Skip to main content
Top

2024 | OriginalPaper | Chapter

Cerium Oxide Nanoparticles for Biomedical Applications

Authors : Arumugam Vijayan, Shalini Ramadoss, Natarajan Sisubalan, Muniraj Gnanaraj, Karthikeyan Chandrasekaran, Varaprasad Kokkarachedu

Published in: Nanoparticles in Modern Antimicrobial and Antiviral Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cerium oxide nanoparticles (CeO2 NPs) have garnered significant attention in the realm of biomedical applications due to their unique properties and versatile potential. The chapter provides a comprehensive overview of the multifaceted landscape surrounding the utilization of CeO2 NPs in biomedicine and highlighting their remarkable catalytic and redox properties. These attributes have positioned them as promising candidates for diverse biomedical roles. The advantages and disadvantages section explores the dual nature of CeO2 NPs. Their antioxidative behavior, stemming from their ability to switch between Ce3+ and Ce4+ oxidation states, is a notable advantage, making them potential candidates for therapeutic interventions in oxidative stress-related diseases. However, their redox capability also raises concerns regarding potential pro-oxidant effects, emphasizing the need for meticulous evaluation. The toxicity aspect underscores the importance of understanding the potential risks associated with CeO2 NPs utilization. Addressing their interactions with biological systems, including cells and tissues, is imperative. While CeO2 NPs’ antioxidant properties are promising, there are also concerns regarding their potential to induce oxidative stress and inflammation. The antimicrobial application section highlights the emerging role of CeO2 NPs in combating microbial infections. Their ability to mitigate bacterial growth, biofilm formation, and even antibiotic-resistant strains underscores their potential to revolutionize infection control strategies. The role of CeO2 NPs in the context of the COVID-19 pandemic with recent research has explored their potential in antiviral applications, including as inhibitors of viral enzymes and agents for sanitizing surfaces. Their contribution to mitigating the impact of COVID-19 underscores their relevance in contemporary healthcare challenges. This chapter culminates with an exploration of recent advancements in CeO2 NPs research. As a dynamic field, ongoing studies are unraveling novel aspects of their behavior, interactions, and applications. These insights pave the way for innovative therapeutic strategies and personalized medical interventions. In summary, this chapter provides an encompassing glimpse into the multifaceted world of CeO2 NPs for biomedical applications. Their advantages, disadvantages, toxicity considerations, antimicrobial potential, and recent contributions in battling COVID-19 collectively underscore their significance in shaping the future of healthcare and medicine.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Afantitis, A., Melagraki, G., Isigonis, P., Tsoumanis, A., & Varsou, D. D. (2020). NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Computational and Structural Biotechnology Journal, 18, 583–602.PubMedPubMedCentralCrossRef Afantitis, A., Melagraki, G., Isigonis, P., Tsoumanis, A., & Varsou, D. D. (2020). NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Computational and Structural Biotechnology Journal, 18, 583–602.PubMedPubMedCentralCrossRef
go back to reference Alghamdi, A. A. A. (2023). Biogenic Mg doped CeO2 nanoparticles via Hibiscus sabdariffa and its potential biological applications. Journal of Umm Al-Qura University for Applied Sciences, 9, 132–141.CrossRef Alghamdi, A. A. A. (2023). Biogenic Mg doped CeO2 nanoparticles via Hibiscus sabdariffa and its potential biological applications. Journal of Umm Al-Qura University for Applied Sciences, 9, 132–141.CrossRef
go back to reference Alili, L., Sack, M., Von Montfort, C., Giri, S., Das, S., Carroll, K. S., Zanger, K., Seal, S., & Brenneisen, P. (2012). Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxidants & Redox Signaling, 19, 765–778.CrossRef Alili, L., Sack, M., Von Montfort, C., Giri, S., Das, S., Carroll, K. S., Zanger, K., Seal, S., & Brenneisen, P. (2012). Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxidants & Redox Signaling, 19, 765–778.CrossRef
go back to reference Anoop, M. V., & Bindu, A. R. (2015). In-vitro anti-inflammatory activity studies on Syzygium zeylanicum (L) DC leaves. International Journal of Pharma Research & Review, 4(8), 18–27. Anoop, M. V., & Bindu, A. R. (2015). In-vitro anti-inflammatory activity studies on Syzygium zeylanicum (L) DC leaves. International Journal of Pharma Research & Review, 4(8), 18–27.
go back to reference Aoqing, C., Yue, S., Fubin, P., Xihui, M., Bin, D., Zhaoyang, T., Qingli, H. Mingzhu, X., Wu, L., & Bing, L. (2023). Nanozymelinked immunosorbent assay based on Au@CeO2@Pt nanozymes for colorimetric and fluorescent detection of SARS-CoV-2 nucleocapsid protein. Microchemical, 194, 109263. Aoqing, C., Yue, S., Fubin, P., Xihui, M., Bin, D., Zhaoyang, T., Qingli, H. Mingzhu, X., Wu, L., & Bing, L. (2023). Nanozymelinked immunosorbent assay based on Au@CeO2@Pt nanozymes for colorimetric and fluorescent detection of SARS-CoV-2 nucleocapsid protein. Microchemical, 194, 109263.
go back to reference Armijo, L. M., Wawrzyniec, S. J., & Kopciuch, M. (2020). Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. Journal of Nanbiotechnology, 18, 35.CrossRef Armijo, L. M., Wawrzyniec, S. J., & Kopciuch, M. (2020). Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. Journal of Nanbiotechnology, 18, 35.CrossRef
go back to reference Baker, A. N., Richards, S.-J., Guy, C. S., Congdon, T. R., Hasan, M., Zwetsloot, A. J., Gallo, A., Lewandowski, J. R., Stansfeld, P. J., & Straube, A. (2020). The Sars-Cov-2 spike protein binds sialic acids and enables rapid detection in a lateral flow point of care diagnostic device. ACS Central Science, 6, 2046–2052.PubMedPubMedCentralCrossRef Baker, A. N., Richards, S.-J., Guy, C. S., Congdon, T. R., Hasan, M., Zwetsloot, A. J., Gallo, A., Lewandowski, J. R., Stansfeld, P. J., & Straube, A. (2020). The Sars-Cov-2 spike protein binds sialic acids and enables rapid detection in a lateral flow point of care diagnostic device. ACS Central Science, 6, 2046–2052.PubMedPubMedCentralCrossRef
go back to reference Balaraman, S., Iruson, B., Krishnmoorthy, S., Elayaperumal, M., & Sangaraju, S. (2023). Synthesis of Er2O3 blended CeO2 nanocomposites and investigation of their biomedical applications. Chemical Physics Impact, 6, 100167.CrossRef Balaraman, S., Iruson, B., Krishnmoorthy, S., Elayaperumal, M., & Sangaraju, S. (2023). Synthesis of Er2O3 blended CeO2 nanocomposites and investigation of their biomedical applications. Chemical Physics Impact, 6, 100167.CrossRef
go back to reference Baldim, V., Yadav, N., Bia, N., Graillot, A., Loubat, C., Singh, S., Karakoti, A. S., & Berret, J. F. (2020). Polymer-coated cerium oxide nanoparticles as oxidoreductase-like catalysts. ACS Applied Materials & Interfaces, 12, 42056–42066.CrossRef Baldim, V., Yadav, N., Bia, N., Graillot, A., Loubat, C., Singh, S., Karakoti, A. S., & Berret, J. F. (2020). Polymer-coated cerium oxide nanoparticles as oxidoreductase-like catalysts. ACS Applied Materials & Interfaces, 12, 42056–42066.CrossRef
go back to reference Basak, S., & Packirisamy, G. (2020). Nano-based antiviral coatings to combat viral infections. Nano-Struct. Nano-Objects, 24, 100620. Basak, S., & Packirisamy, G. (2020). Nano-based antiviral coatings to combat viral infections. Nano-Struct. Nano-Objects, 24, 100620.
