Skip to main content
Top
Published in: Journal of Nanoparticle Research 4/2013

01-04-2013 | Research Paper

Cellulose nanocrystals as organic nanofillers for transparent polycarbonate films

Authors: Weinan Xu, Zongyi Qin, Houyong Yu, Yannan Liu, Na Liu, Zhe Zhou, Long Chen

Published in: Journal of Nanoparticle Research | Issue 4/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cellulose nanocrystals (CNCs) produced by sulfuric acid hydrolysis as organic nanofillers were dispersed into polycarbonate (PC) in organic solution through a solvent exchange procedure, and their influence on the optical, mechanical, and thermal properties of the resulting composite films were studied. It is demonstrated that due to the good dispersion of the nanofillers in the polymeric matrix, the formation of strong hydrogen bonds between carbonyl groups of PC and hydroxyl groups of the CNCs can be achieved, leading to a simultaneous reinforcement effect on mechanical and thermal properties of the composite films. Moreover, it was further found that the existence of nanofillers in the composite efficiently hindered the main thermal degradation pathways of PC involving the chain scission at carbonate linkage and rearrangement of carbonate groups. Compared with neat PC, the composite film with 3 wt% CNCs has an increase of about 30.6 % in tensile strength, 27.3 % in Young’s modulus, and 3.3 % in maximum decomposition temperature, but still remain quite transparent.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Althues H, Henle J, Kaskel S (2007) Functional inorganic nanofillers for transparent polymers. Chem Soc Rev 36:1454–1465CrossRef Althues H, Henle J, Kaskel S (2007) Functional inorganic nanofillers for transparent polymers. Chem Soc Rev 36:1454–1465CrossRef
go back to reference Capadona JR, Berg OVD, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2:765–769CrossRef Capadona JR, Berg OVD, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2:765–769CrossRef
go back to reference Dahman Y, Oktem T (2012) Optically transparent nanocomposites reinforced with modified biocellulose nanofibers. J Appl Polym Sci 126:E188–E196CrossRef Dahman Y, Oktem T (2012) Optically transparent nanocomposites reinforced with modified biocellulose nanofibers. J Appl Polym Sci 126:E188–E196CrossRef
go back to reference Dong H, Strawhecker KE, Snyder JF, Orlicki JA, Reiner RS, Rudie AW (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr Polym 87:2488–2495CrossRef Dong H, Strawhecker KE, Snyder JF, Orlicki JA, Reiner RS, Rudie AW (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr Polym 87:2488–2495CrossRef
go back to reference Fei B, Chen C, Wu H, Peng S, Wang X, Dong L (2003) Quantitative FTIR study of PHBV/bisphenol A blends. Eur Polym J 39:1939–1946CrossRef Fei B, Chen C, Wu H, Peng S, Wang X, Dong L (2003) Quantitative FTIR study of PHBV/bisphenol A blends. Eur Polym J 39:1939–1946CrossRef
go back to reference Hakimelahi HR, Hu L, Rupp BB, Coleman MR (2010) Synthesis and characterization of transparent alumina reinforced polycarbonate nanocomposite. Polymer 51:2494–2502CrossRef Hakimelahi HR, Hu L, Rupp BB, Coleman MR (2010) Synthesis and characterization of transparent alumina reinforced polycarbonate nanocomposite. Polymer 51:2494–2502CrossRef
go back to reference Hameed N, Guo Q, Tay FH, Kazarian SG (2011) Blends of cellulose and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) prepared from the ionic liquid 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 86:94–104CrossRef Hameed N, Guo Q, Tay FH, Kazarian SG (2011) Blends of cellulose and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) prepared from the ionic liquid 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 86:94–104CrossRef
go back to reference He Y, Inoue Y (2000) Novel FTIR method for determining the crystallinity of poly(ε-caprolactone). Polym Int 49:623–626CrossRef He Y, Inoue Y (2000) Novel FTIR method for determining the crystallinity of poly(ε-caprolactone). Polym Int 49:623–626CrossRef
go back to reference Heymans N, Rossum SV (2002) FTIR investigation of structural modifications during low-temperature ageing of polycarbonate. J Mater Sci 37:4273–4277CrossRef Heymans N, Rossum SV (2002) FTIR investigation of structural modifications during low-temperature ageing of polycarbonate. J Mater Sci 37:4273–4277CrossRef
go back to reference Ifuku S, Morooka S, Nakagaito AN, Morimoto M, Saimoto H (2011) Preparation and characterization of optically transparent chitin nanofiber/(meth)acrylic resin composites. Green Chem 13:1708–1711CrossRef Ifuku S, Morooka S, Nakagaito AN, Morimoto M, Saimoto H (2011) Preparation and characterization of optically transparent chitin nanofiber/(meth)acrylic resin composites. Green Chem 13:1708–1711CrossRef
go back to reference Imai Y, Terahara A, Hakuta Y, Matsui K, Hayashi H, Ueno N (2009) Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles. Eur Polym J 45:630–638CrossRef Imai Y, Terahara A, Hakuta Y, Matsui K, Hayashi H, Ueno N (2009) Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles. Eur Polym J 45:630–638CrossRef
