Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Cellulose 3/2022

24-01-2022 | Original Research

Cellulose nanocrystals from native and mercerized cotton

Authors: Somia Haouache, Clara Jimenez-Saelices, Fabrice Cousin, Xavier Falourd, Bruno Pontoire, Karine Cahier, François Jérome, Isabelle Capron

Published in: Cellulose | Issue 3/2022

Login to get access
share
SHARE

Abstract

Nanocelluloses occur under various crystalline forms that are currently being selectively used for a wide variety of high performance materials. In the present study, two cellulose nanofibers (CF-I) were mercerized by alkaline treatment (CF-II) without degradation, the same molar mass of 560,000 g/mol was measured. Both samples were acid hydrolyzed, leading to cellulose nanocrystals in native (CNC-I) and mercerized (CNC-II) forms. This study focuses on the detailed characterization of these two nanoparticle morphologies (light and neutron scattering, TEM, AFM), surface chemistry (zetametry and surface charge), crystallinity (XRD, 13C NMR), and average molar mass coupled to chromatographic techniques (SEC–MALLS-RI, A4F-MALLS-RI), revealing variations in the packing of the crystalline domains. The crystal size of CNC-II is reduced by half compared to CNC-I, with molar masses of individual chains of 41,000 g/mol and 22,000 g/mol for CNC-I and CNC-II, respectively, whereas the same surface charge density is measured. This study gives an example of complementary characterization techniques as well as results to help decipher the mechanism involved in mercerization.