go back to reference Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences, 22, 7202.PubMedPubMedCentralCrossRef Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences, 22, 7202.PubMedPubMedCentralCrossRef
go back to reference Cam, T. S., Omarov, S. O., Chebanenko, M. I., Izotova, S. G., & Popkov, V. I. (2022). Recent progress in the synthesis of CeO2-based nanocatalysts towards efficient oxidation of CO. Journal of Science: Advanced Materials and Devices, 7(1), 100399. Cam, T. S., Omarov, S. O., Chebanenko, M. I., Izotova, S. G., & Popkov, V. I. (2022). Recent progress in the synthesis of CeO2-based nanocatalysts towards efficient oxidation of CO. Journal of Science: Advanced Materials and Devices, 7(1), 100399.
go back to reference Casals, G., Perramón, M., Casals, E., Portolés, I., Fernández-Varo, G., Morales-Ruiz, M., Puntes, V., & Jiménez, W. (2021). Cerium oxide nanoparticles: A new therapeutic tool in liver diseases. Antioxidants, 10, 660–666.PubMedPubMedCentralCrossRef Casals, G., Perramón, M., Casals, E., Portolés, I., Fernández-Varo, G., Morales-Ruiz, M., Puntes, V., & Jiménez, W. (2021). Cerium oxide nanoparticles: A new therapeutic tool in liver diseases. Antioxidants, 10, 660–666.PubMedPubMedCentralCrossRef
go back to reference Cassee, F. R., van Balen, E. C., Singh, C., Green, D., Muijser, H., Weinstein, J., & Dreher, K. (2011). Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Critical Reviews in Toxicology, 41, 213–229.PubMedCrossRef Cassee, F. R., van Balen, E. C., Singh, C., Green, D., Muijser, H., Weinstein, J., & Dreher, K. (2011). Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Critical Reviews in Toxicology, 41, 213–229.PubMedCrossRef
go back to reference Celesti, C., Gervasi, T., Cicero, N., Giofre, S. V., Espro, C., Piperopoulos, E., Gabriele, B., Mancuso, R., LoVecchio, G., & Iannazzo, D. (2022). Titanium surface modification for implantable medical devices with anti-bacterial adhesion properties. Materials (Basel), 15, 3283.PubMedCrossRef Celesti, C., Gervasi, T., Cicero, N., Giofre, S. V., Espro, C., Piperopoulos, E., Gabriele, B., Mancuso, R., LoVecchio, G., & Iannazzo, D. (2022). Titanium surface modification for implantable medical devices with anti-bacterial adhesion properties. Materials (Basel), 15, 3283.PubMedCrossRef
go back to reference Chai, W. F., & Tang, K. S. (2021). Protective potential of cerium oxide nanoparticles in diabetes mellitus. Journal of Trace Elements in Medicine and Biology, 66, 126742.PubMedCrossRef Chai, W. F., & Tang, K. S. (2021). Protective potential of cerium oxide nanoparticles in diabetes mellitus. Journal of Trace Elements in Medicine and Biology, 66, 126742.PubMedCrossRef
go back to reference Charbgoo, F., Ramezani, M., & Darroudi, M. (2017). Bio-sensing applications of cerium oxide nanoparticles: Advantages and disadvantages. Biosensors and Bioelectronics, 96, 33–43.PubMedCrossRef Charbgoo, F., Ramezani, M., & Darroudi, M. (2017). Bio-sensing applications of cerium oxide nanoparticles: Advantages and disadvantages. Biosensors and Bioelectronics, 96, 33–43.PubMedCrossRef
go back to reference Chen, B. H., Suresh Babu, K., & Anandkumar, M. (2014). Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles. International Journal of Nanomedicine, 9, 5515.PubMedPubMedCentralCrossRef Chen, B. H., Suresh Babu, K., & Anandkumar, M. (2014). Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles. International Journal of Nanomedicine, 9, 5515.PubMedPubMedCentralCrossRef
go back to reference Cheng, G., Guo, W., Han, L., Chen, E., Kong, L., Wang, L., Ai, W., Song, N., Li, H., & Chen, H. (2013). Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicology In Vitro, 27, 1082–1088.PubMedCrossRef Cheng, G., Guo, W., Han, L., Chen, E., Kong, L., Wang, L., Ai, W., Song, N., Li, H., & Chen, H. (2013). Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicology In Vitro, 27, 1082–1088.PubMedCrossRef
go back to reference Cheng, H., Lin, S., Muhammad, F., Lin, Y., & Wei, H. (2016). Rationally modulate the oxidase-like activity of nanoceria for self regulated bioassays. ACS Sensors, 1, 1336–1343.CrossRef Cheng, H., Lin, S., Muhammad, F., Lin, Y., & Wei, H. (2016). Rationally modulate the oxidase-like activity of nanoceria for self regulated bioassays. ACS Sensors, 1, 1336–1343.CrossRef
go back to reference Cimini, A., D’Angelo, B., Das, S., Gentile, R., Benedetti, E., Singh, V., Monaco, A. M., Santucci, S., & Seal, S. (2012). Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of aggregates modulate neuronal survival pathways. Acta Biomaterialia, 8, 2056–2067.PubMedCrossRef Cimini, A., D’Angelo, B., Das, S., Gentile, R., Benedetti, E., Singh, V., Monaco, A. M., Santucci, S., & Seal, S. (2012). Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of aggregates modulate neuronal survival pathways. Acta Biomaterialia, 8, 2056–2067.PubMedCrossRef
go back to reference DaPoian, A. T., Carneiro, F. A., & Stauffer, F. (2009). Viral inactivation based on inhibition of membrane fusion: Understanding the role of histidine protonation to develop new viral vaccines. Protein and Peptide Letters, 16, 779.CrossRef DaPoian, A. T., Carneiro, F. A., & Stauffer, F. (2009). Viral inactivation based on inhibition of membrane fusion: Understanding the role of histidine protonation to develop new viral vaccines. Protein and Peptide Letters, 16, 779.CrossRef
