Skip to main content
Top

2020 | OriginalPaper | Chapter

9. Ceramic Composite Armour for Ballistic Protection

Authors : P. Rama Subba Reddy, S. Geasin Savio, Vemuri Madhu

Published in: Handbook of Advanced Ceramics and Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Survivability of the combat system depends on three key parameters such as mobility, protection, and firepower. Armour materials are used to provide protection to the combat systems against various threats with a minimal weight penalty. Low Dense ceramics and polymer composite materials are explored by various researchers to design lightweight armours for personnel and vehicular armour applications. Ceramics such as high purity alumina, silicon carbide, and boron carbide are used in combination with some composite laminates. Advanced fiber-reinforced laminates such as glass, aramid, and high-modulus polyethylene are used as stand-alone as well as a backing to ceramic armours both in add-on and structural composite armour applications. The present chapter describes the various types of ceramic and composite laminates used to design lightweight armours, and their processing methods. It has also covered ballistic test standards, penetration mechanisms, and the way forward for future armour materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Weimer AW (ed) (1997) Carbide, nitride and boride materials synthesis and processing. Chapman & Hall, London Weimer AW (ed) (1997) Carbide, nitride and boride materials synthesis and processing. Chapman & Hall, London
2.
go back to reference Liu G, Xie Z, Wu Y (2010) Effectively inhibiting abnormal grain growth of alumina in ZTA with low-content fine-sized ZrO2 inclusions introduced by Infiltration and In Situ Precipitation. J Am Ceram Soc 93(12):4001–4004CrossRef Liu G, Xie Z, Wu Y (2010) Effectively inhibiting abnormal grain growth of alumina in ZTA with low-content fine-sized ZrO2 inclusions introduced by Infiltration and In Situ Precipitation. J Am Ceram Soc 93(12):4001–4004CrossRef
3.
go back to reference Hannink RHJ, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83(3):461–487CrossRef Hannink RHJ, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83(3):461–487CrossRef
4.
go back to reference Somiya S, Inomata Y (eds) (1991) Silicon carbide ceramics 1- fundamental and solid reaction. Elsevier Science Publishers Ltd, London Somiya S, Inomata Y (eds) (1991) Silicon carbide ceramics 1- fundamental and solid reaction. Elsevier Science Publishers Ltd, London
5.
go back to reference Biswas K (2009) Solid state sintering of SiC ceramics. Mater Sci Forum 624:71–89CrossRef Biswas K (2009) Solid state sintering of SiC ceramics. Mater Sci Forum 624:71–89CrossRef
6.
go back to reference Chen M, McCauley JW, Hemker KJ (2003) Shock induced localized amorphization in boron carbide. Science 299:1563–1566CrossRef Chen M, McCauley JW, Hemker KJ (2003) Shock induced localized amorphization in boron carbide. Science 299:1563–1566CrossRef
7.
go back to reference Karandikar PG, Wong S, Evans G, Aghajanian MK (2010) Microstructural development and phase changes in reaction bonded boron carbide, Advances in ceramic armour VI. Ceramic Sci Eng Proc 31(5):251–259CrossRef Karandikar PG, Wong S, Evans G, Aghajanian MK (2010) Microstructural development and phase changes in reaction bonded boron carbide, Advances in ceramic armour VI. Ceramic Sci Eng Proc 31(5):251–259CrossRef
8.
go back to reference Hayun S, Weizmann A, Dariel MP, Frage N (2010) Microstructural evolution during the infiltration of boron carbide with molten silicon. J Eur Ceram Soc 30:1007–1014CrossRef Hayun S, Weizmann A, Dariel MP, Frage N (2010) Microstructural evolution during the infiltration of boron carbide with molten silicon. J Eur Ceram Soc 30:1007–1014CrossRef
9.
go back to reference Mishra SK, Pathak LC (2009) Self-propagating high-temperature synthesis (SHS) of advanced high-temperature ceramics. Key Eng Mater 395:15–38CrossRef Mishra SK, Pathak LC (2009) Self-propagating high-temperature synthesis (SHS) of advanced high-temperature ceramics. Key Eng Mater 395:15–38CrossRef
10.
