Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Cellulose 2/2022

22-01-2022 | Review Paper

Cellulose nanocrystals from lignocellulosic feedstock: a review of production technology and surface chemistry modification

Authors: Mohsin Raza, Basim Abu-Jdayil

Published in: Cellulose | Issue 2/2022

Login to get access
share
SHARE

Abstract

Fossil fuel substitutes are being developed to combat the ecological impact and rapid exhaustion of petroleum-based products. Being the most abundant polymer on Earth, cellulose-based products are renewable and sustainable. Cellulose nanocrystals (CNCs) are derived from cellulosic-based materials, have good physicochemical properties, and can be used to produce numerous products. CNC synthesis and their applications have been extensively studied; however, they remain limited to laboratory-scale as several challenges hinder its commercial-scale production. Herein, the suitability of nanocrystalline isolation methods, including chemical, enzymatic, ionic liquids, and deep eutectic solvents, for mass production is evaluated. Poor re-dispersion of CNCs is a major challenge that hinders its utilization in many applications. Hence, surface chemistry modification of CNCs have also been reviewed. It has been concluded that the CNC isolation method and surface modification technique significantly impacts its cost, morphology, and physicochemical properties. This review paper presents the challenges often faced in the conversion of bench-scale studies into commercial production of nanocrystalline cellulose. Hence, this paper gives all the necessary information on the important aspects of raw material selection, nanocellulose isolation process selection, and suitable surface modification method together in a single review article. Readers will be able to identify the possible research gaps for future research studies.

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Literature
go back to reference Abol-Fotouh D, Hassan MA, Shokry H, Roig A, Azab MS, Kashyout AE-HB (2020) Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Sci Rep-Uk 10:1–14 Abol-Fotouh D, Hassan MA, Shokry H, Roig A, Azab MS, Kashyout AE-HB (2020) Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Sci Rep-Uk 10:1–14
go back to reference Abu-Jdayil B, Hittini W, Mourad A-H (2019) Development of date pit–polystyrene thermoplastic heat insulator material: physical and thermal properties. Int J Polym Sci 2019(1–10):1697627 Abu-Jdayil B, Hittini W, Mourad A-H (2019) Development of date pit–polystyrene thermoplastic heat insulator material: physical and thermal properties. Int J Polym Sci 2019(1–10):1697627
go back to reference Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohyd Polym 134:609–616 Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohyd Polym 134:609–616
go back to reference Abu-Thabit NY, Judeh AA, Hakeem AS, Ul-Hamid A, Umar Y, Ahmad A (2020) Isolation and characterization of microcrystalline cellulose from date seeds ( Phoenix dactylifera L.). Int J Biol Macromol 155:730–739 Abu-Thabit NY, Judeh AA, Hakeem AS, Ul-Hamid A, Umar Y, Ahmad A (2020) Isolation and characterization of microcrystalline cellulose from date seeds ( Phoenix dactylifera L.). Int J Biol Macromol 155:730–739
go back to reference Adil SF, Bhat VS, Batoo KM, Imran A, Assal ME, Madhusudhan B, Khan M, Al-Warthan A (2020) Isolation and characterization of cellulose nanocrystallsfrom flaxseed Hull: a future onco-drug delivery agent. J Saudi Chem Soc 24:374–379 Adil SF, Bhat VS, Batoo KM, Imran A, Assal ME, Madhusudhan B, Khan M, Al-Warthan A (2020) Isolation and characterization of cellulose nanocrystallsfrom flaxseed Hull: a future onco-drug delivery agent. J Saudi Chem Soc 24:374–379
go back to reference Ahmed-Haras MR, Kao N, Ward L (2020) Single-step heterogeneous catalysis production of highly monodisperse spherical nanocrystalline cellulose. Int J Biol Macromol 154:246–255 Ahmed-Haras MR, Kao N, Ward L (2020) Single-step heterogeneous catalysis production of highly monodisperse spherical nanocrystalline cellulose. Int J Biol Macromol 154:246–255
go back to reference Akinjokun AI, Petrik LF, Ogunfowokan AO, Ajao J, Ojumu TV (2021) Isolation and characterization of cellulose nanocrystallsfrom cocoa pod husk (CPH) biomass wastes. Heliyon 7:e06680 PubMedPubMedCentral Akinjokun AI, Petrik LF, Ogunfowokan AO, Ajao J, Ojumu TV (2021) Isolation and characterization of cellulose nanocrystallsfrom cocoa pod husk (CPH) biomass wastes. Heliyon 7:e06680 PubMedPubMedCentral
go back to reference Alayoubi R, Mehmood N, Husson E, Kouzayha A, Tabcheh M, Chaveriat L, Sarazin C, Gosselin I (2020) Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield. Renew Energ 145:1808–1816 Alayoubi R, Mehmood N, Husson E, Kouzayha A, Tabcheh M, Chaveriat L, Sarazin C, Gosselin I (2020) Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield. Renew Energ 145:1808–1816
go back to reference Alothman OY, Kian LK, Saba N, Jawaid M, Khiari R (2021) Cellulose nanocrystal extracted from date palm fibre: morphological, structural and thermal properties. Ind Crop Prod 159:113075 Alothman OY, Kian LK, Saba N, Jawaid M, Khiari R (2021) Cellulose nanocrystal extracted from date palm fibre: morphological, structural and thermal properties. Ind Crop Prod 159:113075
go back to reference Alrumman SA (2016) Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Braz J Microbiol 47:110–119 PubMedPubMedCentral Alrumman SA (2016) Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Braz J Microbiol 47:110–119 PubMedPubMedCentral
go back to reference Anton-Sales I, Roig-Sanchez S, Sánchez-Guisado MJ, Laromaine A, Roig A (2020) Bacterial nanocellulose and titania hybrids: cytocompatible and cryopreservable cell carriers. Acs Biomater Sci Eng 6:4893–4902 Anton-Sales I, Roig-Sanchez S, Sánchez-Guisado MJ, Laromaine A, Roig A (2020) Bacterial nanocellulose and titania hybrids: cytocompatible and cryopreservable cell carriers. Acs Biomater Sci Eng 6:4893–4902
go back to reference Anwar B, Bundjali B, Sunarya Y, Arcana I (2021) Properties of bacterial cellulose and its nanocrystalline obtained from pineapple peel waste juice. Fiber Polym 22:1228–1236 Anwar B, Bundjali B, Sunarya Y, Arcana I (2021) Properties of bacterial cellulose and its nanocrystalline obtained from pineapple peel waste juice. Fiber Polym 22:1228–1236
go back to reference Arnata IW, Suprihatin S, Fahma F, Richana N, Sunarti TC (2020) Cationic modification of cellulose nanocrystallsfrom sago fronds. Cellulose 27:3121–3141 Arnata IW, Suprihatin S, Fahma F, Richana N, Sunarti TC (2020) Cationic modification of cellulose nanocrystallsfrom sago fronds. Cellulose 27:3121–3141
go back to reference Bagis FH, Setiadi (2020) Nanocellulose filament fabrication from Sugarcane Bagasse through wet spinning method. Aip Conf Proc, 2020. AIP Publishing LLC, 040005 Bagis FH, Setiadi (2020) Nanocellulose filament fabrication from Sugarcane Bagasse through wet spinning method. Aip Conf Proc, 2020. AIP Publishing LLC, 040005
go back to reference Banerjee M, Saraswatula S, Williams A, Brettmann B (2020) Effect of purification methods on commercially available cellulose nanocrystal properties and TEMPO oxidation. Processes 8:698 Banerjee M, Saraswatula S, Williams A, Brettmann B (2020) Effect of purification methods on commercially available cellulose nanocrystal properties and TEMPO oxidation. Processes 8:698
go back to reference Baruah J, Deka RC, Kalita E (2020) Greener production of microcrystalline cellulose (MCC) from Saccharum spontaneum (Kans grass): statistical optimization. Int J Biol Macromol 154:672–682 Baruah J, Deka RC, Kalita E (2020) Greener production of microcrystalline cellulose (MCC) from Saccharum spontaneum (Kans grass): statistical optimization. Int J Biol Macromol 154:672–682
go back to reference Bauli CR, Lima GF, de Souza AG, Ferreira RR, Rosa DS (2021) Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing. Colloid Surface A 623:126771 Bauli CR, Lima GF, de Souza AG, Ferreira RR, Rosa DS (2021) Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing. Colloid Surface A 623:126771
go back to reference Bayer T, Cunning BV, Selyanchyn R, Nishihara M, Fujikawa S, Sasaki K, Lyth SM (2016) High temperature proton conduction in nanocellulose membranes: paper fuel cells. Chem Mater 28:4805–4814 Bayer T, Cunning BV, Selyanchyn R, Nishihara M, Fujikawa S, Sasaki K, Lyth SM (2016) High temperature proton conduction in nanocellulose membranes: paper fuel cells. Chem Mater 28:4805–4814
go back to reference Behera PK, Mondal P, Singha NK (2018) Self-Healable and ultrahydrophobic polyurethane-POSS hybrids by diels-alder “click” reaction: a new class of coating material. Macromolecules 51:4770–4781 Behera PK, Mondal P, Singha NK (2018) Self-Healable and ultrahydrophobic polyurethane-POSS hybrids by diels-alder “click” reaction: a new class of coating material. Macromolecules 51:4770–4781
go back to reference Beltramino F, Blanca Roncero M, Vidal T, Valls C (2018) A novel enzymatic approach to cellulose nanocrystallspreparation. Carbohyd Polym 189:39–47 Beltramino F, Blanca Roncero M, Vidal T, Valls C (2018) A novel enzymatic approach to cellulose nanocrystallspreparation. Carbohyd Polym 189:39–47
go back to reference Beroual M, Boumaza L, Mehelli O, Trache D, Tarchoun AF, Khimeche K (2021) Physicochemical properties and thermal stability of microcrystalline cellulose isolated from esparto grass using different delignification approaches. J Polym Environ 29:130–142 Beroual M, Boumaza L, Mehelli O, Trache D, Tarchoun AF, Khimeche K (2021) Physicochemical properties and thermal stability of microcrystalline cellulose isolated from esparto grass using different delignification approaches. J Polym Environ 29:130–142
go back to reference Božič M, Liu P, Mathew AP, Kokol V (2014) Enzymatic phosphorylation of cellulose nanofibers to new highly-ions adsorbing, flame-retardant and hydroxyapatite-growth induced natural nanoparticles. Cellulose 21:2713–2726 Božič M, Liu P, Mathew AP, Kokol V (2014) Enzymatic phosphorylation of cellulose nanofibers to new highly-ions adsorbing, flame-retardant and hydroxyapatite-growth induced natural nanoparticles. Cellulose 21:2713–2726