go back to reference Dupkalov, D., Kosto, Y., Kalinovych, V., Deineko, A., Franchi, S., Novakova, J., Matolinov, I., Skala, T., Prince, K. C., Fucikova, A., Shcherbakov, A. B., Zholobak, N. M., & Tsud, N. (2023). Histidine- and glycine-functionalized cerium oxide nanoparticles: Physicochemical properties and antiviral activity. Applied Surface Science, 636, 157793.CrossRef Dupkalov, D., Kosto, Y., Kalinovych, V., Deineko, A., Franchi, S., Novakova, J., Matolinov, I., Skala, T., Prince, K. C., Fucikova, A., Shcherbakov, A. B., Zholobak, N. M., & Tsud, N. (2023). Histidine- and glycine-functionalized cerium oxide nanoparticles: Physicochemical properties and antiviral activity. Applied Surface Science, 636, 157793.CrossRef
go back to reference Elci, S. G., Jiang, Y., Yan, B., Kim, S. T., Saha, K., Moyano, D. F., Yesilbag Tonga, G., Jackson, L. C., Rotello, V. M., & Vachet, R. W. (2016). Surface charge controls the sub-organ biodistributions of gold nanoparticles. ACS Nano, 10(5), 5536–5542.PubMedCrossRef Elci, S. G., Jiang, Y., Yan, B., Kim, S. T., Saha, K., Moyano, D. F., Yesilbag Tonga, G., Jackson, L. C., Rotello, V. M., & Vachet, R. W. (2016). Surface charge controls the sub-organ biodistributions of gold nanoparticles. ACS Nano, 10(5), 5536–5542.PubMedCrossRef
go back to reference Eom, H. J., & Choi, J. (2009). Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicology letters, 187(2), 77–83. Eom, H. J., & Choi, J. (2009). Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicology letters, 187(2), 77–83.
go back to reference Gaikwad, S., Ingle, A., Gade, A., Rai, M., Falanga, A., Incoronato, N., Russo, L., Galdiero, S., & Galdiero, M. (2013). Antiviral activity of myco-synthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. International Journal of Nanomedicine, 8, 4303.PubMedPubMedCentral Gaikwad, S., Ingle, A., Gade, A., Rai, M., Falanga, A., Incoronato, N., Russo, L., Galdiero, S., & Galdiero, M. (2013). Antiviral activity of myco-synthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. International Journal of Nanomedicine, 8, 4303.PubMedPubMedCentral
go back to reference Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., & Galdiero, M. (2011). Silver nanoparticles as potential antiviral agents. Molecules, 16, 8894–8918.PubMedPubMedCentralCrossRef Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., & Galdiero, M. (2011). Silver nanoparticles as potential antiviral agents. Molecules, 16, 8894–8918.PubMedPubMedCentralCrossRef
go back to reference Gao, Z., Li, Y., Zhang, C., Zhang, S., Jia, Y., Li, F., Ding, H., Li, X., Chen, Z., & Wei, Q. (2019). AuCuxO- embedded mesoporous CeO2 nanocomposites as a signal probe for electrochemical sensitive detection of amyloid-beta protein. ACS Applied Materials & Interfaces, 11, 12335–12341.CrossRef Gao, Z., Li, Y., Zhang, C., Zhang, S., Jia, Y., Li, F., Ding, H., Li, X., Chen, Z., & Wei, Q. (2019). AuCuxO- embedded mesoporous CeO2 nanocomposites as a signal probe for electrochemical sensitive detection of amyloid-beta protein. ACS Applied Materials & Interfaces, 11, 12335–12341.CrossRef
go back to reference Gnanasundaram, I., & Balakrishnan, K. (2017). Synthesis and evaluation of anti-inflammatory activity of silver nanoparticles from Cissus vitiginea leaf extract. Journal of Nanoscience and Technology, 266–269. Gnanasundaram, I., & Balakrishnan, K. (2017). Synthesis and evaluation of anti-inflammatory activity of silver nanoparticles from Cissus vitiginea leaf extract. Journal of Nanoscience and Technology, 266–269.
go back to reference Govindappa, M., Naga, S. S., Poojashri, M. N., Sadananda, T. S., & Chandrappa, C. P. (2011). Antimicrobial, antioxidant and in vitro anti-inflammatory activity of ethanol extract and active phytochemical screening of Wedelia trilobata (L.) Hitchc. Journal of Pharmacognosy and Phytotherapy, 3(3), 43–51. Govindappa, M., Naga, S. S., Poojashri, M. N., Sadananda, T. S., & Chandrappa, C. P. (2011). Antimicrobial, antioxidant and in vitro anti-inflammatory activity of ethanol extract and active phytochemical screening of Wedelia trilobata (L.) Hitchc. Journal of Pharmacognosy and Phytotherapy, 3(3), 43–51.
go back to reference Grant, O. C., Montgomery, D., Ito, K., & Woods, R. J. (2020). Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Scientific Reports, 10, 1–11.CrossRef Grant, O. C., Montgomery, D., Ito, K., & Woods, R. J. (2020). Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Scientific Reports, 10, 1–11.CrossRef
go back to reference Guo, F., Fu, Q., Zhou, K., Jin, C., Wu, W., Ji, X., Yan, Q., Yang, Q., Wu, D., & Li, A. (2020). Matrix metalloprotein -triggered, cell penetrating peptide-modified star-shaped nanoparticles for tumor targeting and cancer therapy. Journal of Nanobiotechnology, 18, 48.PubMedPubMedCentralCrossRef Guo, F., Fu, Q., Zhou, K., Jin, C., Wu, W., Ji, X., Yan, Q., Yang, Q., Wu, D., & Li, A. (2020). Matrix metalloprotein -triggered, cell penetrating peptide-modified star-shaped nanoparticles for tumor targeting and cancer therapy. Journal of Nanobiotechnology, 18, 48.PubMedPubMedCentralCrossRef
go back to reference Hamidian, K., Saberian. M. R., Miri, A., Sharifi, F., & Sarani, M. (2021). Doped and un-doped cerium oxide nanoparticles:Biosynthesis, characterization, and cytotoxic study. Ceramics International, 47(10):13895–13902. Hamidian, K., Saberian. M. R., Miri, A., Sharifi, F., & Sarani, M. (2021). Doped and un-doped cerium oxide nanoparticles:Biosynthesis, characterization, and cytotoxic study. Ceramics International, 47(10):13895–13902.