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Literature
go back to reference Atalla RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15(1):1–19 PubMed Atalla RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15(1):1–19 PubMed
go back to reference Bregado JL et al (2019) Amorphous paracrystalline structures from native crystalline cellulose: a molecular dynamics protocol. Fluid Phase Equilib 491:56–76 Bregado JL et al (2019) Amorphous paracrystalline structures from native crystalline cellulose: a molecular dynamics protocol. Fluid Phase Equilib 491:56–76
go back to reference Cherhal F, Cathala B, Capron I (2015a) Surface charge density variation to promote structural orientation of cellulose nanocrystals. Nord Pulp Pap Res J 30(1):126–131 Cherhal F, Cathala B, Capron I (2015a) Surface charge density variation to promote structural orientation of cellulose nanocrystals. Nord Pulp Pap Res J 30(1):126–131
go back to reference Cherhal F, Cousin F, Capron I (2015b) Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31(20):5596–5602 PubMed Cherhal F, Cousin F, Capron I (2015b) Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31(20):5596–5602 PubMed
go back to reference Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J Macromol Sci Rev Macromol Chem Phys 30(3–4):405–440 Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J Macromol Sci Rev Macromol Chem Phys 30(3–4):405–440
go back to reference Duchemin BJC (2015) Mercerisation of cellulose in aqueous NaOH at low concentrations. Green Chem 17(7):3941–3947 Duchemin BJC (2015) Mercerisation of cellulose in aqueous NaOH at low concentrations. Green Chem 17(7):3941–3947
go back to reference Dupont A-L, Harrison G (2004) Conformation and Dn/Dc determination of cellulose in N, N-dimethylacetamide containing lithium chloride. Carbohyd Polym 58(3):233–243 Dupont A-L, Harrison G (2004) Conformation and Dn/Dc determination of cellulose in N, N-dimethylacetamide containing lithium chloride. Carbohyd Polym 58(3):233–243
go back to reference Elazzouzi-Hafraoui S et al (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9(1):57–65 Elazzouzi-Hafraoui S et al (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9(1):57–65
go back to reference Fink H-P, Philipp B (1985) Models of cellulose physical structure from the viewpoint of the cellulose I→ II transition. J Appl Polym Sci 30(9):3779–3790 Fink H-P, Philipp B (1985) Models of cellulose physical structure from the viewpoint of the cellulose I→ II transition. J Appl Polym Sci 30(9):3779–3790
go back to reference Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolym Original Res Biomol 13(10):1975–2001 Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolym Original Res Biomol 13(10):1975–2001
go back to reference Goussé C et al (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651 Goussé C et al (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651
go back to reference Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500 PubMed Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500 PubMed
go back to reference Hasani M et al (2013) Nano-cellulosic materials: the impact of water on their dissolution in DMAc/LiCl. Carbohyd Polym 98(2):1565–1572 Hasani M et al (2013) Nano-cellulosic materials: the impact of water on their dissolution in DMAc/LiCl. Carbohyd Polym 98(2):1565–1572
go back to reference Heise K et al (2021) Chemical modification of reducing end-groups in cellulose nanocrystals. Angew Chem Int Ed 60(1):66–87 Heise K et al (2021) Chemical modification of reducing end-groups in cellulose nanocrystals. Angew Chem Int Ed 60(1):66–87
go back to reference Ibbett RN, Domvoglou D, Fasching M (2007) Characterisation of the supramolecular structure of chemically and physically modified regenerated cellulosic fibres by means of high-resolution carbon-13 solid-state NMR. Polymer 48(5):1287–1296 Ibbett RN, Domvoglou D, Fasching M (2007) Characterisation of the supramolecular structure of chemically and physically modified regenerated cellulosic fibres by means of high-resolution carbon-13 solid-state NMR. Polymer 48(5):1287–1296
go back to reference Isogai A et al (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22(7):3168–3172 Isogai A et al (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22(7):3168–3172
go back to reference Kim N-H, Imai T, Wada M, Sugiyama J (2006) Molecular directionality in cellulose polymorphs. Biomacromol 7(1):274–280 Kim N-H, Imai T, Wada M, Sugiyama J (2006) Molecular directionality in cellulose polymorphs. Biomacromol 7(1):274–280
go back to reference Kolpak FJ, Weih M, Blackwell J (1978) Mercerization of cellulose: 1. determination of the structure of mercerized cotton. Polymer 19(2):123–131 Kolpak FJ, Weih M, Blackwell J (1978) Mercerization of cellulose: 1. determination of the structure of mercerized cotton. Polymer 19(2):123–131
go back to reference Kroon-Batenburg LMJ, Bouma B, Kroon J (1996) Stability of cellulose structures studied by MD simulations. could mercerized cellulose ii be parallel? Macromolecules 29(17):5695–5699 Kroon-Batenburg LMJ, Bouma B, Kroon J (1996) Stability of cellulose structures studied by MD simulations. could mercerized cellulose ii be parallel? Macromolecules 29(17):5695–5699
go back to reference Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121(43):9940–9946 Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121(43):9940–9946
go back to reference Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 \AA resolution. Biomacromol 2(2):410–416 Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 \AA resolution. Biomacromol 2(2):410–416
go back to reference Larsson PT et al (1999) CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15(1):31–40 PubMed Larsson PT et al (1999) CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15(1):31–40 PubMed
go back to reference Li X et al (2018) Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water pickering emulsions. Carbohyd Polym 183:303–310 Li X et al (2018) Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water pickering emulsions. Carbohyd Polym 183:303–310