go back to reference Camacho M, Ureña YRC, Lopretti M, Carballo LB, Moreno G, Alfaro B, Baudrit JRV (2017) Synthesis and characterization of cellulose nanocrystallsderived from pineapple peel residues. J Renew Mater 5:271–279 Camacho M, Ureña YRC, Lopretti M, Carballo LB, Moreno G, Alfaro B, Baudrit JRV (2017) Synthesis and characterization of cellulose nanocrystallsderived from pineapple peel residues. J Renew Mater 5:271–279
go back to reference Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14:1223–1230 Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14:1223–1230
go back to reference Camarero-Espinosa S, Endes C, Mueller S, Petri-Fink A, Rothen-Rutishauser B, Weder C, Clift MJD, Foster EJ (2016) Elucidating the potential biological impact of cellulose nanocrystals. Fibers 4:21 Camarero-Espinosa S, Endes C, Mueller S, Petri-Fink A, Rothen-Rutishauser B, Weder C, Clift MJD, Foster EJ (2016) Elucidating the potential biological impact of cellulose nanocrystals. Fibers 4:21
go back to reference Cetin NS, Tingaut P, Özmen N, Henry N, Harper D, Dadmun M, Sebe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9:997–1003 Cetin NS, Tingaut P, Özmen N, Henry N, Harper D, Dadmun M, Sebe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9:997–1003
go back to reference Chawla L, Keena K, Pevec I, Stanley E (2014) Green schoolyards as havens from stress and resources for resilience in childhood and adolescence. Health Place 28:1–13 Chawla L, Keena K, Pevec I, Stanley E (2014) Green schoolyards as havens from stress and resources for resilience in childhood and adolescence. Health Place 28:1–13
go back to reference Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843 Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843
go back to reference Chen Q, Shi Y, Chen G, Cai M (2020) Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/CNC (nanocellulose) as strength agent. Int J Biol Macromol 142:846–854 Chen Q, Shi Y, Chen G, Cai M (2020) Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/CNC (nanocellulose) as strength agent. Int J Biol Macromol 142:846–854
go back to reference Chowdhury ZZ, Chandran RRR, Jahan A, Khalid K, Rahman MM, Al-Amin M, Akbarzadeh O, Badruddin IA, Khan TMY, Kamangar S, Hamizi NAB, Wahab YA, Johan RB, Adebisi GA (2019) Extraction of cellulose nano-whiskers using ionic liquid-assisted ultra-sonication: optimization and mathematical modelling using box-Behnken design. Symmetry 11:1148 Chowdhury ZZ, Chandran RRR, Jahan A, Khalid K, Rahman MM, Al-Amin M, Akbarzadeh O, Badruddin IA, Khan TMY, Kamangar S, Hamizi NAB, Wahab YA, Johan RB, Adebisi GA (2019) Extraction of cellulose nano-whiskers using ionic liquid-assisted ultra-sonication: optimization and mathematical modelling using box-Behnken design. Symmetry 11:1148
go back to reference Ciftci GC, Larsson PA, Riazanova AV, Øvrebø HH, Wågberg L, Berglund LA (2020) Tailoring of rheological properties and structural polydispersity effects in microfibrillated cellulose suspensions. Cellulose 27:9227–9241 Ciftci GC, Larsson PA, Riazanova AV, Øvrebø HH, Wågberg L, Berglund LA (2020) Tailoring of rheological properties and structural polydispersity effects in microfibrillated cellulose suspensions. Cellulose 27:9227–9241
go back to reference Collazo-Bigliardi S, Ortega-Toro R, Boix AC (2018) Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohyd Polym 191:205–215 Collazo-Bigliardi S, Ortega-Toro R, Boix AC (2018) Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohyd Polym 191:205–215
go back to reference Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, Larese FF (2009) Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occ Env Hea 82:1043–1055 Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, Larese FF (2009) Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occ Env Hea 82:1043–1055
go back to reference Cui S, Zhang S, Ge S, Xiong L, Sun Q (2016) Green preparation and characterization of size-controlled cellulose nanocrystallsvia ultrasonic-assisted enzymatic hydrolysis. Ind Crop Prod 83:346–352 Cui S, Zhang S, Ge S, Xiong L, Sun Q (2016) Green preparation and characterization of size-controlled cellulose nanocrystallsvia ultrasonic-assisted enzymatic hydrolysis. Ind Crop Prod 83:346–352
go back to reference Dai H, Chen Y, Ma L, Zhang Y, Cui B (2021) Direct regeneration of hydrogels based on lemon peel and its isolated microcrystalline cellulose: characterization and application for methylene blue adsorption. Int J Biol Macromol 191:129–138 Dai H, Chen Y, Ma L, Zhang Y, Cui B (2021) Direct regeneration of hydrogels based on lemon peel and its isolated microcrystalline cellulose: characterization and application for methylene blue adsorption. Int J Biol Macromol 191:129–138
go back to reference de Amorim JDP, de Souza KC, Duarte CR, da SilvaDuarte I, Ribeiro FDAS, Silva GS, de Farias PMA, Stingl A, Costa AFS, Vinhas GM (2020) Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ Chem Lett 18:851–869 de Amorim JDP, de Souza KC, Duarte CR, da SilvaDuarte I, Ribeiro FDAS, Silva GS, de Farias PMA, Stingl A, Costa AFS, Vinhas GM (2020) Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ Chem Lett 18:851–869
go back to reference Ditzel FI, Prestes E, Carvalho BM, Demiate IM, Pinheiro LA (2017) Cellulose nanocrystallsextracted from pine wood and corncob. Carbohyd Polym 157:1577–1585 Ditzel FI, Prestes E, Carvalho BM, Demiate IM, Pinheiro LA (2017) Cellulose nanocrystallsextracted from pine wood and corncob. Carbohyd Polym 157:1577–1585
go back to reference Dong S, Hirani AA, Colacino KR, Lee YW, Roman M (2012) Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano Life 2:1241006 Dong S, Hirani AA, Colacino KR, Lee YW, Roman M (2012) Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano Life 2:1241006
go back to reference Dong Y, Tong D, Ren L, Chen X, Zhang H, Yu W, Zhou C (2021) Enhanced hydrolysis of cellulose to reducing sugars on kaolinte clay activated by mineral acid. Catal Lett , pp 1–10 Dong Y, Tong D, Ren L, Chen X, Zhang H, Yu W, Zhou C (2021) Enhanced hydrolysis of cellulose to reducing sugars on kaolinte clay activated by mineral acid. Catal Lett , pp 1–10
go back to reference Donini ÍA, de Salvi DT, Fukumoto FK, Lustri WR, Barud HS, Marchetto R, Messaddeq Y, Ribeiro SJ (2010) Biossíntese e recentes avanços na produção de celulose bacteriana. Eclet Quim 35:165–178 Donini ÍA, de Salvi DT, Fukumoto FK, Lustri WR, Barud HS, Marchetto R, Messaddeq Y, Ribeiro SJ (2010) Biossíntese e recentes avanços na produção de celulose bacteriana. Eclet Quim 35:165–178
go back to reference Du H, Liu C, Mu X, Gong W, Lv D, Hong Y, Si C, Li B (2016) Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 23:2389–2407 Du H, Liu C, Mu X, Gong W, Lv D, Hong Y, Si C, Li B (2016) Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 23:2389–2407
go back to reference Dufresne A (2019) Nanocellulose processing properties and potential applications. Curr For Rep 5:76–89 Dufresne A (2019) Nanocellulose processing properties and potential applications. Curr For Rep 5:76–89
go back to reference Dufresne A (2017) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter GmbH & Co KG, Berlin Dufresne A (2017) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter GmbH & Co KG, Berlin
go back to reference Dungani R, Owolabi AF, Saurabh CK, Abdul Khalil HPS, Tahir PM, Hazwan CICM, Ajijolakewu KA, Masri MM, Rosamah E, Aditiawati P (2016) Preparation and fundamental characterization of cellulose nanocrystal from oil palm fronds biomass. J Polym Environ 25:692–700 Dungani R, Owolabi AF, Saurabh CK, Abdul Khalil HPS, Tahir PM, Hazwan CICM, Ajijolakewu KA, Masri MM, Rosamah E, Aditiawati P (2016) Preparation and fundamental characterization of cellulose nanocrystal from oil palm fronds biomass. J Polym Environ 25:692–700
go back to reference Endes C, Mueller S, Kinnear C, Vanhecke D, Foster EJ, Petri-Fink A, Weder C, Clift MJ, Rothen-Rutishauser B (2015) Fate of cellulose nanocrystal aerosols deposited on the lung cell surface in vitro. Biomacromol 16:1267–1275 Endes C, Mueller S, Kinnear C, Vanhecke D, Foster EJ, Petri-Fink A, Weder C, Clift MJ, Rothen-Rutishauser B (2015) Fate of cellulose nanocrystal aerosols deposited on the lung cell surface in vitro. Biomacromol 16:1267–1275
go back to reference Espino E, Cakir M, Domenek S, Román-Gutiérrez AD, Belgacem N, Bras J (2014) Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Ind Crop Prod 62:552–559 Espino E, Cakir M, Domenek S, Román-Gutiérrez AD, Belgacem N, Bras J (2014) Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Ind Crop Prod 62:552–559
go back to reference Espino-Pérez E, Domenek S, Belgacem N, Sillard C, Bras J (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromol 15:4551–4560 Espino-Pérez E, Domenek S, Belgacem N, Sillard C, Bras J (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromol 15:4551–4560
go back to reference Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779 Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779
go back to reference Fang R, Dhakshinamoorthy A, Li Y, Garcia H (2020) Metal organic frameworks for biomass conversion. Chem Soc Rev 49:3638–3687 Fang R, Dhakshinamoorthy A, Li Y, Garcia H (2020) Metal organic frameworks for biomass conversion. Chem Soc Rev 49:3638–3687
go back to reference Fattahi Meyabadi T, Dadashian F, Mir Mohamad Sadeghi G, Ebrahimi Zanjani Asl H (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol 261:232–240 Fattahi Meyabadi T, Dadashian F, Mir Mohamad Sadeghi G, Ebrahimi Zanjani Asl H (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol 261:232–240
go back to reference Filpponen I, Argyropoulos DS (2010) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromol 11:1060–1066 Filpponen I, Argyropoulos DS (2010) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromol 11:1060–1066
go back to reference Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJ, Cranston ED, Eichhorn SJ (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679 Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJ, Cranston ED, Eichhorn SJ (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679
go back to reference Francisco M, van den Bruinhorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14:2153–2157 Francisco M, van den Bruinhorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14:2153–2157
go back to reference Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohyd Polym 92:1432–1442 Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohyd Polym 92:1432–1442