go back to reference Gu Y, Qian Y, Chen L, Zhou F (2003) A mild solvothermal route to nanocrystalline titanium diboride. J Alloy Comp 352:325–327CrossRef Gu Y, Qian Y, Chen L, Zhou F (2003) A mild solvothermal route to nanocrystalline titanium diboride. J Alloy Comp 352:325–327CrossRef
11.
go back to reference Janardhana Reddy J, Saivardan N, Bhanu Prasad VV. Indigenous development of Titanium diboride and other ceramics for armour applications. DMRL Technical report No. DRDO-DMRL-CCG-085-2015 Janardhana Reddy J, Saivardan N, Bhanu Prasad VV. Indigenous development of Titanium diboride and other ceramics for armour applications. DMRL Technical report No. DRDO-DMRL-CCG-085-2015
12.
go back to reference Boch P, Niepce J-C (2007) Ceramic materials processes, properties and applications. ISTE Ltd, London Boch P, Niepce J-C (2007) Ceramic materials processes, properties and applications. ISTE Ltd, London
13.
go back to reference Rahaman MN (2007) Sintering of ceramics. CRC Press, Taylor & Francis Group, Boca RatonCrossRef Rahaman MN (2007) Sintering of ceramics. CRC Press, Taylor & Francis Group, Boca RatonCrossRef
15.
go back to reference Fredrick TW, James CW, Hong L (2001) ASM hand book, vol 21, Chapter: Constituent of materials; Glass fibers, pp 27–34 Fredrick TW, James CW, Hong L (2001) ASM hand book, vol 21, Chapter: Constituent of materials; Glass fibers, pp 27–34
16.
go back to reference Reddy PRS, Rao VVVSS, Reddy CJR, Mogulanna K, Ramanjaneyulu K, Madhu V, Gogia AK. Studies on energy absorption of glass composite laminates subjected to ballistic impact of soft projectiles. DMRL Technical report No. DRDO-DMRL-038-2013 Reddy PRS, Rao VVVSS, Reddy CJR, Mogulanna K, Ramanjaneyulu K, Madhu V, Gogia AK. Studies on energy absorption of glass composite laminates subjected to ballistic impact of soft projectiles. DMRL Technical report No. DRDO-DMRL-038-2013
17.
go back to reference Karl KC (2001) ASM hand Book: Chapter: Constituent of materials, Aramid fibers, 21, pp 41–45 Karl KC (2001) ASM hand Book: Chapter: Constituent of materials, Aramid fibers, 21, pp 41–45
18.
go back to reference Bhat TB, Madhu V (2017) Composite armour materials and modules. DRDO, DESIDOC Publications, New Delhi Bhat TB, Madhu V (2017) Composite armour materials and modules. DRDO, DESIDOC Publications, New Delhi
19.
go back to reference Donald VR, Dominick VR (2004) Reinforced plastics hand book, 3rd ed, Elsevier advanced technologies, UK, p 56 Donald VR, Dominick VR (2004) Reinforced plastics hand book, 3rd ed, Elsevier advanced technologies, UK, p 56
20.
go back to reference Cheeseman BA, Bogetti TA (2003) Ballistic impact into fabric and compliant composite laminates. Compos Struct 61:161–173CrossRef Cheeseman BA, Bogetti TA (2003) Ballistic impact into fabric and compliant composite laminates. Compos Struct 61:161–173CrossRef
21.
go back to reference Rama Subba P, Reddy T, Sreekantha Reddy I, Srikanth V, Madhu KVR (2016) Effect of viscoelastic behaviour of glass laminate on energy absorption subjected to high velocity impact. Mater Des 98:272–279CrossRef Rama Subba P, Reddy T, Sreekantha Reddy I, Srikanth V, Madhu KVR (2016) Effect of viscoelastic behaviour of glass laminate on energy absorption subjected to high velocity impact. Mater Des 98:272–279CrossRef
22.
go back to reference Bhatnagar A (2016) Light weight ballistic composites: military and Law enforcement applications. 2nd ed, Woodhead publishing composite science and engineering, UK, pp 217–227 Bhatnagar A (2016) Light weight ballistic composites: military and Law enforcement applications. 2nd ed, Woodhead publishing composite science and engineering, UK, pp 217–227
23.