go back to reference Hemalatha, K. S., & Rukmani, K. (2016). Synthesis, characterization and optical properties of polyvinyl alcohol–cerium oxide nanocomposite films. RSC Advances, 6(78), 74354–74366. Hemalatha, K. S., & Rukmani, K. (2016). Synthesis, characterization and optical properties of polyvinyl alcohol–cerium oxide nanocomposite films. RSC Advances, 6(78), 74354–74366.
go back to reference Hirst, S. M., Karakoti, A. S., & Tyler, R. D. (2009). Anti-inflammatory properties of cerium oxide nanoparticles. Small, 5, 2848–2856.PubMedCrossRef Hirst, S. M., Karakoti, A. S., & Tyler, R. D. (2009). Anti-inflammatory properties of cerium oxide nanoparticles. Small, 5, 2848–2856.PubMedCrossRef
go back to reference Hosseini, A., Baeeri, M., Rahimifard, M., Navaei-Nigjeh, M., Mohammadirad, A., Pourkhalili, N., Hassani, S., Kamali, M., & Abdollahi, M. (2013). Antiapoptotic effects of cerium oxide and yttrium oxide nanoparticles in isolated rat pancreatic islets. Human & Experimental Toxicology, 32, 544–553.CrossRef Hosseini, A., Baeeri, M., Rahimifard, M., Navaei-Nigjeh, M., Mohammadirad, A., Pourkhalili, N., Hassani, S., Kamali, M., & Abdollahi, M. (2013). Antiapoptotic effects of cerium oxide and yttrium oxide nanoparticles in isolated rat pancreatic islets. Human & Experimental Toxicology, 32, 544–553.CrossRef
go back to reference Huang, Y., Ren, J., & Qu, X. (2019). Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chemical Reviews, 119(6), 4357–4412.PubMedCrossRef Huang, Y., Ren, J., & Qu, X. (2019). Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chemical Reviews, 119(6), 4357–4412.PubMedCrossRef
go back to reference Inbaraj, B. S., & Chen, B. (2020). An overview on recent in vivo biological application of cerium oxide nanoparticles. Asian Journal of Pharmaceutical Sciences, 15, 558–575.CrossRef Inbaraj, B. S., & Chen, B. (2020). An overview on recent in vivo biological application of cerium oxide nanoparticles. Asian Journal of Pharmaceutical Sciences, 15, 558–575.CrossRef
go back to reference Ioannou, M. E., Pouroutzidou, G. K., Chatzimentor, I., Tsamesidis, I., Florini, N., Tsiaoussis, I., Lymperaki, E., Komninou, P., & Kontonasaki, E. (2023). Synthesis and characterization of cerium oxide Nanoparticles: Effect of cerium precursor to gelatin ratio. Applied Sciences, 13, 2676. https://doi.org/10.3390/app13042676 Ioannou, M. E., Pouroutzidou, G. K., Chatzimentor, I., Tsamesidis, I., Florini, N., Tsiaoussis, I., Lymperaki, E., Komninou, P., & Kontonasaki, E. (2023). Synthesis and characterization of cerium oxide Nanoparticles: Effect of cerium precursor to gelatin ratio. Applied Sciences, 13, 2676. https://​doi.​org/​10.​3390/​app13042676
go back to reference Jain, A., Behera, M., Mahapatra, C., Sundaresan, N. R., & Chatterjee, K. (2021). Nanostructured polymer scaffold decorated with cerium oxide nanoparticles toward engineering an antioxidant and anti-hypertrophic cardiac patch. Materials Science and Engineering: C, 118, 111416.PubMedCrossRef Jain, A., Behera, M., Mahapatra, C., Sundaresan, N. R., & Chatterjee, K. (2021). Nanostructured polymer scaffold decorated with cerium oxide nanoparticles toward engineering an antioxidant and anti-hypertrophic cardiac patch. Materials Science and Engineering: C, 118, 111416.PubMedCrossRef
go back to reference Jairam, L. S., Chandrashekar, A., Prabhu, T. N., Kotha, S. B., Girish, M. S., Devraj, I. M., Shri, M. D., & Prashantha, K. (2023). A review on biomedical and dental applications of cerium oxide nanoparticles―Unearthing the potential of this rare earth metal. Journal of Rare Earths. Jairam, L. S., Chandrashekar, A., Prabhu, T. N., Kotha, S. B., Girish, M. S., Devraj, I. M., Shri, M. D., & Prashantha, K. (2023). A review on biomedical and dental applications of cerium oxide nanoparticles―Unearthing the potential of this rare earth metal. Journal of Rare Earths.
go back to reference Janoš, P., Ederer, J., Pilařová, V., Henych, J., Tolasz, J., Milde, D., & Opletal T. (2016). Chemical mechanical glass polishing withcerium oxide: Effect of selected physico-chemical characteristics on polishing efficiency. Wear, 362, 114–120. Janoš, P., Ederer, J., Pilařová, V., Henych, J., Tolasz, J., Milde, D., & Opletal T. (2016). Chemical mechanical glass polishing withcerium oxide: Effect of selected physico-chemical characteristics on polishing efficiency. Wear, 362, 114–120.
go back to reference Jasinski, P., Suzuki, T., & Anderson, H. U. (2003). Nanocrystalline undoped ceria oxygen sensor. Sensors and Actuators B: Chemical. 95(1–3), 73–77. Jasinski, P., Suzuki, T., & Anderson, H. U. (2003). Nanocrystalline undoped ceria oxygen sensor. Sensors and Actuators B: Chemical. 95(1–3), 73–77.