go back to reference Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromol 13:2188–2194 Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromol 13:2188–2194
go back to reference Galiwango E, Al-Marzouqi AH, Abu-Omar MM, Khaleel AA, Rahman NA (2017) Estimating combustion kinetics of UAE date palm tree biomass using thermogravimetric analysis. J Nat Sci Res 7:106–120 Galiwango E, Al-Marzouqi AH, Abu-Omar MM, Khaleel AA, Rahman NA (2017) Estimating combustion kinetics of UAE date palm tree biomass using thermogravimetric analysis. J Nat Sci Res 7:106–120
go back to reference Gan PG, Sam ST, Bin Abdullah MF, Bin Zulkepli NN, Yeong YF (2017) Characterization of Cellulose nanocrystallsIsolated from Empty Fruit Bunch Using Acid Hydrolysis. Solid State Phenom 264:9–12 Gan PG, Sam ST, Bin Abdullah MF, Bin Zulkepli NN, Yeong YF (2017) Characterization of Cellulose nanocrystallsIsolated from Empty Fruit Bunch Using Acid Hydrolysis. Solid State Phenom 264:9–12
go back to reference García A, Alriols MG, Labidi J (2014) Evaluation of different lignocellulosic raw materials as potential alternative feedstocks in biorefinery processes. Ind Crop Prod 53:102–110 García A, Alriols MG, Labidi J (2014) Evaluation of different lignocellulosic raw materials as potential alternative feedstocks in biorefinery processes. Ind Crop Prod 53:102–110
go back to reference García G, Aparicio S, Ullah R, Atilhan M (2015) Deep eutectic solvents: physicochemical properties and gas separation applications. Energ Fuel 29:2616–2644 García G, Aparicio S, Ullah R, Atilhan M (2015) Deep eutectic solvents: physicochemical properties and gas separation applications. Energ Fuel 29:2616–2644
go back to reference Le Gars M, Delvart A, Roger P, Belgacem MN, Bras J (2020) Amidation of TEMPO-oxidized cellulose nanocrystals using aromatic aminated molecules. Colloid Polym Sci 298:603–617 Le Gars M, Delvart A, Roger P, Belgacem MN, Bras J (2020) Amidation of TEMPO-oxidized cellulose nanocrystals using aromatic aminated molecules. Colloid Polym Sci 298:603–617
go back to reference Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol 16:3399–3410 Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol 16:3399–3410
go back to reference Grząbka-Zasadzińska A, Skrzypczak A, Borysiak S (2019) The influence of the cation type of ionic liquid on the production of cellulose nanocrystallsand mechanical properties of chitosan-based biocomposites. Cellulose 26:4827–4840 Grząbka-Zasadzińska A, Skrzypczak A, Borysiak S (2019) The influence of the cation type of ionic liquid on the production of cellulose nanocrystallsand mechanical properties of chitosan-based biocomposites. Cellulose 26:4827–4840
go back to reference Guo R, Zhang L, Lu Y, Zhang X, Yang D (2020) Research progress of nanocellulose for electrochemical energy storage: a review. J Energy Chem 51:342–361 Guo R, Zhang L, Lu Y, Zhang X, Yang D (2020) Research progress of nanocellulose for electrochemical energy storage: a review. J Energy Chem 51:342–361
go back to reference Gupta RD, Raghav N (2020) Nano-crystalline cellulose: Preparation, modification and usage as sustained release drug delivery excipient for some non-steroidal anti-inflammatory drugs. Int J Biol Macromol 147:921–930 Gupta RD, Raghav N (2020) Nano-crystalline cellulose: Preparation, modification and usage as sustained release drug delivery excipient for some non-steroidal anti-inflammatory drugs. Int J Biol Macromol 147:921–930
go back to reference Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687 Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687
go back to reference Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500 PubMedPubMedCentral Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500 PubMedPubMedCentral
go back to reference Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542 Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542
go back to reference Hachaichi A, Kouini B, Kian LK, Asim M, Fouad H, Jawaid M, Sain M (2021) Cellulose nanocrystallsfrom microcrystalline cellulose of date palm fibers as a promising candidate for bio-nanocomposites: isolation and characterization. Materials 14:5313 PubMedPubMedCentral Hachaichi A, Kouini B, Kian LK, Asim M, Fouad H, Jawaid M, Sain M (2021) Cellulose nanocrystallsfrom microcrystalline cellulose of date palm fibers as a promising candidate for bio-nanocomposites: isolation and characterization. Materials 14:5313 PubMedPubMedCentral
go back to reference Haerunnisa A, Ramadhan D, Putra H, Afiifah N, Devita R, Rahayu S, Nandiyanto A (2020) Synthesis of crystalline nanocellulose by various methods. Arab J Chem Environ Res 7:94–125 Haerunnisa A, Ramadhan D, Putra H, Afiifah N, Devita R, Rahayu S, Nandiyanto A (2020) Synthesis of crystalline nanocellulose by various methods. Arab J Chem Environ Res 7:94–125
go back to reference Hai LV (2015) Nanocellulose from different cellulose sources and theirall- cellulose composite properties. PhD, Chungnam National University Hai LV (2015) Nanocellulose from different cellulose sources and theirall- cellulose composite properties. PhD, Chungnam National University
go back to reference Haldar D, Sen D, Gayen K (2016) A review on the production of fermentable sugars from lignocellulosic biomass through conventional and enzymatic route—a comparison. Int J Green Energy 13:1232–1253 Haldar D, Sen D, Gayen K (2016) A review on the production of fermentable sugars from lignocellulosic biomass through conventional and enzymatic route—a comparison. Int J Green Energy 13:1232–1253
go back to reference Haldar D, Gayen K, Sen D (2018) Enumeration of monosugars’ inhibition characteristics on the kinetics of enzymatic hydrolysis of cellulose. Process Biochem 72:130–136 Haldar D, Gayen K, Sen D (2018) Enumeration of monosugars’ inhibition characteristics on the kinetics of enzymatic hydrolysis of cellulose. Process Biochem 72:130–136
go back to reference Haldar D, Purkait MK (2020) Micro and cellulose nanocrystalls derivatives of lignocellulosic biomass: a review on synthesis, applications and advancements. Carbohyd Polym 250:116937 Haldar D, Purkait MK (2020) Micro and cellulose nanocrystalls derivatives of lignocellulosic biomass: a review on synthesis, applications and advancements. Carbohyd Polym 250:116937
go back to reference Hamed SAAKM, Hassan ML (2019) A new mixture of hydroxypropyl cellulose and nanocellulose for wood consolidation. J Cult Herit 35:140–144 Hamed SAAKM, Hassan ML (2019) A new mixture of hydroxypropyl cellulose and nanocellulose for wood consolidation. J Cult Herit 35:140–144
go back to reference Harini K, Mohan CC (2020) Isolation and characterization of micro and cellulose nanocrystallsfibers from the walnut shell, corncob and sugarcane bagasse. Int J Biol Macromol 163:1375–1383 Harini K, Mohan CC (2020) Isolation and characterization of micro and cellulose nanocrystallsfibers from the walnut shell, corncob and sugarcane bagasse. Int J Biol Macromol 163:1375–1383
go back to reference Hastuti N, Kanomata K, Kitaoka T (2018) Hydrochloric acid hydrolysis of pulps from oil palm empty fruit bunches to produce cellulose nanocrystals. J Polym Environ 26:3698–3709 Hastuti N, Kanomata K, Kitaoka T (2018) Hydrochloric acid hydrolysis of pulps from oil palm empty fruit bunches to produce cellulose nanocrystals. J Polym Environ 26:3698–3709
go back to reference Hernandez C, Ferreira F, Rosa D (2018) X-ray powder diffraction and other analyses of cellulose nanocrystals obtained from corn straw by chemical treatments. Carbohyd Polym 193:39–44 Hernandez C, Ferreira F, Rosa D (2018) X-ray powder diffraction and other analyses of cellulose nanocrystals obtained from corn straw by chemical treatments. Carbohyd Polym 193:39–44
go back to reference Hittini W, Abu-Jdayil B, Mourad A-H (2019) Development of date pit–polystyrene thermoplastic heat insulator material: mechanical properties. J Thermoplast Compos 34:472–489 Hittini W, Abu-Jdayil B, Mourad A-H (2019) Development of date pit–polystyrene thermoplastic heat insulator material: mechanical properties. J Thermoplast Compos 34:472–489
go back to reference Hongrattanavichit I, Aht-Ong D (2020) Nanofibrillation and characterization of sugarcane bagasse agro-waste using water-based steam explosion and high-pressure homogenization. J Clean Prod 277:123471 Hongrattanavichit I, Aht-Ong D (2020) Nanofibrillation and characterization of sugarcane bagasse agro-waste using water-based steam explosion and high-pressure homogenization. J Clean Prod 277:123471
go back to reference Hu S, Jiang F, Hsieh Y-L (2015) 1D lignin-based solid acid catalysts for cellulose hydrolysis to glucose and nanocellulose. Acs Sustain Chem Eng 3:2566–2574 Hu S, Jiang F, Hsieh Y-L (2015) 1D lignin-based solid acid catalysts for cellulose hydrolysis to glucose and nanocellulose. Acs Sustain Chem Eng 3:2566–2574
go back to reference Huang J, Hou S, Chen R (2019) Ionic liquid-assisted fabrication of nanocellulose from cotton linter by high pressure homogenization. Bioresources 14:7805–7820 Huang J, Hou S, Chen R (2019) Ionic liquid-assisted fabrication of nanocellulose from cotton linter by high pressure homogenization. Bioresources 14:7805–7820
go back to reference Hussin MH, Pohan NA, Garba ZN, Kassim MJ, Rahim AA, Brosse N, Yemloul M, Fazita MN, Haafiz MM (2016) Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents. Int J Biol Macromol 92:11–19 Hussin MH, Pohan NA, Garba ZN, Kassim MJ, Rahim AA, Brosse N, Yemloul M, Fazita MN, Haafiz MM (2016) Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents. Int J Biol Macromol 92:11–19
go back to reference Ilyas R, Sapuan S, Ishak M, Zainudin E (2017) Effect of delignification on the physical, thermal, chemical, and structural properties of sugar palm fibre. BioResources 12:8734–8754 Ilyas R, Sapuan S, Ishak M, Zainudin E (2017) Effect of delignification on the physical, thermal, chemical, and structural properties of sugar palm fibre. BioResources 12:8734–8754
go back to reference Ilyas R, Sapuan S, Ishak M (2018a) Isolation and characterization of cellulose nanocrystallsfrom sugar palm fibres ( Arenga Pinnata). Carbohyd Polym 181:1038–1051 Ilyas R, Sapuan S, Ishak M (2018a) Isolation and characterization of cellulose nanocrystallsfrom sugar palm fibres ( Arenga Pinnata). Carbohyd Polym 181:1038–1051
