berlin, pp 101–174
Metadata
Title
Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy
Authors
Kabindra Kafle
Xiaoning Xi
Christopher M. Lee
Bernhard R. Tittmann
Daniel J. Cosgrove
Yong Bum Park
Seong H. Kim
Publication date
01-04-2014
Publisher
Springer Netherlands
Published in
Cellulose / Issue 2/2014
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-0121-2

Other articles of this Issue 2/2014

Cellulose 2/2014 Go to the issue