go back to reference Jiang, D., Ni, D., Rosenkrans, Z. T., Huang, P., Yan, X., & Cai, W. (2019). Nanozyme: New horizons for responsive biomedical applications. Chemical Society Reviews, 48(14), 3683–3704.PubMedPubMedCentralCrossRef Jiang, D., Ni, D., Rosenkrans, Z. T., Huang, P., Yan, X., & Cai, W. (2019). Nanozyme: New horizons for responsive biomedical applications. Chemical Society Reviews, 48(14), 3683–3704.PubMedPubMedCentralCrossRef
go back to reference Joudeh, N., & Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. Journal of Nanbiotechnology, 20, 262.CrossRef Joudeh, N., & Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. Journal of Nanbiotechnology, 20, 262.CrossRef
go back to reference Ju, X., Fucikova, A., Amid, B., Novakova, J., Matolinova, I., Matolin, V., Janata, M., Belinova, T., & Hubalek Kalbacova, M. (2020). Colloidal stability and catalytic activity of cerium oxide nanoparticles in cell culture media. RSC Advances, 10, 39373–39384.PubMedPubMedCentralCrossRef Ju, X., Fucikova, A., Amid, B., Novakova, J., Matolinova, I., Matolin, V., Janata, M., Belinova, T., & Hubalek Kalbacova, M. (2020). Colloidal stability and catalytic activity of cerium oxide nanoparticles in cell culture media. RSC Advances, 10, 39373–39384.PubMedPubMedCentralCrossRef
go back to reference Kalashnikova, I., Chung, S., Nafiujjaman, M., Hill, M. L., Siziba, M. E., Contag, C. H., & Kim, T. (2020). Ceria-based nano-theranostic agent for rheumatoid arthritis. Theranostics, 10, 11863–11880.PubMedPubMedCentralCrossRef Kalashnikova, I., Chung, S., Nafiujjaman, M., Hill, M. L., Siziba, M. E., Contag, C. H., & Kim, T. (2020). Ceria-based nano-theranostic agent for rheumatoid arthritis. Theranostics, 10, 11863–11880.PubMedPubMedCentralCrossRef
go back to reference Khashan, K. S., Sulaiman, G. M., Abdulameer, F. A., Albukhaty, S., Ibrahem, M. A., Al-Muhimeed, T., & Alobaid, A. A. (2021). Antibacterial activity of TiO2 nanoparticles prepared by one-step laser ablation in liquid. Applied Sciences, 11, 4623.CrossRef Khashan, K. S., Sulaiman, G. M., Abdulameer, F. A., Albukhaty, S., Ibrahem, M. A., Al-Muhimeed, T., & Alobaid, A. A. (2021). Antibacterial activity of TiO2 nanoparticles prepared by one-step laser ablation in liquid. Applied Sciences, 11, 4623.CrossRef
go back to reference Khurana, A., Tekula, S., & Godugu, C. (2018). Nanoceria suppresses multiple low doses of streptozotocin-induced type 1 diabetes by inhibition of Nrf2/NF-B pathway and reduction of apoptosis. Nanomedicine-UK, 13, 1905–1922.CrossRef Khurana, A., Tekula, S., & Godugu, C. (2018). Nanoceria suppresses multiple low doses of streptozotocin-induced type 1 diabetes by inhibition of Nrf2/NF-B pathway and reduction of apoptosis. Nanomedicine-UK, 13, 1905–1922.CrossRef
go back to reference Kunga Sugumaran, V., Gopinath, K., & Palani, N. S. (2016). Plant pathogenic fungus F. solani mediated biosynthesis of Nanoceria: Antibacterial and antibiofilm activity. RSC Advances, 6, 42720–42729.CrossRef Kunga Sugumaran, V., Gopinath, K., & Palani, N. S. (2016). Plant pathogenic fungus F. solani mediated biosynthesis of Nanoceria: Antibacterial and antibiofilm activity. RSC Advances, 6, 42720–42729.CrossRef
go back to reference Kwon, H. J., Cha, M., Kim, D., Kim, D. K., Soh, M., Shin, K., Hyeon, T., & Mook-Jung, I. (2016). Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano, 10, 2860–2870.PubMedCrossRef Kwon, H. J., Cha, M., Kim, D., Kim, D. K., Soh, M., Shin, K., Hyeon, T., & Mook-Jung, I. (2016). Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano, 10, 2860–2870.PubMedCrossRef
go back to reference Lee, J., Liao, H., Wang, Q., Han, J., Han, J. H., Shin, H. E., Ge, M., Park, W., & Li, F. (2022). Exploration of nanozymes in viral diagnosis and therapy. Exploration, 2(1), 20210086.PubMedPubMedCentralCrossRef Lee, J., Liao, H., Wang, Q., Han, J., Han, J. H., Shin, H. E., Ge, M., Park, W., & Li, F. (2022). Exploration of nanozymes in viral diagnosis and therapy. Exploration, 2(1), 20210086.PubMedPubMedCentralCrossRef
go back to reference Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine, 10, 122–129.CrossRef Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine, 10, 122–129.CrossRef
go back to reference Liu, H., & Liu, J. (2020). Self-limited phosphatase-mimicking CeO2 nanozymes. Chem Nano Mat, 6, 947–952. Liu, H., & Liu, J. (2020). Self-limited phosphatase-mimicking CeO2 nanozymes. Chem Nano Mat, 6, 947–952.
go back to reference Lord, M. S., Berret, J. F., Singh, S., Vinu, A., & Karakoti, A. S. (2021). Redox active cerium oxide nanoparticles: Current status and burning issues. Small, 17, 2102342.CrossRef Lord, M. S., Berret, J. F., Singh, S., Vinu, A., & Karakoti, A. S. (2021). Redox active cerium oxide nanoparticles: Current status and burning issues. Small, 17, 2102342.CrossRef
go back to reference Matussin, S. N., & Khan, M. M. (2022). Phytogenic fabrication of CeO2@ SnO2 heterojunction nanostructures for antioxidant studies. Chemical Papers, 76(4):2071– 2084. Matussin, S. N., & Khan, M. M. (2022). Phytogenic fabrication of CeO2@ SnO2 heterojunction nanostructures for antioxidant studies. Chemical Papers, 76(4):2071– 2084.
go back to reference Matussin, S. N., Harunsani, M. H., & Khan, M. M. (2023). CeO2 and CeO2-based nanomaterials for photocatalytic, antioxidant and antimicrobial activities. Journal of Rare Earths, 41(2), 167–181. Matussin, S. N., Harunsani, M. H., & Khan, M. M. (2023). CeO2 and CeO2-based nanomaterials for photocatalytic, antioxidant and antimicrobial activities. Journal of Rare Earths, 41(2), 167–181.
go back to reference Mccord, J. M., & Fridovic, I. (1969). Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). The Journal of Biological Chemistry, 244, 6049–6055.PubMedCrossRef Mccord, J. M., & Fridovic, I. (1969). Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). The Journal of Biological Chemistry, 244, 6049–6055.PubMedCrossRef
go back to reference Muhr, V., Wilhelm, S., Hirsch, T., & Wolfbeis, O. S. (2014). Upconversion nanoparticles: From hydrophobic to hydrophilic surfaces. Accounts of Chemical Research, 47(12), 3481–3493.PubMedCrossRef Muhr, V., Wilhelm, S., Hirsch, T., & Wolfbeis, O. S. (2014). Upconversion nanoparticles: From hydrophobic to hydrophilic surfaces. Accounts of Chemical Research, 47(12), 3481–3493.PubMedCrossRef
go back to reference Murali, A., Lan, Y. P., Sarswat, P. K., & Free, M. (2019). Synthesis of CeO2/reduced graphene oxide nanocomposite for electrochemical determination of ascorbic acid and dopamine and for photocatalytic applications. Materials Today Chemistry, 12, 222–232. Murali, A., Lan, Y. P., Sarswat, P. K., & Free, M. (2019). Synthesis of CeO2/reduced graphene oxide nanocomposite for electrochemical determination of ascorbic acid and dopamine and for photocatalytic applications. Materials Today Chemistry, 12, 222–232.