go back to reference Ilyas R, Sapuan S, Atikah M, Asyraf M, Rafiqah SA, Aisyah H, Nurazzi NM, Norrrahim M (2021) Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm cellulose nanocrystalls( Arenga pinnata (Wurmb.) Merr). Text Res J 91:152–167 Ilyas R, Sapuan S, Atikah M, Asyraf M, Rafiqah SA, Aisyah H, Nurazzi NM, Norrrahim M (2021) Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm cellulose nanocrystalls( Arenga pinnata (Wurmb.) Merr). Text Res J 91:152–167
go back to reference Inayat A, Raza M (2019) District cooling system via renewable energy sources: a review. Renew Sust Energ Rev 107:360–373 Inayat A, Raza M (2019) District cooling system via renewable energy sources: a review. Renew Sust Energ Rev 107:360–373
go back to reference Inayat A, Jamil F, Raza M, Khurram S, Ghenai C, Al-Muhatseb AAH (2019) Upgradation of waste cooking oil to biodiesel in the presence of green catalyst derived from date seeds. Biofuels 12:1–6 Inayat A, Jamil F, Raza M, Khurram S, Ghenai C, Al-Muhatseb AAH (2019) Upgradation of waste cooking oil to biodiesel in the presence of green catalyst derived from date seeds. Biofuels 12:1–6
go back to reference Inayat A, Ang HH, Raza M, Yousef BAA, Ghenai C, Ayoub M, Gilani SIUH (2020a) Integration and simulation of solar energy with hot flue gas system for the district cooling application. Case Stud Therm Eng 19:100620 Inayat A, Ang HH, Raza M, Yousef BAA, Ghenai C, Ayoub M, Gilani SIUH (2020a) Integration and simulation of solar energy with hot flue gas system for the district cooling application. Case Stud Therm Eng 19:100620
go back to reference Inayat A, Inayat M, Shahbaz M, Sulaiman SA, Raza M, Yusup S (2020b) Parametric analysis and optimization for the catalytic air gasification of palm kernel shell using coal bottom ash as catalyst. Renew Energ 145:671–681 Inayat A, Inayat M, Shahbaz M, Sulaiman SA, Raza M, Yusup S (2020b) Parametric analysis and optimization for the catalytic air gasification of palm kernel shell using coal bottom ash as catalyst. Renew Energ 145:671–681
go back to reference Inayat A, Raza M, Khan Z, Ghenai C, Aslam M, Shahbaz M, Ayoub M (2020c) Flowsheet modeling and simulation of biomass steam gasification for hydrogen production. Chem Eng Technol 43:649–660 Inayat A, Raza M, Khan Z, Ghenai C, Aslam M, Shahbaz M, Ayoub M (2020c) Flowsheet modeling and simulation of biomass steam gasification for hydrogen production. Chem Eng Technol 43:649–660
go back to reference Iskak NAM, Julkapli NM, Hamid SBA (2017) Understanding the effect of synthesis parameters on the catalytic ionic liquid hydrolysis process of cellulose nanocrystals. Cellulose 24:2469–2481 Iskak NAM, Julkapli NM, Hamid SBA (2017) Understanding the effect of synthesis parameters on the catalytic ionic liquid hydrolysis process of cellulose nanocrystals. Cellulose 24:2469–2481
go back to reference Islam MS, Kao N, Bhattacharya SN, Gupta R, Bhattacharjee PK (2017) Effect of low pressure alkaline delignification process on the production of cellulose nanocrystallsfrom rice husk. J Taiwan Inst Chem E 80:820–834 Islam MS, Kao N, Bhattacharya SN, Gupta R, Bhattacharjee PK (2017) Effect of low pressure alkaline delignification process on the production of cellulose nanocrystallsfrom rice husk. J Taiwan Inst Chem E 80:820–834
go back to reference Islam MS, Kao N, Bhattacharya SN, Gupta R, Choi HJ (2018) Potential aspect of rice husk biomass in Australia for cellulose nanocrystallsproduction. Chinese J Chem Eng 26:465–476 Islam MS, Kao N, Bhattacharya SN, Gupta R, Choi HJ (2018) Potential aspect of rice husk biomass in Australia for cellulose nanocrystallsproduction. Chinese J Chem Eng 26:465–476
go back to reference Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of cellulose nanocrystallsfor the binding and controlled release of drugs. Int J Nanomed 6:321 Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of cellulose nanocrystallsfor the binding and controlled release of drugs. Int J Nanomed 6:321
go back to reference Jia W, Liu Y (2019) Two characteristic cellulose nanocrystals (CNCs) obtained from oxalic acid and sulfuric acid processing. Cellulose 26:8351–8365 Jia W, Liu Y (2019) Two characteristic cellulose nanocrystals (CNCs) obtained from oxalic acid and sulfuric acid processing. Cellulose 26:8351–8365
go back to reference Jiang J, Carrillo-Enriquez NC, Oguzlu H, Han X, Bi R, Saddler JN, Sun RC, Jiang F (2020) Acidic deep eutectic solvent assisted isolation of lignin containing nanocellulose from thermomechanical pulp. Carbohyd Polym 247:116727 Jiang J, Carrillo-Enriquez NC, Oguzlu H, Han X, Bi R, Saddler JN, Sun RC, Jiang F (2020) Acidic deep eutectic solvent assisted isolation of lignin containing nanocellulose from thermomechanical pulp. Carbohyd Polym 247:116727
go back to reference Ju Y, Ha J, Song Y, Lee D (2021) Revealing the enhanced structural recovery and gelation mechanisms of cation-induced cellulose nanofibrils composite hydrogels. Carbohyd Polym 272:118515 Ju Y, Ha J, Song Y, Lee D (2021) Revealing the enhanced structural recovery and gelation mechanisms of cation-induced cellulose nanofibrils composite hydrogels. Carbohyd Polym 272:118515
go back to reference Kasiri N, Fathi M (2018) Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int J Biol Macromol 106:1023–1031 Kasiri N, Fathi M (2018) Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int J Biol Macromol 106:1023–1031
go back to reference Kaur R, Kaur P (2021) Chemical valorization of cellulose from lignocellulosic biomass: a step towards sustainable development. Cellul Chem Technol 55:207–222 Kaur R, Kaur P (2021) Chemical valorization of cellulose from lignocellulosic biomass: a step towards sustainable development. Cellul Chem Technol 55:207–222
go back to reference Khalid MY, Al Rashid A, Arif ZU, Ahmed W, Arshad H (2021) Recent advances in nanocellulose-based different biomaterials: types, properties, and emerging applications. J Mater Res Technol 14:2601–2623 Khalid MY, Al Rashid A, Arif ZU, Ahmed W, Arshad H (2021) Recent advances in nanocellulose-based different biomaterials: types, properties, and emerging applications. J Mater Res Technol 14:2601–2623
go back to reference Khan A, Jawaid M, Kian LK, Khan AAP, Asiri AM (2021) Isolation and production of cellulose nanocrystallsfrom conocarpus fiber. Polymers 13:1835 PubMedPubMedCentral Khan A, Jawaid M, Kian LK, Khan AAP, Asiri AM (2021) Isolation and production of cellulose nanocrystallsfrom conocarpus fiber. Polymers 13:1835 PubMedPubMedCentral
go back to reference Khanjanzadeh H, Behrooz R, Bahramifar N, Gindl-Altmutter W, Bacher M, Edler M, Griesser T (2018) Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Int J Biol Macromol 106:1288–1296 Khanjanzadeh H, Behrooz R, Bahramifar N, Gindl-Altmutter W, Bacher M, Edler M, Griesser T (2018) Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Int J Biol Macromol 106:1288–1296
go back to reference Kian LK, Jawaid M, Ariffin H, Karim Z (2018) Isolation and characterization of cellulose nanocrystallsfrom roselle-derived microcrystalline cellulose. Int J Biol Macromol 114:54–63 Kian LK, Jawaid M, Ariffin H, Karim Z (2018) Isolation and characterization of cellulose nanocrystallsfrom roselle-derived microcrystalline cellulose. Int J Biol Macromol 114:54–63
go back to reference Kian L, Saba N, Jawaid M, Alothman O, Fouad H (2020) Properties and characteristics of cellulose nanocrystallsisolated from olive fiber. Carbohyd Polym 241:116423 Kian L, Saba N, Jawaid M, Alothman O, Fouad H (2020) Properties and characteristics of cellulose nanocrystallsisolated from olive fiber. Carbohyd Polym 241:116423
go back to reference Kian LK, Saba N, Jawaid M, Alothman OY, Fouad H (2020) Properties and characteristics of cellulose nanocrystallsisolated from olive fiber. Carbohyd Polym 241:116423 Kian LK, Saba N, Jawaid M, Alothman OY, Fouad H (2020) Properties and characteristics of cellulose nanocrystallsisolated from olive fiber. Carbohyd Polym 241:116423
go back to reference Kumar AK, Parikh BS, Pravakar M (2016) Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut R 23:9265–9275 Kumar AK, Parikh BS, Pravakar M (2016) Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut R 23:9265–9275
go back to reference Kusmono K, Akbar DA (2020) Influence of hydrolysis conditions on characteristics of cellulose nanocrystalls extracted from ramie fibers by hydrochloric acid hydrolysis. Res Square 1:1–22 Kusmono K, Akbar DA (2020) Influence of hydrolysis conditions on characteristics of cellulose nanocrystalls extracted from ramie fibers by hydrochloric acid hydrolysis. Res Square 1:1–22
go back to reference Kuznetsov B, Sudakova I, Garyntseva N, Tarabanko V, Yatsenkova O, Djakovitch L, Rataboul F (2021) Processes of catalytic oxidation for the production of chemicals from softwood biomass. Catal Today 375:132–144 Kuznetsov B, Sudakova I, Garyntseva N, Tarabanko V, Yatsenkova O, Djakovitch L, Rataboul F (2021) Processes of catalytic oxidation for the production of chemicals from softwood biomass. Catal Today 375:132–144
go back to reference Lee H, Hamid SBA, Zain S (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014:1–20 Lee H, Hamid SBA, Zain S (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014:1–20
go back to reference Leppänen I, Lappalainen T, Lohtander T, Jonkergouw C, Arola S, Tammelin T (2021) Capturing the colloidal microplastics with plant-based nanocellulose networks. Research square Leppänen I, Lappalainen T, Lohtander T, Jonkergouw C, Arola S, Tammelin T (2021) Capturing the colloidal microplastics with plant-based nanocellulose networks. Research square
go back to reference Lewandowski WM, Ryms M, Kosakowski W (2020) Thermal biomass conversion: a review. Processes 8:516 Lewandowski WM, Ryms M, Kosakowski W (2020) Thermal biomass conversion: a review. Processes 8:516
go back to reference Li VC-F, Dunn CK, Zhang Z, Deng Y, Qi HJ (2017) Direct ink write (DIW) 3D printed cellulose nanocrystal aerogel structures. Sci Rep-Uk 7:1–8 Li VC-F, Dunn CK, Zhang Z, Deng Y, Qi HJ (2017) Direct ink write (DIW) 3D printed cellulose nanocrystal aerogel structures. Sci Rep-Uk 7:1–8