go back to reference Mansikkamaki P, Lahtinen M, Rissanen K (2005) Structural changes of cellulose rystallites induced by mercerisation in different solvent systems; determined by powder X-ray diffraction method. Cellulose 12(3):233–242 Mansikkamaki P, Lahtinen M, Rissanen K (2005) Structural changes of cellulose rystallites induced by mercerisation in different solvent systems; determined by powder X-ray diffraction method. Cellulose 12(3):233–242
go back to reference Medronho B, Lindman B (2015) Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid Interface Sci 222:502–508 PubMed Medronho B, Lindman B (2015) Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid Interface Sci 222:502–508 PubMed
go back to reference Moon RJ et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994 PubMed Moon RJ et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994 PubMed
go back to reference Neto WP, Flauzino, et al (2016) Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv 6(79):76017–76027 Neto WP, Flauzino, et al (2016) Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv 6(79):76017–76027
go back to reference Newman RH, Davidson TC (2004) Molecular conformations at the cellulose-water interface. Cellulose 11(1):23–32 Newman RH, Davidson TC (2004) Molecular conformations at the cellulose-water interface. Cellulose 11(1):23–32
go back to reference Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249 Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249
go back to reference Nishiyama Y, Kuga S, Okano T (2000) Mechanism of mercerization revealed by X-ray diffraction. J Wood Sci 46(6):452–457 Nishiyama Y, Kuga S, Okano T (2000) Mechanism of mercerization revealed by X-ray diffraction. J Wood Sci 46(6):452–457
go back to reference Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082 PubMed Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082 PubMed
go back to reference Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali-cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30(1):325–332 Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali-cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30(1):325–332
go back to reference Park S et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):1–10 Park S et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):1–10
go back to reference Paschall EF, Foster JF (1952) Further studies by light scattering of amylose aggregates. particle weights under various conditions. J Polym Sci 9(1):85–92 Paschall EF, Foster JF (1952) Further studies by light scattering of amylose aggregates. particle weights under various conditions. J Polym Sci 9(1):85–92
go back to reference Revol JF, Dietrich A, Goring DAI (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can J Chem 65(8):1724–1725 Revol JF, Dietrich A, Goring DAI (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can J Chem 65(8):1724–1725
go back to reference Revol J-F et al (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172 PubMed Revol J-F et al (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172 PubMed
go back to reference Sèbe G et al (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromol 13(2):570–578 Sèbe G et al (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromol 13(2):570–578
go back to reference Stipanovic AJ, Sarko A (1976) Packing analysis of carbohydrates and polysaccharides. 6. Molecular and crystal structure of regenerated cellulose II. Macromolecules 9(5):851–857 Stipanovic AJ, Sarko A (1976) Packing analysis of carbohydrates and polysaccharides. 6. Molecular and crystal structure of regenerated cellulose II. Macromolecules 9(5):851–857
go back to reference Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175 Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175
go back to reference Tao H et al (2020) Reducing end modification on cellulose nanocrystals: strategy, characterization, applications and challenges. Nanoscale Horizons 5(4):607–627 PubMed Tao H et al (2020) Reducing end modification on cellulose nanocrystals: strategy, characterization, applications and challenges. Nanoscale Horizons 5(4):607–627 PubMed
go back to reference Warwicker JO (1967) Effect of chemical reagents on the fine structure of cellulose, part IV: action of caustic soda on the fine structure of cotton and ramie. J Polym Sci Part A Polym Chem 5(10):2579–2593 Warwicker JO (1967) Effect of chemical reagents on the fine structure of cellulose, part IV: action of caustic soda on the fine structure of cotton and ramie. J Polym Sci Part A Polym Chem 5(10):2579–2593
go back to reference Wickholm K et al (2001) Quantification of cellulose forms in complex cellulose materials: a chemometric model. Cellulose 8(2):139–148 Wickholm K et al (2001) Quantification of cellulose forms in complex cellulose materials: a chemometric model. Cellulose 8(2):139–148
go back to reference Yanagisawa M, Isogai A (2005) SEC- MALS- QELS study on the molecular conformation of cellulose in LiCl/amide solutions. Biomacromol 6(3):1258–1265 Yanagisawa M, Isogai A (2005) SEC- MALS- QELS study on the molecular conformation of cellulose in LiCl/amide solutions. Biomacromol 6(3):1258–1265
go back to reference Yue Y et al (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19(4):1173–1187 Yue Y et al (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19(4):1173–1187
go back to reference Zuckerstätter G, Nicoleta T, Herbert S, Schuster KC (2013) Novel insight into cellulose supramolecular structure through 13C CP-MAS NMR spectroscopy and paramagnetic relaxation enhancement. Carbohydr Polym 93(1):122–128 PubMed Zuckerstätter G, Nicoleta T, Herbert S, Schuster KC (2013) Novel insight into cellulose supramolecular structure through 13C CP-MAS NMR spectroscopy and paramagnetic relaxation enhancement. Carbohydr Polym 93(1):122–128 PubMed
go back to reference Zugenmaier P (2008) Crystalline cellulose and derivatives: characterization and structures. Springer, Berlin Zugenmaier P (2008) Crystalline cellulose and derivatives: characterization and structures. Springer, Berlin
Metadata
Title
Cellulose nanocrystals from native and mercerized cotton
Authors
Somia Haouache
Clara Jimenez-Saelices
Fabrice Cousin
Xavier Falourd
Bruno Pontoire
Karine Cahier
François Jérome
Isabelle Capron
Publication date
24-01-2022
Publisher
Springer Netherlands
Published in
Cellulose / Issue 3/2022
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-04313-8