Skip to main content
Top

2023 | OriginalPaper | Chapter

Certain Properties and Their Volterra Integral Equation Associated with the Second Kind Chebyshev Matrix Polynomials in Two Variables

Authors : Virender Singh, Waseem A. Khan, Archna Sharma

Published in: Frontiers in Industrial and Applied Mathematics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter delves into the significant properties and integral equations associated with the second kind Chebyshev matrix polynomials in two variables. It begins by introducing the preliminaries and the importance of generalized and multivariate forms of special functions in physical mathematics. The text then focuses on the recurrence relations and differential equations satisfied by these matrix polynomials, providing detailed derivations and proofs. One of the highlights is the explicit representation of these polynomials in terms of hypergeometric matrix functions. Additionally, the chapter explores the expansions of Chebyshev matrix polynomials in series of Hermite and Laguerre matrix polynomials, offering a deeper understanding of their interconnections. The chapter concludes with the derivation of the Volterra integral equation associated with these polynomials, showcasing the practical applications of these theoretical findings. Throughout, the text emphasizes the importance of generating functions in extracting properties related to two-variable extensions of these polynomials, making it a valuable resource for specialists in the field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aktaş, R., Çekim, B., Çevik, A.: Extended Jacobi matrix polynomials. Util. Math. 92, 47–64 (2013)MATH Aktaş, R., Çekim, B., Çevik, A.: Extended Jacobi matrix polynomials. Util. Math. 92, 47–64 (2013)MATH
2.
go back to reference Altin, A., Çekim, B.: Generating matrix functions for Chebyshev matrix polynomials of the second kind. Hacettepe J. Math. Stat. 41(1), 25–32 (2012)MATH Altin, A., Çekim, B.: Generating matrix functions for Chebyshev matrix polynomials of the second kind. Hacettepe J. Math. Stat. 41(1), 25–32 (2012)MATH
3.
go back to reference Altin, A., Çekim, B.: Some miscellaneous properties for Gegenbaur matrix polynomials. Util. Math. 92, 377–387 (2013)MATH Altin, A., Çekim, B.: Some miscellaneous properties for Gegenbaur matrix polynomials. Util. Math. 92, 377–387 (2013)MATH
4.
go back to reference Batahan, R.S.: A new extension of Hermite matrix polynomials and its applications. J. Linear Algebra Appl. 419(1), 82–92 (2006)CrossRefMATH Batahan, R.S.: A new extension of Hermite matrix polynomials and its applications. J. Linear Algebra Appl. 419(1), 82–92 (2006)CrossRefMATH
5.
go back to reference Çekim, B., Altin, A., Aktaş, R.: Some new results for Jacobi matrix polynomials. Filomat 27(4), 713–719 (2013)CrossRefMATH Çekim, B., Altin, A., Aktaş, R.: Some new results for Jacobi matrix polynomials. Filomat 27(4), 713–719 (2013)CrossRefMATH
6.
go back to reference Dattoli, G., Lorenzutta, S., Maino, G., Torre, A., Cesarano, C.: Generalized Hermite polynomials and super-Gaussian forms. J. Math. Anal. Appl. 203(3), 597–609 (1996)CrossRefMATH Dattoli, G., Lorenzutta, S., Maino, G., Torre, A., Cesarano, C.: Generalized Hermite polynomials and super-Gaussian forms. J. Math. Anal. Appl. 203(3), 597–609 (1996)CrossRefMATH
7.
go back to reference Defez, E., Jódar, L.: Chebyshev matrix polynomials and second-order matrix differential equations. Util. Math. 61, 107–123 (2002)MATH Defez, E., Jódar, L.: Chebyshev matrix polynomials and second-order matrix differential equations. Util. Math. 61, 107–123 (2002)MATH
8.
go back to reference Defez, E., Jódar, L.: Some applications of the Hermite matrix polynomials series expansions. J. Comp. Appl. Math. 99(1–2), 105–117 (1998)CrossRefMATH Defez, E., Jódar, L.: Some applications of the Hermite matrix polynomials series expansions. J. Comp. Appl. Math. 99(1–2), 105–117 (1998)CrossRefMATH
9.
go back to reference Dunford, N., Schwartz, J.T.: Linear Operators, Part I. General Theory. Interscience, New York (1963)MATH Dunford, N., Schwartz, J.T.: Linear Operators, Part I. General Theory. Interscience, New York (1963)MATH
10.
go back to reference Jódar, L., Company, R.: Hermite matrix polynomials and second order matrix differential equations. J. Approx. Theory Appl. 12(2), 20–30 (1996)MATH Jódar, L., Company, R.: Hermite matrix polynomials and second order matrix differential equations. J. Approx. Theory Appl. 12(2), 20–30 (1996)MATH
11.
go back to reference Jódar, L., Company, R., Navarro, E.: Laguerre matrix polynomials and systems of second order differential equations. Appl. Numer. Math. 15(1), 53–63 (1994)CrossRefMATH Jódar, L., Company, R., Navarro, E.: Laguerre matrix polynomials and systems of second order differential equations. Appl. Numer. Math. 15(1), 53–63 (1994)CrossRefMATH