go back to reference Li J, Zhang W, Monteiro PJ (2020) Structure and intrinsic mechanical properties of nanocrystalline calcium silicate hydrate. Acs Sustain Chem Eng 8:12453–12461 Li J, Zhang W, Monteiro PJ (2020) Structure and intrinsic mechanical properties of nanocrystalline calcium silicate hydrate. Acs Sustain Chem Eng 8:12453–12461
go back to reference Li S, Chen G (2020) Agricultural waste-derived superabsorbent hydrogels: preparation, performance, and socioeconomic impacts. J Clean Prod 251:119669 Li S, Chen G (2020) Agricultural waste-derived superabsorbent hydrogels: preparation, performance, and socioeconomic impacts. J Clean Prod 251:119669
go back to reference Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393 Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393
go back to reference Lindh EL, Bergenstråhle-Wohlert M, Terenzi C, Salmén L, Furó I (2016) Non-exchanging hydroxyl groups on the surface of cellulose fibrils: the role of interaction with water. Carbohyd Res 434:136–142 Lindh EL, Bergenstråhle-Wohlert M, Terenzi C, Salmén L, Furó I (2016) Non-exchanging hydroxyl groups on the surface of cellulose fibrils: the role of interaction with water. Carbohyd Res 434:136–142
go back to reference Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81 Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81
go back to reference Listyanda RF, Kusmono Wildan MW, Ilman MN (2020) Extraction and characterization of cellulose nanocrystalls (CNC) from ramie fiber by sulphuric acid hydrolysis, vol 2217. AIP Publishing LLC, p 030069 Listyanda RF, Kusmono Wildan MW, Ilman MN (2020) Extraction and characterization of cellulose nanocrystalls (CNC) from ramie fiber by sulphuric acid hydrolysis, vol 2217. AIP Publishing LLC, p 030069
go back to reference Liu YNY, Lu X, Zhang X, He H, Pan F, Zhou L, Liu X, Ji X, Zhang S (2019) Cascade utilization of lignocellulosic biomass to high-value products. Green Chem 21(13):3499–3535 Liu YNY, Lu X, Zhang X, He H, Pan F, Zhou L, Liu X, Ji X, Zhang S (2019) Cascade utilization of lignocellulosic biomass to high-value products. Green Chem 21(13):3499–3535
go back to reference Liu Y, Wang H, Yu G, Yu Q, Li B, Mu X (2014) A novel approach for the preparation of cellulose nanocrystallsby using phosphotungstic acid. Carbohyd Polym 110:415–422 Liu Y, Wang H, Yu G, Yu Q, Li B, Mu X (2014) A novel approach for the preparation of cellulose nanocrystallsby using phosphotungstic acid. Carbohyd Polym 110:415–422
go back to reference Liu C, Li B, Du H, Lv D, Zhang Y, Yu G, Mu X, Peng H (2016) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohyd Polym 151:716–724 Liu C, Li B, Du H, Lv D, Zhang Y, Yu G, Mu X, Peng H (2016) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohyd Polym 151:716–724
go back to reference Liu S, Zhang Q, Gou S, Zhang L, Wang Z (2020) Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers. Carbohyd Polym 251:117018 Liu S, Zhang Q, Gou S, Zhang L, Wang Z (2020) Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers. Carbohyd Polym 251:117018
go back to reference Lu P, Hsieh Y-L (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohyd Polym 87:564–573 Lu P, Hsieh Y-L (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohyd Polym 87:564–573
go back to reference Lu J, Sun C, Yang K, Wang K, Jiang Y, Tusiime R, Yang Y, Fan F, Sun Z, Liu Y (2019) Properties of polylactic acid reinforced by hydroxyapatite modified nanocellulose. Polymers 11:1009 PubMedPubMedCentral Lu J, Sun C, Yang K, Wang K, Jiang Y, Tusiime R, Yang Y, Fan F, Sun Z, Liu Y (2019) Properties of polylactic acid reinforced by hydroxyapatite modified nanocellulose. Polymers 11:1009 PubMedPubMedCentral
go back to reference Lynam JG, Kumar N, Wong MJ (2017a) Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresource Technol 238:684–689 Lynam JG, Kumar N, Wong MJ (2017a) Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresource Technol 238:684–689
go back to reference Lynam JG, Kumar N, Wong MJ (2017b) Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresource Technol 238:684–689 Lynam JG, Kumar N, Wong MJ (2017b) Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresource Technol 238:684–689
go back to reference Ma Y, Xia Q, Liu Y, Chen W, Liu S, Wang Q, Liu Y, Li J, Yu H (2019) Production of nanocellulose using hydrated deep eutectic solvent combined with ultrasonic treatment. Acs Omega 15:8539–8547 Ma Y, Xia Q, Liu Y, Chen W, Liu S, Wang Q, Liu Y, Li J, Yu H (2019) Production of nanocellulose using hydrated deep eutectic solvent combined with ultrasonic treatment. Acs Omega 15:8539–8547
go back to reference Macias-Almazan A, Lois-Correa JA, Dominguez-Crespo MA, Lopez-Oyama AB, Torres-Huerta AM, Brachetti-Sibaja SB, Rodriguez-Salazar AE (2020) Influence of operating conditions on proton conductivity of nanocellulose films using two agroindustrial wastes: sugarcane bagasse and pinewood sawdust. Carbohyd Polym 238:116171 Macias-Almazan A, Lois-Correa JA, Dominguez-Crespo MA, Lopez-Oyama AB, Torres-Huerta AM, Brachetti-Sibaja SB, Rodriguez-Salazar AE (2020) Influence of operating conditions on proton conductivity of nanocellulose films using two agroindustrial wastes: sugarcane bagasse and pinewood sawdust. Carbohyd Polym 238:116171
go back to reference Malav LC, Yadav KK, Gupta N, Kumar S, Sharma GK, Krishnan S, Rezania S, Kamyab H, Pham QB, Yadav S (2020) A review on municipal solid waste as a renewable source for waste-to-energy project in India: current practices, challenges, and future opportunities. J Clean Prod 277:123227 Malav LC, Yadav KK, Gupta N, Kumar S, Sharma GK, Krishnan S, Rezania S, Kamyab H, Pham QB, Yadav S (2020) A review on municipal solid waste as a renewable source for waste-to-energy project in India: current practices, challenges, and future opportunities. J Clean Prod 277:123227
go back to reference Man Z, Muhammad N, Sarwono A, Bustam MA, Vignesh Kumar M, Rafiq S (2011) Preparation of cellulose nanocrystals using an ionic liquid. J Polym Environ 19:726–731 Man Z, Muhammad N, Sarwono A, Bustam MA, Vignesh Kumar M, Rafiq S (2011) Preparation of cellulose nanocrystals using an ionic liquid. J Polym Environ 19:726–731
go back to reference MARMUR, A. (2012) Hydro-hygro-oleo-omni-phobic? Terminology of wettability classification. Soft Matter 8:6867–6870 MARMUR, A. (2012) Hydro-hygro-oleo-omni-phobic? Terminology of wettability classification. Soft Matter 8:6867–6870
go back to reference Martínez-Sanz M, Lopez-Rubio A, Villano M, Oliveira CS, Majone M, Reis M, Lagarón JM (2016) Production of bacterial nanobiocomposites of polyhydroxyalkanoates derived from waste and bacterial nanocellulose by the electrospinning enabling melt compounding method. J Appl Polym Sci 133(1–14):42486 Martínez-Sanz M, Lopez-Rubio A, Villano M, Oliveira CS, Majone M, Reis M, Lagarón JM (2016) Production of bacterial nanobiocomposites of polyhydroxyalkanoates derived from waste and bacterial nanocellulose by the electrospinning enabling melt compounding method. J Appl Polym Sci 133(1–14):42486
go back to reference Martínez MAGL, Marlin N, Perez DDS, Dupont C, Rios CDMS, Meyer X-M, Gourdon C, Mortha G (2021) Impact of cellulose properties on its behavior in torrefaction: commercial microcrystalline cellulose versus cotton linters and celluloses extracted from woody and agricultural biomass. Cellulose 28:4761–4779 Martínez MAGL, Marlin N, Perez DDS, Dupont C, Rios CDMS, Meyer X-M, Gourdon C, Mortha G (2021) Impact of cellulose properties on its behavior in torrefaction: commercial microcrystalline cellulose versus cotton linters and celluloses extracted from woody and agricultural biomass. Cellulose 28:4761–4779
go back to reference Mehanny S, Abu-El Magd EE, Ibrahim M, Farag M, Gil-San-Millan R, Navarro J, El-Kashif E (2021) Extraction and characterization of nanocellulose from three types of palm residues. J Mater Res Technol 10:526–537 Mehanny S, Abu-El Magd EE, Ibrahim M, Farag M, Gil-San-Millan R, Navarro J, El-Kashif E (2021) Extraction and characterization of nanocellulose from three types of palm residues. J Mater Res Technol 10:526–537
go back to reference Mishra S, Kharkar PS, Pethe AM (2019) Biomass and waste materials as potential sources of nanocrystalline cellulose: Comparative review of preparation methods (2016–Till date). Carbohyd Polym 207:418–427 Mishra S, Kharkar PS, Pethe AM (2019) Biomass and waste materials as potential sources of nanocrystalline cellulose: Comparative review of preparation methods (2016–Till date). Carbohyd Polym 207:418–427
go back to reference Moharrami P, Motamedi E (2020) Application of cellulose nanocrystals prepared from agricultural wastes for synthesis of starch-based hydrogel nanocomposites: efficient and selective nanoadsorbent for removal of cationic dyes from water. Bioresource Technol 313:123661 Moharrami P, Motamedi E (2020) Application of cellulose nanocrystals prepared from agricultural wastes for synthesis of starch-based hydrogel nanocomposites: efficient and selective nanoadsorbent for removal of cationic dyes from water. Bioresource Technol 313:123661
go back to reference Molina-Ramírez C, Cañas-Gutiérrez A, Castro C, Zuluaga R, Gañán P (2020) Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium. Carbohyd Polym 240:116341 Molina-Ramírez C, Cañas-Gutiérrez A, Castro C, Zuluaga R, Gañán P (2020) Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium. Carbohyd Polym 240:116341
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994 Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994
go back to reference Morais JPS, de Freitas Rosa M, Nascimento LD, do Nascimento DM, Cassales AR (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohyd Polym 91:229–235 Morais JPS, de Freitas Rosa M, Nascimento LD, do Nascimento DM, Cassales AR (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohyd Polym 91:229–235
go back to reference Naderi A, Lindström T, Flodberg G, Sundström J, Junel K, Runebjörk A, Weise CF, Erlandsson J (2016a) Phosphorylated nanofibrillated cellulose: production and properties. Nord Pulp Pap Res J 31:20–29 Naderi A, Lindström T, Flodberg G, Sundström J, Junel K, Runebjörk A, Weise CF, Erlandsson J (2016a) Phosphorylated nanofibrillated cellulose: production and properties. Nord Pulp Pap Res J 31:20–29
