Skip to main content
main-content
Top

06-05-2022 | Ceramics | News | Article

Overcoming the Limitations of Glass Production

Author: Leyla Buchholz

1:30 min reading time
share
SHARE
print
PRINT
insite
SEARCH

Glass objects which glow in the dark or glass containers that heat up and cool down – this seems to completely contradict our everyday experience of what glass can do. And yet, it is now within reach.

Thanks to the new shaping possibilities, glass can be processed at significantly lower temperatures and thus be mixed with fillers that enable new functions. This opens up a wide range of new fields of application in aerospace, safety engineering, vehicle construction or laboratory technology, for which glass was previously hardly an option. Depending on the process used, very different and complex shapes and properties are now possible that were previously either not feasible at all or required costly and sometimes environmentally harmful post-processing steps. These include a wide range of colors, but also metal-free, electrically conductive, heating, antibacterial and luminescent glasses. In addition, the IKTS glass shaping approaches in many cases reduce the consumption of energy, working time and other resources in glass component manufacturing.

Glass for a better look

"This opens up new perspectives for this material," emphasizes IKTS department head Dr. Tassilo Moritz. For example, glass has the potential to limit the massive use of plastic for many small everyday objects in favor of sustainable solutions: if glass can be colored, shaped, and functionalized almost at will, the plastic knobs in buses, trams or elevators, for example, could be replaced by control elements made of glass. The same would apply to furniture handles and knobs in daycare centers, retirement homes or hospitals.

To overcome the limitations of glass production, the Fraunhofer engineers in Dresden have adapted several technologies that were previously typical for ceramics and plastics. One example: they add graphite to a glass powder. Recycled glass can also be used here as a contribution to the circular economy. From this glass-graphite powder mixture, a so-called feedstock is created, which is then injected into a shaping tool in an injection molding machine that produces precise geometries and microstructures. Among other things, this can be used to produce electrically conductive and self-heating glass microreactors for the chemical and pharmaceutical industries. Glass powder can also be combined with color pigments or phosphorescent particles. This results in luminescent glass components that, for example, can still mark escape routes in dark environments even after a power failure, illuminate the hands and displays of watches or vehicle and aircraft fittings, or simply give jewelry a chic shimmer.

share
SHARE
print
PRINT

Related topics

Background information for this content

2021 | Book

Ceramics, Glass and Glass-Ceramics

From Early Manufacturing Steps Towards Modern Frontiers

Premium Partners