Skip to main content
Top
Published in: Cellulose 1/2018

10-11-2017 | Original Paper

Cellulose nanofibres as biomaterial for nano-reinforcement of poly[styrene-(ethylene-co-butylene)-styrene] triblock copolymer

Authors: Chandravati Yadav, Arun Saini, Pradip K. Maji

Published in: Cellulose | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cellulose nanofibres (CNFs) obtained from waste mango wood scrap were used for the preparation of nanocomposites with SEBS (poly[styrene-(ethylene-co-butylene)-styrene]) and SEBS-g-MA (SEBS-maleic anhydride grafted). Results revealed the incompatibility of CNFs with unmodified SEBS due to the lack of interaction between polar and nonpolar groups. The polar maleic anhydride groups in SEBS-g-MA (mSEBS) demonstrated a strong interfacial interaction with CNFs showing a compatible association. Nanocomposite films with very minute loading of CNFs [0.005 phr (parts per hundred resin)] resulted in a substantial increment in Young’s modulus (98% increment) and tensile strength (70% improvement) as compared to neat mSEBS film along with increment in elongation at break. The nanocomposite films showed the integration of CNFs as an interwoven thread-like structure in the polymer matrix at 0.001 phr. Polymer coated continuous foam/porous network microstructure was observed at 0.005 phr loading.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Arrakhiz FZ, Benmoussa K, Bouhfid R, Qaiss A (2013) Pine cone fiber/clay hybrid composite: mechanical and thermal properties. Mater Des 50:376–381CrossRef Arrakhiz FZ, Benmoussa K, Bouhfid R, Qaiss A (2013) Pine cone fiber/clay hybrid composite: mechanical and thermal properties. Mater Des 50:376–381CrossRef
go back to reference Auad ML, Mosiewicki MA, Richardson T et al (2010) Nanocomposites made from cellulose nanocrystals and tailored segmented polyurethanes. J Appl Polym Sci 115:1215–1225CrossRef Auad ML, Mosiewicki MA, Richardson T et al (2010) Nanocomposites made from cellulose nanocrystals and tailored segmented polyurethanes. J Appl Polym Sci 115:1215–1225CrossRef
go back to reference Balsamo V, Lorenzo AT, Müller AJ, Corona-Galván S, Fraga Trillo LM, Santa Quiteria VR (2006) Structure, properties and applications of ABA and ABC triblock copolymers with hydrogenated polybutadiene blocks. In: Lazzari M, Liu G, Lecommandoux S (eds) Block copolymers in nanoscience. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 367–389 Balsamo V, Lorenzo AT, Müller AJ, Corona-Galván S, Fraga Trillo LM, Santa Quiteria VR (2006) Structure, properties and applications of ABA and ABC triblock copolymers with hydrogenated polybutadiene blocks. In: Lazzari M, Liu G, Lecommandoux S (eds) Block copolymers in nanoscience. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 367–389
go back to reference Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169CrossRef Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169CrossRef
go back to reference Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–28 Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–28
go back to reference Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652CrossRef Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652CrossRef
go back to reference Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRef Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRef
go back to reference Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859CrossRef Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859CrossRef
go back to reference Famá L, Gerschenson L, Goyanes S (2009) Starch-vegetable fibre composites to protect food products. Carbohydr Polym 75:230–235CrossRef Famá L, Gerschenson L, Goyanes S (2009) Starch-vegetable fibre composites to protect food products. Carbohydr Polym 75:230–235CrossRef
go back to reference Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRef Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRef
go back to reference Frone AN, Panaitescu DM, Spataru DD et al (2011) Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioResources 6:487–512 Frone AN, Panaitescu DM, Spataru DD et al (2011) Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioResources 6:487–512