go back to reference Naderi A, Sundström J, Lindström T, Erlandsson J (2016b) Enhancing the properties of carboxymethylated nanofibrillated cellulose by inclusion of water in the pretreatment process. Nord Pulp Pap Res J 31:372–378 Naderi A, Sundström J, Lindström T, Erlandsson J (2016b) Enhancing the properties of carboxymethylated nanofibrillated cellulose by inclusion of water in the pretreatment process. Nord Pulp Pap Res J 31:372–378
go back to reference Nasseri R, Deutschman C, Han L, Pope M, Tam K (2020) Cellulose nanocrystals in smart and stimuli-responsive materials: a review. Mater Today Adv 5:100055 Nasseri R, Deutschman C, Han L, Pope M, Tam K (2020) Cellulose nanocrystals in smart and stimuli-responsive materials: a review. Mater Today Adv 5:100055
go back to reference Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25 Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25
go back to reference Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. Acs Appl Mater Inter 7:19809–19815 Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. Acs Appl Mater Inter 7:19809–19815
go back to reference Neves RM, Ornaghi HL Jr, Zattera AJ, Amico SC (2020) Recent studies on modified cellulose/nanocellulose epoxy composites: a systematic review. Carbohyd Polym 255:117366 Neves RM, Ornaghi HL Jr, Zattera AJ, Amico SC (2020) Recent studies on modified cellulose/nanocellulose epoxy composites: a systematic review. Carbohyd Polym 255:117366
go back to reference Nie S, Hao N, Zhang K, Xing C, Wang S (2020) Cellulose nanofibrils-based thermally conductive composites for flexible electronics: a mini review. Cellulose 27:4173–4187 Nie S, Hao N, Zhang K, Xing C, Wang S (2020) Cellulose nanofibrils-based thermally conductive composites for flexible electronics: a mini review. Cellulose 27:4173–4187
go back to reference Omran AAB, Mohammed AA, Sapuan S, Ilyas R, Asyraf M, Rahimian Koloor SS, Petrů M (2021) Micro-and nanocellulose in polymer composite materials: a review. Polymers 13:231 PubMedPubMedCentral Omran AAB, Mohammed AA, Sapuan S, Ilyas R, Asyraf M, Rahimian Koloor SS, Petrů M (2021) Micro-and nanocellulose in polymer composite materials: a review. Polymers 13:231 PubMedPubMedCentral
go back to reference Pacheco CM, Bustos AC, Reyes G (2020) Cellulose nanocrystals from blueberry pruning residues isolated by ionic liquids and TEMPO-oxidation combined with mechanical disintegration. J Disper Sci Technol 41:1731–1741 Pacheco CM, Bustos AC, Reyes G (2020) Cellulose nanocrystals from blueberry pruning residues isolated by ionic liquids and TEMPO-oxidation combined with mechanical disintegration. J Disper Sci Technol 41:1731–1741
go back to reference Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC (2014) Natural deep eutectic solvents – Solvents for the 21st century. Acs Sustain Chem Eng 2:1063–1071 Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC (2014) Natural deep eutectic solvents – Solvents for the 21st century. Acs Sustain Chem Eng 2:1063–1071
go back to reference Panaitescu DM, Vizireanu S, Stoian SA, Nicolae C-A, Gabor AR, Damian CM, Trusca R, Carpen LG, Dinescu G (2020) Poly (3-hydroxybutyrate) modified by plasma and TEMPO-oxidized celluloses. Polymers 12:1510 Panaitescu DM, Vizireanu S, Stoian SA, Nicolae C-A, Gabor AR, Damian CM, Trusca R, Carpen LG, Dinescu G (2020) Poly (3-hydroxybutyrate) modified by plasma and TEMPO-oxidized celluloses. Polymers 12:1510
go back to reference Peng BL, Dhar N, Liu H, Tam K (2011) Chemistry and applications of cellulose nanocrystallsand its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206 Peng BL, Dhar N, Liu H, Tam K (2011) Chemistry and applications of cellulose nanocrystallsand its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206
go back to reference Pereira B, Arantes V (2020) Production of cellulose nanocrystals integrated into a biochemical sugar platform process via enzymatic hydrolysis at high solid loading. Ind Crop Prod 152:112377 Pereira B, Arantes V (2020) Production of cellulose nanocrystals integrated into a biochemical sugar platform process via enzymatic hydrolysis at high solid loading. Ind Crop Prod 152:112377
go back to reference Perna FM, Vitale P, Capriati V (2020) Deep eutectic solvents and their applications as green solvents. Curr Opin Green 21:27–33 Perna FM, Vitale P, Capriati V (2020) Deep eutectic solvents and their applications as green solvents. Curr Opin Green 21:27–33
go back to reference Phanthong P, Karnjanakom S, Reubroycharoen P, Hao X, Abudula A, Guan G (2017) A facile one-step way for extraction of nanocellulose with high yield by ball milling with ionic liquid. Cellulose 24:2083–2093 Phanthong P, Karnjanakom S, Reubroycharoen P, Hao X, Abudula A, Guan G (2017) A facile one-step way for extraction of nanocellulose with high yield by ball milling with ionic liquid. Cellulose 24:2083–2093
go back to reference Phillips DM, Drummy LF, Conrady DG, Fox DM, Naik RR, Stone MO, Trulove PC, de Long HC, Mantz RA (2004) Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. J Am Chem Soc 126:14350–14351 PubMedPubMedCentral Phillips DM, Drummy LF, Conrady DG, Fox DM, Naik RR, Stone MO, Trulove PC, de Long HC, Mantz RA (2004) Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. J Am Chem Soc 126:14350–14351 PubMedPubMedCentral
go back to reference Pourmand A, Abdollahi M (2012) Current opinion on nanotoxicology. Springer Pourmand A, Abdollahi M (2012) Current opinion on nanotoxicology. Springer
go back to reference Prado KS, Spinace MAS (2019) Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Int J Biol Macromol 122:410–416 PubMedPubMedCentral Prado KS, Spinace MAS (2019) Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Int J Biol Macromol 122:410–416 PubMedPubMedCentral
go back to reference Qi H, Liebert T, Meister F, Heinze T (2009) Homogenous carboxymethylation of cellulose in the NaOH/urea aqueous solution. React Funct Polym 69:779–784 Qi H, Liebert T, Meister F, Heinze T (2009) Homogenous carboxymethylation of cellulose in the NaOH/urea aqueous solution. React Funct Polym 69:779–784
go back to reference Rajalaxmi D, Jiang N, Leslie G, Ragauskas AJ (2010) Synthesis of novel water-soluble sulfonated cellulose. Carbohyd Res 345:284–290 Rajalaxmi D, Jiang N, Leslie G, Ragauskas AJ (2010) Synthesis of novel water-soluble sulfonated cellulose. Carbohyd Res 345:284–290
go back to reference Ramírez JAÁ, Fortunati E, Kenny JM, Torre L, Foresti ML (2017) Simple citric acid-catalyzed surface esterification of cellulose nanocrystals. Carbohyd Polym 157:1358–1364 Ramírez JAÁ, Fortunati E, Kenny JM, Torre L, Foresti ML (2017) Simple citric acid-catalyzed surface esterification of cellulose nanocrystals. Carbohyd Polym 157:1358–1364
go back to reference Rathnan RK, John D (2020) Isolation, screening, identification and optimized production of extracellular cellulase from Bacillus subtilis using cellulosic waste as carbon source. J Microbiol Biotechnol 9:2383–2386 Rathnan RK, John D (2020) Isolation, screening, identification and optimized production of extracellular cellulase from Bacillus subtilis using cellulosic waste as carbon source. J Microbiol Biotechnol 9:2383–2386
go back to reference Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B, Rupani PF, Mohammadi AA (2020) Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 199:117457 Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B, Rupani PF, Mohammadi AA (2020) Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 199:117457
go back to reference Rojas J, Bedoya M, Ciro Y (2015) Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. Cellul Fund Asp Curr Trends 8:193–228 Rojas J, Bedoya M, Ciro Y (2015) Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. Cellul Fund Asp Curr Trends 8:193–228
go back to reference Rol F, Belgacem MN, Gandini A, Bras J (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264 Rol F, Belgacem MN, Gandini A, Bras J (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264
go back to reference Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677 Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677
go back to reference Ruiz-Palomero C, Soriano ML, Valcárcel M (2015) β-Cyclodextrin decorated nanocellulose: a smart approach towards the selective fluorimetric determination of danofloxacin in milk samples. Analyst 140:3431–3438 PubMedPubMedCentral Ruiz-Palomero C, Soriano ML, Valcárcel M (2015) β-Cyclodextrin decorated nanocellulose: a smart approach towards the selective fluorimetric determination of danofloxacin in milk samples. Analyst 140:3431–3438 PubMedPubMedCentral
go back to reference Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355 Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355
go back to reference Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol Progr 21:816–822 Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol Progr 21:816–822
go back to reference Saito T, Okita Y, Nge T, Sugiyama J, Isogai A (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohyd Polym 65:435–440 Saito T, Okita Y, Nge T, Sugiyama J, Isogai A (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohyd Polym 65:435–440
go back to reference Sanchez R, Espinosa E, Dominguez-Robles J, Loaiza JM, Rodriguez A (2016) Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. Int J Biol Macromol 92:1025–1033 PubMedPubMedCentral Sanchez R, Espinosa E, Dominguez-Robles J, Loaiza JM, Rodriguez A (2016) Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. Int J Biol Macromol 92:1025–1033 PubMedPubMedCentral
go back to reference Sankhla S, Sardar HH, Neogi S (2021) Greener extraction of highly crystalline and thermally stable cellulose micro-fibers from sugarcane bagasse for cellulose nano-fibrils preparation. Carbohyd Polym 251:117030 Sankhla S, Sardar HH, Neogi S (2021) Greener extraction of highly crystalline and thermally stable cellulose micro-fibers from sugarcane bagasse for cellulose nano-fibrils preparation. Carbohyd Polym 251:117030
go back to reference Satlewal A, Agrawal R, Bhagia S, Sangoro J, Ragauskas AJ (2018) Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol Adv 36:2032–2050 PubMedPubMedCentral Satlewal A, Agrawal R, Bhagia S, Sangoro J, Ragauskas AJ (2018) Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol Adv 36:2032–2050 PubMedPubMedCentral
go back to reference Sèbe G, Ham-Pichavant FDR, Pecastaings G (2013) Dispersibility and emulsion-stabilizing effect of cellulose nanowhiskers esterified by vinyl acetate and vinyl cinnamate. Biomacromol 14:2937–2944 Sèbe G, Ham-Pichavant FDR, Pecastaings G (2013) Dispersibility and emulsion-stabilizing effect of cellulose nanowhiskers esterified by vinyl acetate and vinyl cinnamate. Biomacromol 14:2937–2944