go back to reference Hauver GE, Rapacki EJ Jr, Netherwood PH, Benck RF (2005) Interface Defeat of Long-Rod Projectiles by Ceramic Armour, ARL-TR-3590 Hauver GE, Rapacki EJ Jr, Netherwood PH, Benck RF (2005) Interface Defeat of Long-Rod Projectiles by Ceramic Armour, ARL-TR-3590
24.
go back to reference Lundberg P, Renstrom R, Lundberg B (2000) Impact of metallic projectiles on ceramic targets: transition between interface defeat and penetration. Int J Impact Eng 24:259CrossRef Lundberg P, Renstrom R, Lundberg B (2000) Impact of metallic projectiles on ceramic targets: transition between interface defeat and penetration. Int J Impact Eng 24:259CrossRef
25.
go back to reference Behner T, Heine A, Wickert M (2016) Dwell and penetration of tungsten heavy alloy long-rod penetrators impacting unconfined finite-thickness silicon carbide ceramic targets. Int J Impact Eng 95:54–60CrossRef Behner T, Heine A, Wickert M (2016) Dwell and penetration of tungsten heavy alloy long-rod penetrators impacting unconfined finite-thickness silicon carbide ceramic targets. Int J Impact Eng 95:54–60CrossRef
26.
go back to reference Shockey DA, Marchand AH, Skaggs SR, Cort GE, Burkett MW, Parker R (1990) Failure phenomenology of confined ceramic targets and impacting rods. Int J Impact Eng 9(3):263–275CrossRef Shockey DA, Marchand AH, Skaggs SR, Cort GE, Burkett MW, Parker R (1990) Failure phenomenology of confined ceramic targets and impacting rods. Int J Impact Eng 9(3):263–275CrossRef
27.
go back to reference Shockey DA, Simons JW, Curran DR (2010) The damage mechanism route to better armour materials. Int J Appl Ceram Technol 7(5):566–573CrossRef Shockey DA, Simons JW, Curran DR (2010) The damage mechanism route to better armour materials. Int J Appl Ceram Technol 7(5):566–573CrossRef
28.
go back to reference Sherman D, Brandon DG (1997) The ballistic failure mechanisms and sequence in semi-infinite supported alumina tiles. J Mater Res 12(5):1335CrossRef Sherman D, Brandon DG (1997) The ballistic failure mechanisms and sequence in semi-infinite supported alumina tiles. J Mater Res 12(5):1335CrossRef
29.
go back to reference McGinn JT, Klopp RW, Shockey DA (1995) Deformation and comminution of shock loaded α-Al2O3 in the Mescall Zone of Ceramic Armour. In: Grant NJ, Armstrong RW, Ottooni MA, Baker TN, Ishizaki K (eds) Material research society symposium proceedings, vol 362. Materials Research Society, Pittsburgh, pp 61–66 McGinn JT, Klopp RW, Shockey DA (1995) Deformation and comminution of shock loaded α-Al2O3 in the Mescall Zone of Ceramic Armour. In: Grant NJ, Armstrong RW, Ottooni MA, Baker TN, Ishizaki K (eds) Material research society symposium proceedings, vol 362. Materials Research Society, Pittsburgh, pp 61–66
30.
go back to reference Weinong W, Chen AMR, Song B, Nie X (2007) Dynamic fracture of ceramics in armour applications. J Am Ceram Soc 90(4):1005–1018CrossRef Weinong W, Chen AMR, Song B, Nie X (2007) Dynamic fracture of ceramics in armour applications. J Am Ceram Soc 90(4):1005–1018CrossRef
31.
go back to reference LaSalvia JC, McCauley JW (2010) Inelastic deformation mechanisms and damage in structural ceramics subjected to high-velocity impact. Int J Appl Ceram Technol 7(5):595–605CrossRef LaSalvia JC, McCauley JW (2010) Inelastic deformation mechanisms and damage in structural ceramics subjected to high-velocity impact. Int J Appl Ceram Technol 7(5):595–605CrossRef
32.
go back to reference James B. Direct evidence for ceramic comminution ahead of a penetrator, 17th international symposium on ballistics, Midrand, South Africa, 23–27 March 1998 James B. Direct evidence for ceramic comminution ahead of a penetrator, 17th international symposium on ballistics, Midrand, South Africa, 23–27 March 1998
33.