go back to reference Ganguly A, Bhowmick AK (2009) Effect of polar modification on morphology and properties of styrene-(ethylene-co-butylene)-styrene triblock copolymer and its montmorillonite clay-based nanocomposites. J Mater Sci 44:903–918CrossRef Ganguly A, Bhowmick AK (2009) Effect of polar modification on morphology and properties of styrene-(ethylene-co-butylene)-styrene triblock copolymer and its montmorillonite clay-based nanocomposites. J Mater Sci 44:903–918CrossRef
go back to reference Ganguly A, De Sarkar M, Bhowmick AK (2006) Thermoplastic elastomeric nanocomposites from poly[styrene-(ethylene-co-butylene)-styrene] triblock copolymer and clay: preparation and characterization. J Appl Polym Sci 100:2040–2052CrossRef Ganguly A, De Sarkar M, Bhowmick AK (2006) Thermoplastic elastomeric nanocomposites from poly[styrene-(ethylene-co-butylene)-styrene] triblock copolymer and clay: preparation and characterization. J Appl Polym Sci 100:2040–2052CrossRef
go back to reference Grigorescu RM, Ciuprina F, Ghioca P et al (2016) Mechanical and dielectric properties of SEBS modified by graphite inclusion and composite interface. J Phys Chem Solids 89:97–106CrossRef Grigorescu RM, Ciuprina F, Ghioca P et al (2016) Mechanical and dielectric properties of SEBS modified by graphite inclusion and composite interface. J Phys Chem Solids 89:97–106CrossRef
go back to reference He H, Li K, Wang J et al (2011) Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites. Mater Des 32:4521–4527CrossRef He H, Li K, Wang J et al (2011) Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites. Mater Des 32:4521–4527CrossRef
go back to reference Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980 Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980
go back to reference Kakou CA, Essabir H, Bensalah M-O et al (2015) Hybrid composites based on polyethylene and coir/oil palm fibers. J Reinf Plast Compos 34:1684–1697CrossRef Kakou CA, Essabir H, Bensalah M-O et al (2015) Hybrid composites based on polyethylene and coir/oil palm fibers. J Reinf Plast Compos 34:1684–1697CrossRef
go back to reference Kazayawoko M, Balatinecz JJ, Woodhams RT (1997) Diffuse reflectance Fourier transform infrared spectra of wood fibers treated with maleated polypropylenes. J Appl Polym Sci 66:1163–1173CrossRef Kazayawoko M, Balatinecz JJ, Woodhams RT (1997) Diffuse reflectance Fourier transform infrared spectra of wood fibers treated with maleated polypropylenes. J Appl Polym Sci 66:1163–1173CrossRef
go back to reference Khalil HPSA, Davoudpour Y, Islam MN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665CrossRef Khalil HPSA, Davoudpour Y, Islam MN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665CrossRef
go back to reference Kwee T, Mauritz KA, Beyer FL (2005) Poly[styrene-b-maleated (ethylene/butylene)-b-styrene] (mSEBS) block copolymers and mSEBS/inorganic nanocomposites: I. Morphology and FTIR characterization. Polymer (Guildf) 46:3871–3883CrossRef Kwee T, Mauritz KA, Beyer FL (2005) Poly[styrene-b-maleated (ethylene/butylene)-b-styrene] (mSEBS) block copolymers and mSEBS/inorganic nanocomposites: I. Morphology and FTIR characterization. Polymer (Guildf) 46:3871–3883CrossRef
go back to reference Latko P, Bogucka A, Boczkowska A (2015) Characterization of thermoplastic elastomers based composites doped with carbon black. Int J Mech Eng Autom 2:171–176 Latko P, Bogucka A, Boczkowska A (2015) Characterization of thermoplastic elastomers based composites doped with carbon black. Int J Mech Eng Autom 2:171–176
go back to reference Li Y, Shimizu H (2009) Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly [styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42:2587–2593CrossRef Li Y, Shimizu H (2009) Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly [styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42:2587–2593CrossRef
go back to reference Maji PK, Bhowmick AK (2009) Influence of number of functional groups of hyperbranched polyol on cure kinetics and physical properties of polyurethanes. J Polym Sci Part A Polym Chem 47:731–745CrossRef Maji PK, Bhowmick AK (2009) Influence of number of functional groups of hyperbranched polyol on cure kinetics and physical properties of polyurethanes. J Polym Sci Part A Polym Chem 47:731–745CrossRef