go back to reference Selulosa-Polivinilklorida SRN, Sheltami RM, Kargarzadeh H, Abdullah I (2015) Effects of silane surface treatment of cellulose nanocrystals on the tensile properties of cellulose-polyvinyl chloride nanocomposite. Sains Malays 44:801–810 Selulosa-Polivinilklorida SRN, Sheltami RM, Kargarzadeh H, Abdullah I (2015) Effects of silane surface treatment of cellulose nanocrystals on the tensile properties of cellulose-polyvinyl chloride nanocomposite. Sains Malays 44:801–810
go back to reference Shaikh HM, Anis A, Poulose AM, Al-Zahrani SM, Madhar NA, Alhamidi A, Alam MA (2021) Isolation and characterization of alpha and cellulose nanocrystallsfrom date palm ( Phoenix dactylifera L.) trunk mesh. Polymers 13:1893 PubMedPubMedCentral Shaikh HM, Anis A, Poulose AM, Al-Zahrani SM, Madhar NA, Alhamidi A, Alam MA (2021) Isolation and characterization of alpha and cellulose nanocrystallsfrom date palm ( Phoenix dactylifera L.) trunk mesh. Polymers 13:1893 PubMedPubMedCentral
go back to reference Sharma C, Bhardwaj NK (2019) Bacterial nanocellulose: Present status, biomedical applications and future perspectives. Mat Sci Eng C-Mater 104:109963 Sharma C, Bhardwaj NK (2019) Bacterial nanocellulose: Present status, biomedical applications and future perspectives. Mat Sci Eng C-Mater 104:109963
go back to reference Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S (2019) Commercial application of cellulose nano-composites–A review. Biotechnol. Rep. 21:e00316 Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S (2019) Commercial application of cellulose nano-composites–A review. Biotechnol. Rep. 21:e00316
go back to reference Silvério HA, Flauzino Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crop Prod 44:427–436 Silvério HA, Flauzino Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crop Prod 44:427–436
go back to reference Sirviö JA (2019) Fabrication of regenerated cellulose nanoparticles by mechanical disintegration of cellulose after dissolution and regeneration from a deep eutectic solvent. J Mater Chem A 7:755–763 Sirviö JA (2019) Fabrication of regenerated cellulose nanoparticles by mechanical disintegration of cellulose after dissolution and regeneration from a deep eutectic solvent. J Mater Chem A 7:755–763
go back to reference Song Y, Jiang W, Zhang Y, Wang H, Zou F, Yu K, Han G (2018) A novel process of nanocellulose extraction from kenaf bast. Mater Res Express 5:085032 Song Y, Jiang W, Zhang Y, Wang H, Zou F, Yu K, Han G (2018) A novel process of nanocellulose extraction from kenaf bast. Mater Res Express 5:085032
go back to reference Spinella S, Maiorana A, Qian Q, Dawson NJ, Hepworth V, McCallum SA, Ganesh M, Singer KD, Gross RA (2016) Concurrent cellulose hydrolysis and esterification to prepare a surface-modified cellulose nanocrystal decorated with carboxylic acid moieties. Acs Sustain Chem Eng 4:1538–1550 Spinella S, Maiorana A, Qian Q, Dawson NJ, Hepworth V, McCallum SA, Ganesh M, Singer KD, Gross RA (2016) Concurrent cellulose hydrolysis and esterification to prepare a surface-modified cellulose nanocrystal decorated with carboxylic acid moieties. Acs Sustain Chem Eng 4:1538–1550
go back to reference Stephanie Beck-Candanedo MR, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054 Stephanie Beck-Candanedo MR, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054
go back to reference Sucaldito MR, Camacho DH (2017) Characteristics of unique HBr-hydrolyzed cellulose nanocrystals from freshwater green algae ( Cladophora rupestris) and its reinforcement in starch-based film. Carbohyd Polym 169:315–323 Sucaldito MR, Camacho DH (2017) Characteristics of unique HBr-hydrolyzed cellulose nanocrystals from freshwater green algae ( Cladophora rupestris) and its reinforcement in starch-based film. Carbohyd Polym 169:315–323
go back to reference Suflet DM, Chitanu GC, Popa VI (2006) Phosphorylation of polysaccharides: new results on synthesis and characterisation of phosphorylated cellulose. React Funct Polym 66:1240–1249 Suflet DM, Chitanu GC, Popa VI (2006) Phosphorylation of polysaccharides: new results on synthesis and characterisation of phosphorylated cellulose. React Funct Polym 66:1240–1249
go back to reference Sukyai P, Anongjanya P, Bunyahwuthakul N, Kongsin K, Harnkarnsujarit N, Sukatta U, Sothornvit R, Chollakup R (2018) Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films. Food Res Int 107:528–535 Sukyai P, Anongjanya P, Bunyahwuthakul N, Kongsin K, Harnkarnsujarit N, Sukatta U, Sothornvit R, Chollakup R (2018) Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films. Food Res Int 107:528–535
go back to reference Sun C, Ni J, Zhao C, Du J, Zhou C, Wang S, Xu C (2017) Preparation of a cellulosic adsorbent by functionalization with pyridone diacid for removal of Pb (II) and Co (II) from aqueous solutions. Cellulose 24:5615–5624 Sun C, Ni J, Zhao C, Du J, Zhou C, Wang S, Xu C (2017) Preparation of a cellulosic adsorbent by functionalization with pyridone diacid for removal of Pb (II) and Co (II) from aqueous solutions. Cellulose 24:5615–5624
go back to reference Taflick T, Schwendler LA, Rosa SML, Bica CID, Nachtigall SMB (2017) Cellulose nanocrystals from acacia bark-Influence of solvent extraction. Int J Biol Macromol 101:553–561 Taflick T, Schwendler LA, Rosa SML, Bica CID, Nachtigall SMB (2017) Cellulose nanocrystals from acacia bark-Influence of solvent extraction. Int J Biol Macromol 101:553–561
go back to reference Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020 Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020
go back to reference Tan XY, Abd Hamid SB, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenerg 81:584–591 Tan XY, Abd Hamid SB, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenerg 81:584–591
go back to reference Tang LR, Huang B, Ou W, Chen XR, Chen YD (2011) Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Bioresource Technol 102:10973–10977 Tang LR, Huang B, Ou W, Chen XR, Chen YD (2011) Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Bioresource Technol 102:10973–10977
go back to reference Tao P, Zhang Y, Wu Z, Liao X, Nie S (2019) Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: transition of cellulose crystal structure. Carbohyd Polym 214:1–7 Tao P, Zhang Y, Wu Z, Liao X, Nie S (2019) Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: transition of cellulose crystal structure. Carbohyd Polym 214:1–7
go back to reference TAPPI (2017) Standard terms and their definition for cellulose nanomaterial TAPPI (2017) Standard terms and their definition for cellulose nanomaterial
go back to reference Teo HL, Wahab RA (2020) Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: a review. Int J Biol Macromol 161:1414–1430 Teo HL, Wahab RA (2020) Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: a review. Int J Biol Macromol 161:1414–1430
go back to reference Thomas B, Raj MC, Joy J, Moores A, Drisko GL, Sanchez CM (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625 Thomas B, Raj MC, Joy J, Moores A, Drisko GL, Sanchez CM (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625
go back to reference Torlopov MA, Mikhaylov VI, Udoratina EV, Aleshina LA, Prusskii AI, Tsvetkov NV, Krivoshapkin PV (2017a) Cellulose nanocrystals with different length-to-diameter ratios extracted from various plants using novel system acetic acid/phosphotungstic acid/octanol-1. Cellulose 25:1031–1046 Torlopov MA, Mikhaylov VI, Udoratina EV, Aleshina LA, Prusskii AI, Tsvetkov NV, Krivoshapkin PV (2017a) Cellulose nanocrystals with different length-to-diameter ratios extracted from various plants using novel system acetic acid/phosphotungstic acid/octanol-1. Cellulose 25:1031–1046
go back to reference Torlopov MA, Udoratina EV, Martakov IS, Sitnikov PA (2017b) Cellulose nanocrystals prepared in H3PW12O40-acetic acid system. Cellulose 24:2153–2162 Torlopov MA, Udoratina EV, Martakov IS, Sitnikov PA (2017b) Cellulose nanocrystals prepared in H3PW12O40-acetic acid system. Cellulose 24:2153–2162
go back to reference Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MN, Taiwo OF, Hassan T, Haafiz MM (2016) Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. Int J Biol Macromol 93:789–804 Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MN, Taiwo OF, Hassan T, Haafiz MM (2016) Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. Int J Biol Macromol 93:789–804
go back to reference Tu W-C, Weigand L, Hummel M, Sixta H, Brandt-Talbot A, Hallett JP (2020) Characterisation of cellulose pulps isolated from Miscanthus using a low-cost acidic ionic liquid. Cellulose 27:4745–4761 Tu W-C, Weigand L, Hummel M, Sixta H, Brandt-Talbot A, Hallett JP (2020) Characterisation of cellulose pulps isolated from Miscanthus using a low-cost acidic ionic liquid. Cellulose 27:4745–4761
go back to reference Tuerxun D, Pulingam T, Nordin NI, Chen YW, Kamaldin JB, Julkapli NBM, Lee HV, Leo BF, Johan MRB (2019) Synthesis, characterization and cytotoxicity studies of cellulose nanocrystallsfrom the production waste of rubber-wood and kenaf-bast fibers. Eur Polym J 116:352–360 Tuerxun D, Pulingam T, Nordin NI, Chen YW, Kamaldin JB, Julkapli NBM, Lee HV, Leo BF, Johan MRB (2019) Synthesis, characterization and cytotoxicity studies of cellulose nanocrystallsfrom the production waste of rubber-wood and kenaf-bast fibers. Eur Polym J 116:352–360
go back to reference Vanderfleet OM, Cranston ED (2020) Production routes to tailor the performance of cellulose nanocrystals. Nat Rev Mater 06:124–144 Vanderfleet OM, Cranston ED (2020) Production routes to tailor the performance of cellulose nanocrystals. Nat Rev Mater 06:124–144
go back to reference Viet D, Beck-Candanedo S, Gray DG (2007) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14:109–113 Viet D, Beck-Candanedo S, Gray DG (2007) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14:109–113
go back to reference Vigier KDO, Chatel G, Jérôme F (2015) Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. ChemCatChem 7:1250–1260 Vigier KDO, Chatel G, Jérôme F (2015) Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. ChemCatChem 7:1250–1260