go back to reference Nadeem, M., Khan, R., Afridi, K., Nadhman, A., Ullah, S., Faisal, S., Mabood, Z. U., Hano, C., & Abbasi, B. H. (2020). Green synthesis of cerium oxide nanoparticles (CeO2 NPs) and their antimicrobial applications: a review. International Journal of Nanomedicine, 11, 5951–5961. Nadeem, M., Khan, R., Afridi, K., Nadhman, A., Ullah, S., Faisal, S., Mabood, Z. U., Hano, C., & Abbasi, B. H. (2020). Green synthesis of cerium oxide nanoparticles (CeO2 NPs) and their antimicrobial applications: a review. International Journal of Nanomedicine, 11, 5951–5961.
go back to reference Nayem, S. M. A., Sultana, N., Haque, M. A., Miah, B., Hasan, M. M., Islam, T., Hasan, M. M., Awal, A., Uddin, J., Aziz, M. A., & Ahammad, A. J. S. (2020). Green synthesis of gold and silver nanoparticles by using Amorphophallus paeoniifolius tuber extract and evaluation of their antibacterial activity. Molecules, 25, 4773.PubMedPubMedCentralCrossRef Nayem, S. M. A., Sultana, N., Haque, M. A., Miah, B., Hasan, M. M., Islam, T., Hasan, M. M., Awal, A., Uddin, J., Aziz, M. A., & Ahammad, A. J. S. (2020). Green synthesis of gold and silver nanoparticles by using Amorphophallus paeoniifolius tuber extract and evaluation of their antibacterial activity. Molecules, 25, 4773.PubMedPubMedCentralCrossRef
go back to reference Neal, C. J., Fox, C. R., Sakthivel, T. S., Kumar, U., Fu, Y., Drake, C., Parks, G. D., & Seal, S. (2021). Metal-mediated nanoscale cerium oxide inactivates human coronavirus and rhinovirus by surface disruption. ACS Nano, 15(9), 14544–14556.PubMedCrossRef Neal, C. J., Fox, C. R., Sakthivel, T. S., Kumar, U., Fu, Y., Drake, C., Parks, G. D., & Seal, S. (2021). Metal-mediated nanoscale cerium oxide inactivates human coronavirus and rhinovirus by surface disruption. ACS Nano, 15(9), 14544–14556.PubMedCrossRef
go back to reference Nelson, B. C., Johnson, M. E., Walker, M. L., Riley, K. R., & Sims, C. M. (2016). Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants, 5(2), 15.PubMedPubMedCentralCrossRef Nelson, B. C., Johnson, M. E., Walker, M. L., Riley, K. R., & Sims, C. M. (2016). Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants, 5(2), 15.PubMedPubMedCentralCrossRef
go back to reference Pirmohamed, T., Dowding, J. M., Singh, S., Wasserman, B., Heckert, E., Karakoti, A. S., King, J. E. S., Seal, S., & Self, W. T. (2010). Nanoceria exhibit redox state-dependent catalase mimetic activity. Chemical Communications, 46, 2736.PubMedCrossRef Pirmohamed, T., Dowding, J. M., Singh, S., Wasserman, B., Heckert, E., Karakoti, A. S., King, J. E. S., Seal, S., & Self, W. T. (2010). Nanoceria exhibit redox state-dependent catalase mimetic activity. Chemical Communications, 46, 2736.PubMedCrossRef
go back to reference Poon, W., Zhang, Y. N., Ouyang, B., Kingston, B. R., Wu, J. L., Wilhelm, S., & Chan, W. C. (2019). Elimination pathways of nanoparticles. ACS Nano, 13(5), 5785–5798.PubMedCrossRef Poon, W., Zhang, Y. N., Ouyang, B., Kingston, B. R., Wu, J. L., Wilhelm, S., & Chan, W. C. (2019). Elimination pathways of nanoparticles. ACS Nano, 13(5), 5785–5798.PubMedCrossRef
go back to reference Prabakaran, A. S., & Mani, N. (2019). Anti-inflammatory activity of silver nanoparticles synthesized from Eichhornia crassipes: An in vitro study. Journal of Pharmacognosy and Phytochemistry, 8(4), 2556–2558. Prabakaran, A. S., & Mani, N. (2019). Anti-inflammatory activity of silver nanoparticles synthesized from Eichhornia crassipes: An in vitro study. Journal of Pharmacognosy and Phytochemistry, 8(4), 2556–2558.
go back to reference Sabeena, G., Rajaduraipandian, S., Pushpalakshmi, E., Alhadlaq, H. A., Mohan, R., Annadurai, G., & Ahamed, M. (2022a). Green and chemical synthesis of CuO nanoparticles: A comparative study for several in vitro bioactivities and in vivo toxicity in zebrafish embryos. Journal of King Saud University – Science, 34(5), 102092. https://doi.org/10.1016/j.jksus.2022.102092CrossRef Sabeena, G., Rajaduraipandian, S., Pushpalakshmi, E., Alhadlaq, H. A., Mohan, R., Annadurai, G., & Ahamed, M. (2022a). Green and chemical synthesis of CuO nanoparticles: A comparative study for several in vitro bioactivities and in vivo toxicity in zebrafish embryos. Journal of King Saud University – Science, 34(5), 102092. https://​doi.​org/​10.​1016/​j.​jksus.​2022.​102092CrossRef
go back to reference Sabeena, G., Rajaduraipandian, S., Bala, S. P. M., Manju, T., Alhadlaq, H. A., Mohan, R., Annadurai, G., & Ahamed, M. (2022b). In vitro antidiabetic and anti-inflammatory effects of Fe-doped CuO-rice husk silica (Fe-CuO-SiO2) nanocomposites and their enhanced innate immunity in zebrafish. Journal of King Saud University – Science, 34(5), 102121. https://doi.org/10.1016/j.jksus.2022.102121CrossRef Sabeena, G., Rajaduraipandian, S., Bala, S. P. M., Manju, T., Alhadlaq, H. A., Mohan, R., Annadurai, G., & Ahamed, M. (2022b). In vitro antidiabetic and anti-inflammatory effects of Fe-doped CuO-rice husk silica (Fe-CuO-SiO2) nanocomposites and their enhanced innate immunity in zebrafish. Journal of King Saud University – Science, 34(5), 102121. https://​doi.​org/​10.​1016/​j.​jksus.​2022.​102121CrossRef
go back to reference Sabeena, G., Pushpalakshmi, E., Rajaduraipandian, S., & Annadurai, G. (2023). Novel super nanocomposite (CeO-SiO2 nanocomposite) with enhanced biological application: Synthesis and characterization. Plant Nano Biology, 3, 100025.CrossRef Sabeena, G., Pushpalakshmi, E., Rajaduraipandian, S., & Annadurai, G. (2023). Novel super nanocomposite (CeO-SiO2 nanocomposite) with enhanced biological application: Synthesis and characterization. Plant Nano Biology, 3, 100025.CrossRef
go back to reference Sebastiammal, S., Mariappan, A., Neyvasagam, K., & Fathima, A. L. (2019). Annona muricata inspired synthesis of CeO2 nanoparticles and their antimicrobial activity. Materials Today, 9, 627–632. Sebastiammal, S., Mariappan, A., Neyvasagam, K., & Fathima, A. L. (2019). Annona muricata inspired synthesis of CeO2 nanoparticles and their antimicrobial activity. Materials Today, 9, 627–632.