go back to reference LaSalvia JC, Horwath EJ, Rapacki EJ, Shih CJ, Meyers MA (2001) Microstructural and micromechanical aspects of ceramic/long-rod projectile interactions: dwell/penetration transitions. In: Staudhammer KP, Murr LE, Meyers MA (eds) Fundamental issues and applications of shock-wave and high-strain-rate phenomena. Elsevier Science, Oxford, UK, pp 437–446 LaSalvia JC, Horwath EJ, Rapacki EJ, Shih CJ, Meyers MA (2001) Microstructural and micromechanical aspects of ceramic/long-rod projectile interactions: dwell/penetration transitions. In: Staudhammer KP, Murr LE, Meyers MA (eds) Fundamental issues and applications of shock-wave and high-strain-rate phenomena. Elsevier Science, Oxford, UK, pp 437–446
34.
go back to reference Lankford J (2004) The role of dynamic material properties in the performance of ceramic armour. Int J Appl Ceram Technol 1(3):205–210CrossRef Lankford J (2004) The role of dynamic material properties in the performance of ceramic armour. Int J Appl Ceram Technol 1(3):205–210CrossRef
35.
go back to reference Stepp D (2001) Damage mitigation in ceramics: historical developments and future direction in army research. In: McCauley JM, Rajendran AM, Gooch WA Jr, Bless SJ, Wax S, Crowson A, Logan KV, Normandia M (eds) Ceramic transactions, vol 134, Ceramic armour materials by design. American Ceramic Society, Westerville, pp 421–439 Stepp D (2001) Damage mitigation in ceramics: historical developments and future direction in army research. In: McCauley JM, Rajendran AM, Gooch WA Jr, Bless SJ, Wax S, Crowson A, Logan KV, Normandia M (eds) Ceramic transactions, vol 134, Ceramic armour materials by design. American Ceramic Society, Westerville, pp 421–439
36.
go back to reference Rama Subba P, Reddy T, Sreekantha Reddy V, Madhu AK, Gogia KVR (2015) Behaviour of E-glass composite laminates under ballistic impact. Mater Des 84:79–86CrossRef Rama Subba P, Reddy T, Sreekantha Reddy V, Madhu AK, Gogia KVR (2015) Behaviour of E-glass composite laminates under ballistic impact. Mater Des 84:79–86CrossRef
37.
go back to reference Karthikeyan K, Russell BP, Fleck NA, Wadley HNG, Deshpande VS (2013) The effect of shear strength on the ballistic response of laminated composite plates subjected to steel projectiles. Eur J Mech A/Solids 42:35–53CrossRef Karthikeyan K, Russell BP, Fleck NA, Wadley HNG, Deshpande VS (2013) The effect of shear strength on the ballistic response of laminated composite plates subjected to steel projectiles. Eur J Mech A/Solids 42:35–53CrossRef
38.
go back to reference Barcikowski M (2013) Effect of resin modification on the impact strength of glass- polyester composites. Polimery 56:nr6 Barcikowski M (2013) Effect of resin modification on the impact strength of glass- polyester composites. Polimery 56:nr6
39.
go back to reference Normandia MJ, Gooch WA (2002) An overview of ballistic testing methods of ceramic materials, ceramic armour materials by design. Ceram Trans 134:113–138 Normandia MJ, Gooch WA (2002) An overview of ballistic testing methods of ceramic materials, ceramic armour materials by design. Ceram Trans 134:113–138
40.
go back to reference EN1522/23, Windows, doors, shutters and blinds – Bullet resistance – Test method EN1522/23, Windows, doors, shutters and blinds – Bullet resistance – Test method
41.
go back to reference GOST R 50963, Armour protection of special cars. General technical requirements, 1 Jan 2009 GOST R 50963, Armour protection of special cars. General technical requirements, 1 Jan 2009
42.
go back to reference NATO AEP-55 STANAG 4569 – Protection levels for Occupants of Logistic and Light Armoured Vehicles NATO AEP-55 STANAG 4569 – Protection levels for Occupants of Logistic and Light Armoured Vehicles
43.
go back to reference Bless SJ, Rosenberg Z, Yoon B (1987) Hypervelocity penetration of ceramics. Int J Impact Eng 5:165–171CrossRef Bless SJ, Rosenberg Z, Yoon B (1987) Hypervelocity penetration of ceramics. Int J Impact Eng 5:165–171CrossRef
44.