go back to reference Jang BN, Wilkie CA (2004) A TGA/FTIR and mass spectral study on the thermal degradation of bisphenol A polycarbonate. Polym Degrad Stab 86:419–430CrossRef Jang BN, Wilkie CA (2004) A TGA/FTIR and mass spectral study on the thermal degradation of bisphenol A polycarbonate. Polym Degrad Stab 86:419–430CrossRef
go back to reference Kumara A, Depana D, Tomer N, Singh R (2009) Nanoscale particles for polymer degradation and stabilization—trends and future perspectives. Prog Polym Sci 34:479–515CrossRef Kumara A, Depana D, Tomer N, Singh R (2009) Nanoscale particles for polymer degradation and stabilization—trends and future perspectives. Prog Polym Sci 34:479–515CrossRef
go back to reference Lee KM, Han CD (2003) Effect of hydrogen bonding on the rheology of polycarbonate/organoclay nanocomposites. Polymer 44:4573–4588CrossRef Lee KM, Han CD (2003) Effect of hydrogen bonding on the rheology of polycarbonate/organoclay nanocomposites. Polymer 44:4573–4588CrossRef
go back to reference Levchik SV, Weil ED (2005) Overview of recent developments in the flame retardancy of polycarbonates. Polym Int 54:981–998CrossRef Levchik SV, Weil ED (2005) Overview of recent developments in the flame retardancy of polycarbonates. Polym Int 54:981–998CrossRef
go back to reference Liu HY, Liu DG, Yao F, Wu QL (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101:5685–5692CrossRef Liu HY, Liu DG, Yao F, Wu QL (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101:5685–5692CrossRef
go back to reference Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336CrossRef Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336CrossRef
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
go back to reference Nogi M, Hiroyuki Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852CrossRef Nogi M, Hiroyuki Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852CrossRef
go back to reference Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87: 243110 Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87: 243110
go back to reference Okahisa Y, Abe K, Nogi M, Nakagaito AN, Nakatani T, Yano H (2011) Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Comp Sci Technol 71:1342–1347CrossRef Okahisa Y, Abe K, Nogi M, Nakagaito AN, Nakatani T, Yano H (2011) Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Comp Sci Technol 71:1342–1347CrossRef
go back to reference Salim NV, Hameed N, Guo Q (2009) Competitive hydrogen bonding and self assembly in poly(2-vinyl pyridine)-block-poly(methyl methacrylate)/poly(hydroxyether of bisphenol A) blends. J Polym Sci B Polym Phys 47:1894–1905CrossRef Salim NV, Hameed N, Guo Q (2009) Competitive hydrogen bonding and self assembly in poly(2-vinyl pyridine)-block-poly(methyl methacrylate)/poly(hydroxyether of bisphenol A) blends. J Polym Sci B Polym Phys 47:1894–1905CrossRef
go back to reference Salim NV, Hanley T, Guo Q (2010) Microphase separation through competitive hydrogen bonding in double crystalline diblock copolymer/homopolymer blends. Macromolecules 43:7695–7704CrossRef Salim NV, Hanley T, Guo Q (2010) Microphase separation through competitive hydrogen bonding in double crystalline diblock copolymer/homopolymer blends. Macromolecules 43:7695–7704CrossRef
go back to reference Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51:2652–2660CrossRef Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51:2652–2660CrossRef
go back to reference Valmikanathan OP, Ostroverkhova O, Mulla IS, Vijayamohanan K, Atre SV (2008) The effect of synthesis procedure on the structure and properties of palladium/polycarbonate nanocomposites. Polymer 49:3413–3418CrossRef Valmikanathan OP, Ostroverkhova O, Mulla IS, Vijayamohanan K, Atre SV (2008) The effect of synthesis procedure on the structure and properties of palladium/polycarbonate nanocomposites. Polymer 49:3413–3418CrossRef
go back to reference Wang J, Montville D, Gonsalves KE (1999) Synthesis of polycarbonate-co-poly(p-ethylphenol) and CdS nanocomposites. J Appl Polym Sci 72:1851–1868CrossRef Wang J, Montville D, Gonsalves KE (1999) Synthesis of polycarbonate-co-poly(p-ethylphenol) and CdS nanocomposites. J Appl Polym Sci 72:1851–1868CrossRef
go back to reference Yu HY, Qin ZY, Liu YN, Chen L, Liu N, Zhou Z (2012) Simultaneous improvement of mechanical properties and thermal stability of bacterial polyester by cellulose nanocrystals. Carbohydr Polym 89:971–978CrossRef Yu HY, Qin ZY, Liu YN, Chen L, Liu N, Zhou Z (2012) Simultaneous improvement of mechanical properties and thermal stability of bacterial polyester by cellulose nanocrystals. Carbohydr Polym 89:971–978CrossRef
Metadata
Title
Cellulose nanocrystals as organic nanofillers for transparent polycarbonate films
Authors
Weinan Xu
Zongyi Qin
Houyong Yu
Yannan Liu
Na Liu
Zhe Zhou
Long Chen
Publication date
01-04-2013
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 4/2013
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-1562-0

Other articles of this Issue 4/2013

Journal of Nanoparticle Research 4/2013 Go to the issue

Premium Partners