Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

Chabauty–Coleman Computations on Rank 1 Picard Curves

Authors : Sachi Hashimoto, Travis Morrison

Published in: Arithmetic Geometry, Number Theory, and Computation

Publisher: Springer International Publishing

share
SHARE

Abstract

We provably compute the full set of rational points on 1403 Picard curves defined over \(\mathbb {Q}\) with Jacobians of Mordell–Weil rank 1 using the Chabauty–Coleman method. To carry out this computation, we extend Magma code of Balakrishnan and Tuitman for Coleman integration. The new code computes p-adic (Coleman) integrals on curves to points defined over number fields where the prime p splits completely and implements effective Chabauty for curves whose Jacobians have infinite order points that are not the image of a rational point under the Abel–Jacobi map. We discuss several interesting examples of curves where the Chabauty–Coleman set contains points defined over number fields.
Appendix
Available only for authorised users
Footnotes
1
For practical purposes, we terminated RankBounds if it ran for 120 s without returning an answer. We discarded 520 curves from the total 5335 curves in the database provided by Sutherland either from terminating RankBounds or due to a “Runtime error”.
 
2
For some heuristics for choosing e given a fixed N see Appendix 5.
 
3
Due to a minor bug in the code of Balakrishnan and Tuitman for computing local coordinates at very infinite points, which in certain cases yields a Runtime Error instead of computing the coordinates, we sometimes choose the next largest possible prime.
 
4
For a given curve there are often multiple choices of g, and we pick the one with the smallest first split prime.
 
5
For the remaining 544 curves, it can be quite computationally expensive to compute \(X(\mathbb {Q})\) depending on the parameters N, e, and p. Individual curves can require up to several hours. This computation was run on a single core of a 28-core 2.2 GHz Intel 2 Xeon Gold server with 256 GB RAM.
 