go back to reference Rosenberg Z, Bless SJ, Yeshurn Y, Okajima K (1988) A new definition of ballistic efficiency of brittle materials based on the use of thick backing plates. Impact Loading Dyn Behav Mater 1:491–498 Rosenberg Z, Bless SJ, Yeshurn Y, Okajima K (1988) A new definition of ballistic efficiency of brittle materials based on the use of thick backing plates. Impact Loading Dyn Behav Mater 1:491–498
45.
go back to reference James B (2002) Depth of penetration testing, ceramic armour materials by design. Ceram Trans 134:165–172 James B (2002) Depth of penetration testing, ceramic armour materials by design. Ceram Trans 134:165–172
46.
go back to reference Savio SG, Madhu V (2017) Effect of tile thickness and projectile velocity on the ballistic performance of boron carbide against 12.7mm AP. Procedia Eng 173:286–292CrossRef Savio SG, Madhu V (2017) Effect of tile thickness and projectile velocity on the ballistic performance of boron carbide against 12.7mm AP. Procedia Eng 173:286–292CrossRef
47.
go back to reference Savio SG, Madhu V (2018) Ballistic performance evaluation of ceramic tiles with respect to projectile velocity against hard steel projectile using DOP test. Int J Impact Eng 113:161–167CrossRef Savio SG, Madhu V (2018) Ballistic performance evaluation of ceramic tiles with respect to projectile velocity against hard steel projectile using DOP test. Int J Impact Eng 113:161–167CrossRef
48.
go back to reference Normandia MJ (2004) Impact response and analysis of several silicon carbides. Int J Appl Ceram Technol 1(3):226–234CrossRef Normandia MJ (2004) Impact response and analysis of several silicon carbides. Int J Appl Ceram Technol 1(3):226–234CrossRef
49.
go back to reference Orphal DL, Franzen RR, Charters AC, Menna TL, Piekutowski AJ (1997) Penetration of confined Boron carbide targets by tungsten long rods at impact velocities form 1.5 to 5km/s. Int J Impact Eng 19(1):15–29CrossRef Orphal DL, Franzen RR, Charters AC, Menna TL, Piekutowski AJ (1997) Penetration of confined Boron carbide targets by tungsten long rods at impact velocities form 1.5 to 5km/s. Int J Impact Eng 19(1):15–29CrossRef
50.
go back to reference Subramanian R, Bless SJ (1995) Penetration of semi-infinite AD995 alumina targets by tungsten long rod penetrators from 1.5 to 3.5 km/s. Int J Impact Eng 17:807–816CrossRef Subramanian R, Bless SJ (1995) Penetration of semi-infinite AD995 alumina targets by tungsten long rod penetrators from 1.5 to 3.5 km/s. Int J Impact Eng 17:807–816CrossRef
51.
go back to reference Orphal DL, Franzen RR, Piekutowski AJ, Forrestal MJ (1996) Penetration of confined aluminum nitride targets by tungsten long rods at 1.5–4.5 km/s. Int J Impact Eng 18(4):355–368CrossRef Orphal DL, Franzen RR, Piekutowski AJ, Forrestal MJ (1996) Penetration of confined aluminum nitride targets by tungsten long rods at 1.5–4.5 km/s. Int J Impact Eng 18(4):355–368CrossRef
52.
go back to reference Orphal DL, Franzen RR (1997) Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s. Int J Impact Eng 19(1):1–13CrossRef Orphal DL, Franzen RR (1997) Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s. Int J Impact Eng 19(1):1–13CrossRef
53.
go back to reference Orphal DL, Franzen RR, Charters AC, Menna TL, Piekutowski AJ (1997) Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s. Int J Impact Eng 19:15CrossRef Orphal DL, Franzen RR, Charters AC, Menna TL, Piekutowski AJ (1997) Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s. Int J Impact Eng 19:15CrossRef
54.
go back to reference Anderson CE Jr, Behner T, Holmquist TJ, Orphal DL (2011) Penetration response of silicon carbide as a function of impact velocity. Int J Impact Eng 38:892–899CrossRef Anderson CE Jr, Behner T, Holmquist TJ, Orphal DL (2011) Penetration response of silicon carbide as a function of impact velocity. Int J Impact Eng 38:892–899CrossRef
55.