go back to reference Shrivastava, S., Bera, T., & Roy, A. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18, 225103.CrossRef Shrivastava, S., Bera, T., & Roy, A. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18, 225103.CrossRef
go back to reference Skirtach, A. G., Munoz Javier, A., Kreft, O., Köhler, K., Piera Alberola, A., Möhwald, H., Parak, W. J., & Sukhorukov, G. B. (2006). Laserinduced release of encapsulated materials inside living cells. Angewandte Chemie International Edition, 45(28), 4612–4617. Skirtach, A. G., Munoz Javier, A., Kreft, O., Köhler, K., Piera Alberola, A., Möhwald, H., Parak, W. J., & Sukhorukov, G. B. (2006). Laserinduced release of encapsulated materials inside living cells. Angewandte Chemie International Edition, 45(28), 4612–4617.
go back to reference Singh, N. B., Jain, P., De, A., & Richa Tomar, R. (2021). Green synthesis and applications of nanomaterials. Current Pharmaceutical Biotechnology, 22(13), 1705–1747.PubMedCrossRef Singh, N. B., Jain, P., De, A., & Richa Tomar, R. (2021). Green synthesis and applications of nanomaterials. Current Pharmaceutical Biotechnology, 22(13), 1705–1747.PubMedCrossRef
go back to reference Siposova, K., Huntosova, V., Garcarova, I., Shlapa, Y., Timashkov, I., Belous, A., & Musatov, A. (2022). Dual-functional antioxidant and antiamyloid cerium oxide nanoparticles fabricated by controlled synthesis in water-alcohol solutions. Biomedicine, 10, 942. Siposova, K., Huntosova, V., Garcarova, I., Shlapa, Y., Timashkov, I., Belous, A., & Musatov, A. (2022). Dual-functional antioxidant and antiamyloid cerium oxide nanoparticles fabricated by controlled synthesis in water-alcohol solutions. Biomedicine, 10, 942.
go back to reference Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177–182.PubMedCrossRef Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177–182.PubMedCrossRef
go back to reference Stoimenov, P. K., Klinger, R. L., & Marchin, G. L. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18, 6679–6686.CrossRef Stoimenov, P. K., Klinger, R. L., & Marchin, G. L. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18, 6679–6686.CrossRef
go back to reference Theuretzbacher, U. (2013). Global antibacterial resistance: The never-ending story. Journal of Global Antimicrobial Resistance, 1, 63–69.PubMedCrossRef Theuretzbacher, U. (2013). Global antibacterial resistance: The never-ending story. Journal of Global Antimicrobial Resistance, 1, 63–69.PubMedCrossRef
go back to reference Tong, Y. N., Zhang, L. J., Gong, R., Shi, J. Y., Zhong, L., Duan, X. M., & Zhu, Y. X. (2020). A ROS-scavenging multifunctional nanoparticle for combinational therapy of diabetic nephropathy. Nanoscale, 12, 23607–23619.PubMedCrossRef Tong, Y. N., Zhang, L. J., Gong, R., Shi, J. Y., Zhong, L., Duan, X. M., & Zhu, Y. X. (2020). A ROS-scavenging multifunctional nanoparticle for combinational therapy of diabetic nephropathy. Nanoscale, 12, 23607–23619.PubMedCrossRef
go back to reference Triastuti, A., Zakiyyah, S. N., Gaffar, S., Anshori, I., Surawijaya, A., Hidayat, D., Wiraswati, H. L., Yusuf, M., Hartati, Y. W. (2003). CeO2@NH2 functionalized electrodes for the rapid detection of SARS-CoV-2 spike receptor binding domain. RSC Adv. Feb 16;13(9):5874–5884. https://doi.org/10.1039/d2ra07560a Triastuti, A., Zakiyyah, S. N., Gaffar, S., Anshori, I., Surawijaya, A., Hidayat, D., Wiraswati, H. L., Yusuf, M., Hartati, Y. W. (2003). CeO2@NH2 functionalized electrodes for the rapid detection of SARS-CoV-2 spike receptor binding domain. RSC Adv. Feb 16;13(9):5874–5884. https://​doi.​org/​10.​1039/​d2ra07560a
go back to reference Walls, A. C., Xiong, X., Park, Y. J., Tortorici, M. A., Snijder, J., Quispe, J., Cameroni, E., Gopal, R., Dai, M., & Lanzavecchia, A. (2019). Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell, 176, 1026–1039.PubMedPubMedCentralCrossRef Walls, A. C., Xiong, X., Park, Y. J., Tortorici, M. A., Snijder, J., Quispe, J., Cameroni, E., Gopal, R., Dai, M., & Lanzavecchia, A. (2019). Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell, 176, 1026–1039.PubMedPubMedCentralCrossRef
go back to reference Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181, 281–292.PubMedPubMedCentralCrossRef Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181, 281–292.PubMedPubMedCentralCrossRef
go back to reference Wang, M., He, H., Liu, D., Ma, M., & Zhang, Y. (2022). Preparation, characterization and multiple biological properties of peptide-modified cerium oxide nanoparticles. Biomolecules, 12(9), 1277.PubMedPubMedCentralCrossRef Wang, M., He, H., Liu, D., Ma, M., & Zhang, Y. (2022). Preparation, characterization and multiple biological properties of peptide-modified cerium oxide nanoparticles. Biomolecules, 12(9), 1277.PubMedPubMedCentralCrossRef
go back to reference Wang, Q., Wang, B., Shi, D., Li, F., & Ling, D. (2023). Cerium oxide nanoparticles-based optical biosensors for biomedical applications. Advanced Sensor Research, 2(3), 2200065.CrossRef Wang, Q., Wang, B., Shi, D., Li, F., & Ling, D. (2023). Cerium oxide nanoparticles-based optical biosensors for biomedical applications. Advanced Sensor Research, 2(3), 2200065.CrossRef
go back to reference Wei, H., & Wang, E. (2013). Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chemical Society Reviews, 42(14), 6060–6093.PubMedCrossRef Wei, H., & Wang, E. (2013). Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chemical Society Reviews, 42(14), 6060–6093.PubMedCrossRef
go back to reference Weiss, C., Carriere, M., Fusco, L., Capua, I., Regla-Nava, J. A., Pasquali, M., Scott, J. A., Vitale, F., Unal, M. A., Mattevi, C., et al. (2020). Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano, 14, 6383–6406. Weiss, C., Carriere, M., Fusco, L., Capua, I., Regla-Nava, J. A., Pasquali, M., Scott, J. A., Vitale, F., Unal, M. A., Mattevi, C., et al. (2020). Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano, 14, 6383–6406.