go back to reference Vijayalakshmi K, Gomathi T, Latha S, Hajeeth T, Sudha P (2016) Removal of copper (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. Int J Biol Macromol 82:440–452 Vijayalakshmi K, Gomathi T, Latha S, Hajeeth T, Sudha P (2016) Removal of copper (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. Int J Biol Macromol 82:440–452
go back to reference Vishwakarma V, Samal SS, Manoharan N (2010) Safety and risk associated with nanoparticles-a review. J Miner Mater Charact Eng 9:455–459 Vishwakarma V, Samal SS, Manoharan N (2010) Safety and risk associated with nanoparticles-a review. J Miner Mater Charact Eng 9:455–459
go back to reference Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795 Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795
go back to reference Wang Y, Wei X, Li J, Wang F, Wang Q, Chen J, Kong L (2015) Study on nanocellulose by high pressure homogenization in homogeneous isolation. Fiber Polym 16:572–578 Wang Y, Wei X, Li J, Wang F, Wang Q, Chen J, Kong L (2015) Study on nanocellulose by high pressure homogenization in homogeneous isolation. Fiber Polym 16:572–578
go back to reference Wang W, Liang T, Bai H, Dong W, Liu X (2018) All cellulose composites based on cellulose diacetate and nanofibrillated cellulose prepared by alkali treatment. Carbohyd Polym 179:297–304 Wang W, Liang T, Bai H, Dong W, Liu X (2018) All cellulose composites based on cellulose diacetate and nanofibrillated cellulose prepared by alkali treatment. Carbohyd Polym 179:297–304
go back to reference Wang Z, Yao Z, Zhou J, He M, Jiang Q, Li S, Ma Y, Liu M, Luo S (2019) Isolation and characterization of cellulose nanocrystals from pueraria root residue. Int J Biol Macromol 129:1081–1089 Wang Z, Yao Z, Zhou J, He M, Jiang Q, Li S, Ma Y, Liu M, Luo S (2019) Isolation and characterization of cellulose nanocrystals from pueraria root residue. Int J Biol Macromol 129:1081–1089
go back to reference Wathsala K, Weerakkody K, Weragoda V (2021) Isolation and characterization of microcrystalline cellulose from rice straw. 2021 Moratuwa Engineering Research Conference (MERCon), 2021. IEEE, pp 670–675 Wathsala K, Weerakkody K, Weragoda V (2021) Isolation and characterization of microcrystalline cellulose from rice straw. 2021 Moratuwa Engineering Research Conference (MERCon), 2021. IEEE, pp 670–675
go back to reference Weerasooriya P, Abdul Khalil H, Kaus NM, Hossain MS, Hiziroglu S, Fazita MN, Gopakumar DA, Hafiiz MM (2020) Isolation and characterization of regenerated cellulose films using microcrystalline cellulose from oil palm empty fruit bunch with an ionic liquid. Bioresources 15:8268 Weerasooriya P, Abdul Khalil H, Kaus NM, Hossain MS, Hiziroglu S, Fazita MN, Gopakumar DA, Hafiiz MM (2020) Isolation and characterization of regenerated cellulose films using microcrystalline cellulose from oil palm empty fruit bunch with an ionic liquid. Bioresources 15:8268
go back to reference Willberg-Keyriläinen P, Hiltunen J, Ropponen J (2018) Production of cellulose carbamate using urea-based deep eutectic solvents. Cellulose 25:195–204 Willberg-Keyriläinen P, Hiltunen J, Ropponen J (2018) Production of cellulose carbamate using urea-based deep eutectic solvents. Cellulose 25:195–204
go back to reference Williams PT, Nugranad N (2000) Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy 25:493–513 Williams PT, Nugranad N (2000) Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy 25:493–513
go back to reference Xie H, Liu W, Zhao ZK (2012) Lignocellulose pretreatment by ionic liquids: a promising start point for bio-energy production. Biomass conversion (Chapter). Springer, pp 123–144 Xie H, Liu W, Zhao ZK (2012) Lignocellulose pretreatment by ionic liquids: a promising start point for bio-energy production. Biomass conversion (Chapter). Springer, pp 123–144
go back to reference Xie H, Du H, Yang X, Si C (2018) Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci 2018:1–25 Xie H, Du H, Yang X, Si C (2018) Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci 2018:1–25
go back to reference Xie H, Zou Z, Du H, Zhang X, Wang X, Yang X, Wang H, Li G, Li L, Si C (2019) Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/Oxalic acid hydrolysis. Carbohyd Polym 223:115116 Xie H, Zou Z, Du H, Zhang X, Wang X, Yang X, Wang H, Li G, Li L, Si C (2019) Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/Oxalic acid hydrolysis. Carbohyd Polym 223:115116
go back to reference Xu W, Grénman H, Liu J, Kronlund D, Li B, Backman P, Peltonen J, Willför S, Sundberg A, Xu C (2017) Mild oxalic-acid-catalyzed hydrolysis as a novel approach to prepare cellulose nanocrystals. ChemNanoMat 3:109–119 Xu W, Grénman H, Liu J, Kronlund D, Li B, Backman P, Peltonen J, Willför S, Sundberg A, Xu C (2017) Mild oxalic-acid-catalyzed hydrolysis as a novel approach to prepare cellulose nanocrystals. ChemNanoMat 3:109–119
go back to reference Xu F-X, Zhang X, Zhang F, Jiang L-Q, Zhao Z-L, Li H-B (2020) TG-FTIR for kinetic evaluation and evolved gas analysis of cellulose with different structures. Fuel 268:117365 Xu F-X, Zhang X, Zhang F, Jiang L-Q, Zhao Z-L, Li H-B (2020) TG-FTIR for kinetic evaluation and evolved gas analysis of cellulose with different structures. Fuel 268:117365
go back to reference Xue G, He Y, Li X, Zhang Z, Zhang Y, Xu G (2021) Ultrasound-assisted sulfuric acid hydrolysis method for preparation and characterization of nanocellulose from ginkgo nut shell. 食品工业科技 42:204–211 Xue G, He Y, Li X, Zhang Z, Zhang Y, Xu G (2021) Ultrasound-assisted sulfuric acid hydrolysis method for preparation and characterization of nanocellulose from ginkgo nut shell. 食品工业科技 42:204–211
go back to reference Yetiş F, Liu X, Sampson WW, Gong RH (2020) Acetylation of lignin containing microfibrillated cellulose and its reinforcing effect for polylactic acid. Eur Polym J 134:109803 Yetiş F, Liu X, Sampson WW, Gong RH (2020) Acetylation of lignin containing microfibrillated cellulose and its reinforcing effect for polylactic acid. Eur Polym J 134:109803
go back to reference Yi T, Zhao H, Mo Q, Pan D, Liu Y, Huang L, Xu H, Hu B, Song H (2020) From cellulose to cellulose nanofibrils—A comprehensive review of the preparation and modification of cellulose nanofibrils. Materials 13:5062 PubMedPubMedCentral Yi T, Zhao H, Mo Q, Pan D, Liu Y, Huang L, Xu H, Hu B, Song H (2020) From cellulose to cellulose nanofibrils—A comprehensive review of the preparation and modification of cellulose nanofibrils. Materials 13:5062 PubMedPubMedCentral
go back to reference Yokota S, Tagawa S, Kondo T (2020) Facile surface modification of amphiphilic cellulose nanofibrils prepared by aqueous counter collision. Carbohyd Polym 255:117342 Yokota S, Tagawa S, Kondo T (2020) Facile surface modification of amphiphilic cellulose nanofibrils prepared by aqueous counter collision. Carbohyd Polym 255:117342
go back to reference Yu H-Y, Chen R, Chen G-Y, Liu L, Yang X-G, Yao J-M (2015) Silylation of cellulose nanocrystals and their reinforcement of commercial silicone rubber. J Nanopart Res 17:361 Yu H-Y, Chen R, Chen G-Y, Liu L, Yang X-G, Yao J-M (2015) Silylation of cellulose nanocrystals and their reinforcement of commercial silicone rubber. J Nanopart Res 17:361
go back to reference Yu H-Y, Zhang D-Z, Lu F-F, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. Acs Sustain Chem Eng 4:2632–2643 Yu H-Y, Zhang D-Z, Lu F-F, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. Acs Sustain Chem Eng 4:2632–2643
go back to reference Yuan H, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromol 7:696–700 Yuan H, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromol 7:696–700
go back to reference Zaaba NF, Jaafar M, Ismail H (2021) Tensile and morphological properties of cellulose nanocrystallsand nanofibrillated cellulose reinforced PLA bionanocomposites: a review. Polym Eng Sci 61:22–38 Zaaba NF, Jaafar M, Ismail H (2021) Tensile and morphological properties of cellulose nanocrystallsand nanofibrillated cellulose reinforced PLA bionanocomposites: a review. Polym Eng Sci 61:22–38
go back to reference Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824 Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824
go back to reference Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energ Convers Manage 51:969–982 Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energ Convers Manage 51:969–982
go back to reference Zhang Y, Xue GX, Zhang XM, Zhao Y (2012) Enzymatic preparation of cellulose nanocrystallsfrom bamboo fibers. Adv Mat Res 441:754–758 Zhang Y, Xue GX, Zhang XM, Zhao Y (2012) Enzymatic preparation of cellulose nanocrystallsfrom bamboo fibers. Adv Mat Res 441:754–758
go back to reference Zheng D, Zhang Y, Guo Y, Yue J (2019) Isolation and characterization of nanocellulose with a novel shape from walnut ( Juglans Regia L.) shell agricultural waste. Polymers (Basel) 11:1130 Zheng D, Zhang Y, Guo Y, Yue J (2019) Isolation and characterization of nanocellulose with a novel shape from walnut ( Juglans Regia L.) shell agricultural waste. Polymers (Basel) 11:1130
go back to reference Zhou L, Ke K, Yang M-B, Yang W (2020) Recent progress on chemical modification of cellulose for high mechanical-performance Poly (lactic acid)/Cellulose composite: a short review. Compos Commun 23:100548 Zhou L, Ke K, Yang M-B, Yang W (2020) Recent progress on chemical modification of cellulose for high mechanical-performance Poly (lactic acid)/Cellulose composite: a short review. Compos Commun 23:100548
go back to reference Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374 PubMedPubMedCentral Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374 PubMedPubMedCentral
go back to reference Zianor Azrina ZA, Beg MDH, Rosli MY, Ramli R, Junadi N, Alam A (2017) Spherical cellulose nanocrystalls(CNC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis. Carbohyd Polym 162:115–120 Zianor Azrina ZA, Beg MDH, Rosli MY, Ramli R, Junadi N, Alam A (2017) Spherical cellulose nanocrystalls(CNC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis. Carbohyd Polym 162:115–120
Metadata
Title
Cellulose nanocrystals from lignocellulosic feedstock: a review of production technology and surface chemistry modification
Authors
Mohsin Raza
Basim Abu-Jdayil
Publication date
22-01-2022
Publisher
Springer Netherlands
Published in
Cellulose / Issue 2/2022
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-04371-y