go back to reference Orphal DL (2002) Long rod penetration of ceramics, Ceramic armour materials by design. Ceram Trans 134:151–164 Orphal DL (2002) Long rod penetration of ceramics, Ceramic armour materials by design. Ceram Trans 134:151–164
56.
go back to reference Orphal DL, Anderson CE Jr (2006) The dependence of penetration velocity on impact velocity. Int J Impact Eng 33:546–554CrossRef Orphal DL, Anderson CE Jr (2006) The dependence of penetration velocity on impact velocity. Int J Impact Eng 33:546–554CrossRef
57.
go back to reference Behner T, Orphal DL, Hohler V, Anderson CE Jr, Mason RL, Templeton DW (2006) Hypervelocity penetration of gold rods into SiC-N for impact velocities from 2.0 to 6.2 km/s. Int J Impact Eng 33:68CrossRef Behner T, Orphal DL, Hohler V, Anderson CE Jr, Mason RL, Templeton DW (2006) Hypervelocity penetration of gold rods into SiC-N for impact velocities from 2.0 to 6.2 km/s. Int J Impact Eng 33:68CrossRef
58.
go back to reference Crouch IG, Eu B (2016) Ballistic testing methodologies. In: Crouch IG (ed) The science of armour materials. Elsevier, San Diego Crouch IG, Eu B (2016) Ballistic testing methodologies. In: Crouch IG (ed) The science of armour materials. Elsevier, San Diego
59.
go back to reference Zukas JA (1982) Penetration and perforation. In: Zukas JA, Nicholas T, Swift HF, Greszczuk LB, Curran DR (eds) Impact dynamics. Wiley, New York Zukas JA (1982) Penetration and perforation. In: Zukas JA, Nicholas T, Swift HF, Greszczuk LB, Curran DR (eds) Impact dynamics. Wiley, New York
60.
go back to reference V50 Ballistic test for armour, MIL-STD-662F, 1997 V50 Ballistic test for armour, MIL-STD-662F, 1997
61.
go back to reference MIL-DTL-32398, Detail specification: Laminate: cross-plied ultra-high molecular weight polyethylene (UHMWPE) unidirectionally reinforced plastic armour (09-jun-2013) MIL-DTL-32398, Detail specification: Laminate: cross-plied ultra-high molecular weight polyethylene (UHMWPE) unidirectionally reinforced plastic armour (09-jun-2013)
62.
go back to reference MIL-DTL-62474E, Detail specification: Laminate: aramid-fabric-reinforced, plastic (12 Jul 2007) MIL-DTL-62474E, Detail specification: Laminate: aramid-fabric-reinforced, plastic (12 Jul 2007)
63.
go back to reference MIL-DTL-64154B (W/Amendment-1), Detail Specification: Laminate: Fiberglass-Fabric-Reinforced, Phenolic (19-Jan-2012) MIL-DTL-64154B (W/Amendment-1), Detail Specification: Laminate: Fiberglass-Fabric-Reinforced, Phenolic (19-Jan-2012)
64.
go back to reference Adams MA (2002) Theory and experimental test methods for evaluating ceramic armour components, ceramic armour materials by design. Ceram Trans 134:139–150 Adams MA (2002) Theory and experimental test methods for evaluating ceramic armour components, ceramic armour materials by design. Ceram Trans 134:139–150
65.
go back to reference Savio SG, Madhu V (2018) Methodology to measure the protective areal density of ceramic tiles against projectile impact. Def Sci J 68(1):76–82CrossRef Savio SG, Madhu V (2018) Methodology to measure the protective areal density of ceramic tiles against projectile impact. Def Sci J 68(1):76–82CrossRef
66.
go back to reference Ballistic Resistance of Body Armour, NIJ Standards – 0101.06, U.S. Department of Justice, July 2008 Ballistic Resistance of Body Armour, NIJ Standards – 0101.06, U.S. Department of Justice, July 2008
Metadata
Title
Ceramic Composite Armour for Ballistic Protection
Authors
P. Rama Subba Reddy
S. Geasin Savio
Vemuri Madhu
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-16347-1_10

Premium Partners