Literature
[BBCF+]
go back to reference J. S. Balakrishnan, F. Bianchi, V. Cantoral-Farfán, M. Çiperiani, and A. Etropolski. Chabauty-Coleman experiments for genus 3 hyperelliptic curves. Research Directions in Number Theory, Association for Women in Mathematics Series, 19:67–90. J. S. Balakrishnan, F. Bianchi, V. Cantoral-Farfán, M. Çiperiani, and A. Etropolski. Chabauty-Coleman experiments for genus 3 hyperelliptic curves. Research Directions in Number Theory, Association for Women in Mathematics Series, 19:67–90.
[BT20]
go back to reference J. S. Balakrishnan and J. Tuitman. Explicit Coleman integration for curves. Math. Comp., 89(326):2965–2984, 2020. MathSciNetCrossRef J. S. Balakrishnan and J. Tuitman. Explicit Coleman integration for curves. Math. Comp., 89(326):2965–2984, 2020. MathSciNetCrossRef
[BBW17]
go back to reference M. Börner, I. Bouw, and S. Wewers. Picard curves with small conductor. In Algorithmic and experimental methods in algebra, geometry, and number theory, pages 97–122. Springer, Cham, 2017. M. Börner, I. Bouw, and S. Wewers. Picard curves with small conductor. In Algorithmic and experimental methods in algebra, geometry, and number theory, pages 97–122. Springer, Cham, 2017.
[Bou89]
go back to reference N. Bourbaki. Lie groups and Lie algebras. Chapters 1–3. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1989. Translated from the French, Reprint of the 1975 edition. N. Bourbaki. Lie groups and Lie algebras. Chapters 1–3. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1989. Translated from the French, Reprint of the 1975 edition.
[BPS16]
go back to reference N. Bruin, B. Poonen, and M. Stoll. Generalized explicit descent and its application to curves of genus 3. Forum Math. Sigma, 4:e6, 80, 2016. N. Bruin, B. Poonen, and M. Stoll. Generalized explicit descent and its application to curves of genus 3. Forum Math. Sigma, 4:e6, 80, 2016.
[BS10]
go back to reference N. Bruin and M. Stoll. The Mordell-Weil sieve: proving non-existence of rational points on curves. LMS J. Comput. Math., 13:272–306, 2010. MathSciNetCrossRef N. Bruin and M. Stoll. The Mordell-Weil sieve: proving non-existence of rational points on curves. LMS J. Comput. Math., 13:272–306, 2010. MathSciNetCrossRef
[Cha41]
go back to reference C. Chabauty. Sur les points rationnels des courbes algébriques de genre supérieure à l’unité. C. R. Acad. Sci. Paris, 212:882–885, 1941. MathSciNetMATH C. Chabauty. Sur les points rationnels des courbes algébriques de genre supérieure à l’unité. C. R. Acad. Sci. Paris, 212:882–885, 1941. MathSciNetMATH
[Col85b]
[Cre13]
go back to reference B. Creutz. Explicit descent in the Picard group of a cyclic cover of the projective line. In ANTS X—Proceedings of the Tenth Algorithmic Number Theory Symposium, volume 1 of Open Book Ser., pages 295–315. Math. Sci. Publ., Berkeley, CA, 2013. MATH B. Creutz. Explicit descent in the Picard group of a cyclic cover of the projective line. In ANTS X—Proceedings of the Tenth Algorithmic Number Theory Symposium, volume 1 of Open Book Ser., pages 295–315. Math. Sci. Publ., Berkeley, CA, 2013. MATH
[Fal83]
go back to reference G. Faltings. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math., 73(3):349–366, 1983. MathSciNetCrossRef G. Faltings. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math., 73(3):349–366, 1983. MathSciNetCrossRef
[dFFH19]
go back to reference M. I. de Frutos-Fernández and S. Hashimoto. Computing rational points on rank 0 genus 3 hyperelliptic curves, 2021. arXiv:1909.04808. M. I. de Frutos-Fernández and S. Hashimoto. Computing rational points on rank 0 genus 3 hyperelliptic curves, 2021. arXiv:1909.04808.
[Ked01]
go back to reference K. S. Kedlaya. Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology. J. Ramanujan Math. Soc., 16(4):323–338, 2001. MathSciNetMATH K. S. Kedlaya. Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology. J. Ramanujan Math. Soc., 16(4):323–338, 2001. MathSciNetMATH
[Ked03]
go back to reference K. S. Kedlaya. Errata for: “Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology” [J. Ramanujan Math. Soc. 16 (2001), no. 4, 323–338; MR1877805]. volume 18, pages 417–418. 2003. Dedicated to Professor K. S. Padmanabhan. K. S. Kedlaya. Errata for: “Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology” [J. Ramanujan Math. Soc. 16 (2001), no. 4, 323–338; MR1877805]. volume 18, pages 417–418. 2003. Dedicated to Professor K. S. Padmanabhan.
[MP12]
go back to reference W. McCallum and B. Poonen. The method of Chabauty and Coleman. Explicit Methods in Number Theory, Panor. Synthèses, 36:99–117, 01 2012. W. McCallum and B. Poonen. The method of Chabauty and Coleman. Explicit Methods in Number Theory, Panor. Synthèses, 36:99–117, 01 2012.
[Mil86]
go back to reference J. S. Milne. Jacobian varieties. In Arithmetic Geometry (Storrs, Conn., 1984), pages 167–212. Springer, New York, 1986. J. S. Milne. Jacobian varieties. In Arithmetic Geometry (Storrs, Conn., 1984), pages 167–212. Springer, New York, 1986.
[Poo97]
go back to reference B. Poonen and E. Schaefer. Explicit descent for Jacobians of cyclic covers of the projective line. J. Reine Angew. Math., 488:141–188, 1997. MathSciNetMATH B. Poonen and E. Schaefer. Explicit descent for Jacobians of cyclic covers of the projective line. J. Reine Angew. Math., 488:141–188, 1997. MathSciNetMATH
[Sik15]
go back to reference S. Siksek. Chabauty and the Mordell-Weil sieve. In Advances on superelliptic curves and their applications, volume 41 of NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., pages 194–224. IOS, Amsterdam, 2015. MATH S. Siksek. Chabauty and the Mordell-Weil sieve. In Advances on superelliptic curves and their applications, volume 41 of NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., pages 194–224. IOS, Amsterdam, 2015. MATH
[Sut19]
go back to reference A. V. Sutherland. A database of nonhyperelliptic genus-3 curves over Q. In Proceedings of the Thirteenth Algorithmic Number Theory Symposium, volume 2 of Open Book Ser., pages 443–459. Math. Sci. Publ., Berkeley, CA, 2019. A. V. Sutherland. A database of nonhyperelliptic genus-3 curves over Q. In Proceedings of the Thirteenth Algorithmic Number Theory Symposium, volume 2 of Open Book Ser., pages 443–459. Math. Sci. Publ., Berkeley, CA, 2019.
[Tui16]
[Tui17]
[Wet]
go back to reference J. L. Wetherell. Bounding the number of rational points on certain curves of high rank. PhD Thesis, 1997. UC Berkeley. J. L. Wetherell. Bounding the number of rational points on certain curves of high rank. PhD Thesis, 1997. UC Berkeley.
Metadata
Title
Chabauty–Coleman Computations on Rank 1 Picard Curves
Authors
Sachi Hashimoto
Travis Morrison
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-80914-0_16

Premium Partner