12.
go back to reference Jódar, L., Cortès, J.C.: Closed form general solution of the hypergeometric matrix differential equation. Math. Comput. Model. 32(9), 1017–1028 (2000)CrossRefMATH Jódar, L., Cortès, J.C.: Closed form general solution of the hypergeometric matrix differential equation. Math. Comput. Model. 32(9), 1017–1028 (2000)CrossRefMATH
13.
go back to reference Jódar, L., Cortès, J.C.: On the hypergeometric matrix function. J. Comp. Appl. Math. 99(1–2), 205–217 (1998)CrossRefMATH Jódar, L., Cortès, J.C.: On the hypergeometric matrix function. J. Comp. Appl. Math. 99(1–2), 205–217 (1998)CrossRefMATH
14.
go back to reference Jódar, L., Defer, E.: On Hermite matrix polynomials and Hermite matrix functions. J. Approx. Theory Appl. 14(1), 36–48 (1998)MATH Jódar, L., Defer, E.: On Hermite matrix polynomials and Hermite matrix functions. J. Approx. Theory Appl. 14(1), 36–48 (1998)MATH
15.
go back to reference Kargin, L., Kurt, V.: Chebyshev-type matrix polynomials and integral transforms. Hacettepe J. Math. Stat. 44(2), 341–350 (2015)MATH Kargin, L., Kurt, V.: Chebyshev-type matrix polynomials and integral transforms. Hacettepe J. Math. Stat. 44(2), 341–350 (2015)MATH
16.
go back to reference Khan, S., Al-Gonah, A.A.: Multi-variable Hermite matrix polynomials: properties and applications. J. Math. Anal. Appl. 412, 222–235 (2014)CrossRefMATH Khan, S., Al-Gonah, A.A.: Multi-variable Hermite matrix polynomials: properties and applications. J. Math. Anal. Appl. 412, 222–235 (2014)CrossRefMATH
17.
go back to reference Metwally, M.S., Mohamed, M.T., Shehata, A.: On Chebyshev matrix polynomials, matrix differential equations and their properties. Afr. Mat. 26(5–6), 1037–1047 (2015)CrossRefMATH Metwally, M.S., Mohamed, M.T., Shehata, A.: On Chebyshev matrix polynomials, matrix differential equations and their properties. Afr. Mat. 26(5–6), 1037–1047 (2015)CrossRefMATH
18.
go back to reference Ranville, E.D.: Special Functions. The Macmillan Company, New York (1960) Ranville, E.D.: Special Functions. The Macmillan Company, New York (1960)
19.
go back to reference Sayyed, K.A.M., Metwally, M.S., Batahan, R.S.: Gegenbauer matrix polynomials and second order matrix differential equations. Div. Math. 12(2), 101–115 (2004)MATH Sayyed, K.A.M., Metwally, M.S., Batahan, R.S.: Gegenbauer matrix polynomials and second order matrix differential equations. Div. Math. 12(2), 101–115 (2004)MATH
20.
go back to reference Sayyed, K.A.M., Metwally, M.S., Mohamed, M.T.: Certain Hypergeometric matrix function. Sci. Math. Japonicae 177–183 (2009) Sayyed, K.A.M., Metwally, M.S., Mohamed, M.T.: Certain Hypergeometric matrix function. Sci. Math. Japonicae 177–183 (2009)
21.
go back to reference Shehata, A.: A new extension of Gegenbauer matrix polynomials and their applications. Bull. Int. Math. Virtual Inst. 2, 29–42 (2012)MATH Shehata, A.: A new extension of Gegenbauer matrix polynomials and their applications. Bull. Int. Math. Virtual Inst. 2, 29–42 (2012)MATH
22.
go back to reference Singh, V., Khan, M.A., Khan, A.H.: Study of Gegenbauer matrix polynomials via matrix functions and their properties. Asian J. Math. Comput. Res.. 16(4), 197–207 (2017) Singh, V., Khan, M.A., Khan, A.H.: Study of Gegenbauer matrix polynomials via matrix functions and their properties. Asian J. Math. Comput. Res.. 16(4), 197–207 (2017)
23.
go back to reference Singh, V., Khan, M.A., Khan, A.H.: On a multivariable extension of Laguerre matrix ploynomials. Electron. J. Math. Anal. Appl. 6(1), 223–240 (2018)MATH Singh, V., Khan, M.A., Khan, A.H.: On a multivariable extension of Laguerre matrix ploynomials. Electron. J. Math. Anal. Appl. 6(1), 223–240 (2018)MATH
24.
go back to reference Singh, V., Khan, M.A., Khan, A.H.: Generalization of multi-variable modified Hermite matrix polynomials and its applications. Honam Math. J. 42(2), 269–291 (2020)MATH Singh, V., Khan, M.A., Khan, A.H.: Generalization of multi-variable modified Hermite matrix polynomials and its applications. Honam Math. J. 42(2), 269–291 (2020)MATH
25.
26.
go back to reference Srivastava, H.M., Manocha, H.L.: A treatise on generating functions. Halsted Press, Wiley, New York-Chichester-Brisbane and Toronto (1984) Srivastava, H.M., Manocha, H.L.: A treatise on generating functions. Halsted Press, Wiley, New York-Chichester-Brisbane and Toronto (1984)
Metadata
Title
Certain Properties and Their Volterra Integral Equation Associated with the Second Kind Chebyshev Matrix Polynomials in Two Variables
Authors
Virender Singh
Waseem A. Khan
Archna Sharma
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-7272-0_5

Premium Partners