go back to reference Maji PK, Guchhait PK, Bhowmick AK (2009) Effect of the microstructure of a hyperbranched polymer and nanoclay loading on the morphology and properties of novel polyurethane nanocomposites. ACS Appl Mater Interfaces 1:289–300CrossRef Maji PK, Guchhait PK, Bhowmick AK (2009) Effect of the microstructure of a hyperbranched polymer and nanoclay loading on the morphology and properties of novel polyurethane nanocomposites. ACS Appl Mater Interfaces 1:289–300CrossRef
go back to reference Maji PK, Das NK, Bhowmick AK (2010) Preparation and properties of polyurethane nanocomposites of novel architecture as advanced barrier materials. Polymer (Guildf) 51:1100–1110CrossRef Maji PK, Das NK, Bhowmick AK (2010) Preparation and properties of polyurethane nanocomposites of novel architecture as advanced barrier materials. Polymer (Guildf) 51:1100–1110CrossRef
go back to reference Mittal G, Dhand V, Rhee KY et al (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25CrossRef Mittal G, Dhand V, Rhee KY et al (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25CrossRef
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
go back to reference Ocando C, Tercjak A, Martín MD et al (2009) Morphology development in thermosetting mixtures through the variation on chemical functionalization degree of poly(styrene-b-butadiene) diblock copolymer modifiers. Thermomechanical properties. Macromolecules 42:6215–6224CrossRef Ocando C, Tercjak A, Martín MD et al (2009) Morphology development in thermosetting mixtures through the variation on chemical functionalization degree of poly(styrene-b-butadiene) diblock copolymer modifiers. Thermomechanical properties. Macromolecules 42:6215–6224CrossRef
go back to reference Ojijo V, Sinha Ray S (2013) Processing strategies in bionanocomposites. Prog Polym Sci 38:1543–1589CrossRef Ojijo V, Sinha Ray S (2013) Processing strategies in bionanocomposites. Prog Polym Sci 38:1543–1589CrossRef
go back to reference Pattanayak A, Jana SC (2005a) Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods. Polymer (Guildf) 46:3275–3288CrossRef Pattanayak A, Jana SC (2005a) Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods. Polymer (Guildf) 46:3275–3288CrossRef
go back to reference Pattanayak A, Jana SC (2005b) Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties. Polymer (Guildf) 46:5183–5193CrossRef Pattanayak A, Jana SC (2005b) Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties. Polymer (Guildf) 46:5183–5193CrossRef
go back to reference Pei A, Malho JM, Ruokolainen J et al (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44:4422–4427CrossRef Pei A, Malho JM, Ruokolainen J et al (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44:4422–4427CrossRef
go back to reference Pelissari FM, Sobral PJDA, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432CrossRef Pelissari FM, Sobral PJDA, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432CrossRef
go back to reference Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube—polystyrene composites. Appl Phys Lett 76:2868CrossRef Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube—polystyrene composites. Appl Phys Lett 76:2868CrossRef
go back to reference Reddy MM, Vivekanandhan S, Misra M et al (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689CrossRef Reddy MM, Vivekanandhan S, Misra M et al (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689CrossRef
go back to reference Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRef Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRef
go back to reference Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (Basel) 2:728–765CrossRef Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (Basel) 2:728–765CrossRef
go back to reference Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
go back to reference Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286CrossRef Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286CrossRef