go back to reference Wu, J., Wang, X., Wang, Q., Lou, Z., Li, S., Zhu, Y., Qin, L., & Wei, H. (2019). Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chemical Society Reviews, 48(4), 1004–1076.PubMedCrossRef Wu, J., Wang, X., Wang, Q., Lou, Z., Li, S., Zhu, Y., Qin, L., & Wei, H. (2019). Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chemical Society Reviews, 48(4), 1004–1076.PubMedCrossRef
go back to reference Xiang, D. X., Chen, Q., Pang, L., & Zheng, C. L. (2011). Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro. Journal of Virological Methods, 178, 137–142.PubMedCrossRef Xiang, D. X., Chen, Q., Pang, L., & Zheng, C. L. (2011). Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro. Journal of Virological Methods, 178, 137–142.PubMedCrossRef
go back to reference Xu, P., Maidment, B. W., Antonic, V., Jackson, I. L., Das, S., Zodda, A., Zhang, X., Seal, S., & Vujaskovic, Z. (2016). Cerium oxide nanoparticles: A potential medical countermeasure to mitigate radiation-induced lung injury in CBA/J mice. Radiation Research, 185, 516–526.PubMedPubMedCentralCrossRef Xu, P., Maidment, B. W., Antonic, V., Jackson, I. L., Das, S., Zodda, A., Zhang, X., Seal, S., & Vujaskovic, Z. (2016). Cerium oxide nanoparticles: A potential medical countermeasure to mitigate radiation-induced lung injury in CBA/J mice. Radiation Research, 185, 516–526.PubMedPubMedCentralCrossRef
go back to reference Yadav, S., Chamoli, S., Kumar, P., & Maurya, P. K. (2023). Structural and functional insights in polysaccharides coated cerium oxide nanoparticles and their potential biomedical applications: A review. International Journal of Biological Macromolecules, 3, 125673.CrossRef Yadav, S., Chamoli, S., Kumar, P., & Maurya, P. K. (2023). Structural and functional insights in polysaccharides coated cerium oxide nanoparticles and their potential biomedical applications: A review. International Journal of Biological Macromolecules, 3, 125673.CrossRef
go back to reference Yang, W., Wang, L., Mettenbrink, E. M., DeAngelis, P. L., & Wilhelm, S. (2021). Nanoparticle toxicology. Annual Review of Pharmacology and Toxicology, 61, 269–289.PubMedCrossRef Yang, W., Wang, L., Mettenbrink, E. M., DeAngelis, P. L., & Wilhelm, S. (2021). Nanoparticle toxicology. Annual Review of Pharmacology and Toxicology, 61, 269–289.PubMedCrossRef
go back to reference Yefimova, S., Klochkov, V., Kavok, N., Tkachenko, A., Onishchenko, A., Chumachenko, T., Dizge, N., Özdemir, S., Gonca, S., & Ocakoglu, K. (2022). Antimicrobial activity and cytotoxicity study of cerium oxide nanoparticles with two different sizes. Journal of Biomedical Materials Research. https://doi.org/10.1002/jbm.b.35197 Yefimova, S., Klochkov, V., Kavok, N., Tkachenko, A., Onishchenko, A., Chumachenko, T., Dizge, N., Özdemir, S., Gonca, S., & Ocakoglu, K. (2022). Antimicrobial activity and cytotoxicity study of cerium oxide nanoparticles with two different sizes. Journal of Biomedical Materials Research. https://​doi.​org/​10.​1002/​jbm.​b.​35197
go back to reference Zhang, M., Zhang, C., Zhai, X., Luo, F., Du, Y., & Yan, C. (2019). Antibacterial mechanism and activity of cerium oxide nanoparticles. Science China Materials, 62(11), 1727–1739.CrossRef Zhang, M., Zhang, C., Zhai, X., Luo, F., Du, Y., & Yan, C. (2019). Antibacterial mechanism and activity of cerium oxide nanoparticles. Science China Materials, 62(11), 1727–1739.CrossRef
go back to reference Zholobak, N. M., Olevinskaia, Z. M., Spivak, N. I., Shcherbakov, A. B., Ivanov, V. K., & Usatenko, A. V. (2010). Antiviral effect of cerium dioxide nanoparticles stabilized by low molecular polyacrylic acid. Mikrobiolohichnyi Zhurnal (Ukraine), 72, 42–47. Zholobak, N. M., Olevinskaia, Z. M., Spivak, N. I., Shcherbakov, A. B., Ivanov, V. K., & Usatenko, A. V. (2010). Antiviral effect of cerium dioxide nanoparticles stabilized by low molecular polyacrylic acid. Mikrobiolohichnyi Zhurnal (Ukraine), 72, 42–47.
go back to reference Zholobak, N. M., Shcherbakov, A. B., Vitukova, E. O., Yegorova, A. V., Scripinets, Y. V., Leonenko, I., Baranchikov, A. Y., Antonovich, V. P., & Ivanov, V. K. (2014). Direct monitoring of the interaction between ROS and cerium dioxide nanoparticles in living cells. RSC Advances, 4, 51703–51710. https://doi.org/10.1039/C4RA08292CCrossRef Zholobak, N. M., Shcherbakov, A. B., Vitukova, E. O., Yegorova, A. V., Scripinets, Y. V., Leonenko, I., Baranchikov, A. Y., Antonovich, V. P., & Ivanov, V. K. (2014). Direct monitoring of the interaction between ROS and cerium dioxide nanoparticles in living cells. RSC Advances, 4, 51703–51710. https://​doi.​org/​10.​1039/​C4RA08292CCrossRef
Metadata
Title
Cerium Oxide Nanoparticles for Biomedical Applications
Authors
Arumugam Vijayan
Shalini Ramadoss
Natarajan Sisubalan
Muniraj Gnanaraj
Karthikeyan Chandrasekaran
Varaprasad Kokkarachedu
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50093-0_8

Premium Partners