go back to reference Stoyanov H, Kollosche M, McCarthy DN, Kofod G (2010) Molecular composites with enhanced energy density for electroactive polymers. J Mater Chem 20:7558–7564CrossRef Stoyanov H, Kollosche M, McCarthy DN, Kofod G (2010) Molecular composites with enhanced energy density for electroactive polymers. J Mater Chem 20:7558–7564CrossRef
go back to reference Stoyanov H, Kollosche M, Risse S et al (2011) Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control. Soft Matter 7:194–202CrossRef Stoyanov H, Kollosche M, Risse S et al (2011) Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control. Soft Matter 7:194–202CrossRef
go back to reference Stuart BH (ed) (2004) Organic molecules. In: Infrared spectroscopy: fundamentals and applications. Wiley, Hoboken, NJ, pp 70–94 Stuart BH (ed) (2004) Organic molecules. In: Infrared spectroscopy: fundamentals and applications. Wiley, Hoboken, NJ, pp 70–94
go back to reference Toivonen MS, Kurki-Suonio S, Schacher FH et al (2015) Water-resistant, transparent hybrid nanopaper by physical cross-linking with chitosan. Biomacromol 16:1062–1071CrossRef Toivonen MS, Kurki-Suonio S, Schacher FH et al (2015) Water-resistant, transparent hybrid nanopaper by physical cross-linking with chitosan. Biomacromol 16:1062–1071CrossRef
go back to reference Vaia RA, Maguire JF (2007) Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem Mater 19:2736–2751CrossRef Vaia RA, Maguire JF (2007) Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chem Mater 19:2736–2751CrossRef
go back to reference Visakh PM, Thomas S, Chandra AK, Mathew AP (2013) Advances in elastomers I: blends and interpenetrating networks. Springer, BerlinCrossRef Visakh PM, Thomas S, Chandra AK, Mathew AP (2013) Advances in elastomers I: blends and interpenetrating networks. Springer, BerlinCrossRef
go back to reference Wu CN, Saito T, Fujisawa S et al (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromol 13:1927–1932CrossRef Wu CN, Saito T, Fujisawa S et al (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromol 13:1927–1932CrossRef
go back to reference Xu X, Liu F, Jiang L et al (2013) Cellulose nanocrystals versus cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009CrossRef Xu X, Liu F, Jiang L et al (2013) Cellulose nanocrystals versus cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009CrossRef
go back to reference Yadav C, Saini A, Maji PK (2017) Energy efficient facile extraction process of cellulose nanofibres and their dimensional characterization using light scattering techniques. Carbohydr Polym 165:276–284CrossRef Yadav C, Saini A, Maji PK (2017) Energy efficient facile extraction process of cellulose nanofibres and their dimensional characterization using light scattering techniques. Carbohydr Polym 165:276–284CrossRef
go back to reference Yao X, Qi X, He Y et al (2014) Simultaneous reinforcing and toughening of polyurethane via grafting on the surface of microfibrillated cellulose. ACS Appl Mater Interfaces 6:2497–2507CrossRef Yao X, Qi X, He Y et al (2014) Simultaneous reinforcing and toughening of polyurethane via grafting on the surface of microfibrillated cellulose. ACS Appl Mater Interfaces 6:2497–2507CrossRef
go back to reference Zalakain I, Ramos JA, Fernandez R et al (2011) Nanostructuration of self-assembled poly(styrene-b-isoprene-b-styrene) block copolymer thin films in a highly oriented pyrolytic graphite substrate. Thin Solid Films 519:1882–1885CrossRef Zalakain I, Ramos JA, Fernandez R et al (2011) Nanostructuration of self-assembled poly(styrene-b-isoprene-b-styrene) block copolymer thin films in a highly oriented pyrolytic graphite substrate. Thin Solid Films 519:1882–1885CrossRef
Metadata
Title
Cellulose nanofibres as biomaterial for nano-reinforcement of poly[styrene-(ethylene-co-butylene)-styrene] triblock copolymer
Authors
Chandravati Yadav
Arun Saini
Pradip K. Maji
Publication date
10-11-2017
Publisher
Springer Netherlands
Published in
Cellulose / Issue 1/2018
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1567-4

Other articles of this Issue 1/2018

Cellulose 1/2018 Go to the issue