Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Journal of Nanoparticle Research 7/2022

01-07-2022 | Review

Chalcogenide perovskites for photovoltaic applications: a review

Authors: Moh Suhail, Hasan Abbas, Mohd. Bilal Khan, Zishan H. Khan

Published in: Journal of Nanoparticle Research | Issue 7/2022

Login to get access
share
SHARE

Abstract

Owing to promising optical and electrical properties and better thermal and aqueous stability, chalcogenide perovskites have shown a wide range of applications. Chalcogenides belong to the 16th group of periodic tables and could be potential materials for the fabrication of efficient and stable (chalcogenide perovskite) solar cells. Generally, metal halide perovskites are used for the fabrication of solar cells. However, they have some grave problems like less stability and toxicity. In this context, chalcogenide perovskites (AB (S, Se)3) may be a better option due to their potential to solve the existing problems and hence could be deployed in the fabrication of high-performance solar cells. These chalcogenide perovskites have high stability (thermal and aqueous), along with their environment-friendly elemental composition. In this review, we present various techniques used for the synthesis of chalcogenide perovskites and their applications in the fabrication of solar cells. Furthermore, we have also studied the scope for the commercial development of chalcogenide perovskite–based solar cell.

Graphical abstract

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24(January):38–50 CrossRef Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24(January):38–50 CrossRef
2.
go back to reference U.S. Energy Information Administration (2050) International energy outlook 2019 with projections to 2019 U.S. Energy Information Administration (2050) International energy outlook 2019 with projections to 2019
3.
go back to reference Moosavian SM, Rahim NA, Selvaraj J, Solangi KH (2013) Energy policy to promote photovoltaic generation. Renew Sustain Energy Rev 25:44–58 CrossRef Moosavian SM, Rahim NA, Selvaraj J, Solangi KH (2013) Energy policy to promote photovoltaic generation. Renew Sustain Energy Rev 25:44–58 CrossRef
4.
go back to reference A.E. Becquerel. Recherches sur les effets de la radiation chimique de la lumiere 26 Chapter 1. Introduction solaire au moyen des courants electriques. C R Acad Sci 9:145–149, 1839. A.E. Becquerel. Recherches sur les effets de la radiation chimique de la lumiere 26 Chapter 1. Introduction solaire au moyen des courants electriques. C R Acad Sci 9:145–149, 1839.
5.
go back to reference Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p- n junction photocell for converting solar radiation into electrical power. J Appl Phys 25(5):676–677 CrossRef Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p- n junction photocell for converting solar radiation into electrical power. J Appl Phys 25(5):676–677 CrossRef
7.
go back to reference A. Jger-Waldau (2017) PV status report 2017. Report ISBN 978-92-79-74071-8, European Commission A. Jger-Waldau (2017) PV status report 2017. Report ISBN 978-92-79-74071-8, European Commission
8.
go back to reference Mahmood A, Wang JL (2021) Machine learning for high performance organic solar cells: current scenario and future prospects. Energy Environ Sci 14(1):90–105 CrossRef Mahmood A, Wang JL (2021) Machine learning for high performance organic solar cells: current scenario and future prospects. Energy Environ Sci 14(1):90–105 CrossRef
9.
go back to reference Ahmad F, Mahmood A, Muhmood T (2021) Machine learning-integrated omics for the risk and safety assessment of nanomaterials. Biomater Sci 9(5):1598–1608 CrossRef Ahmad F, Mahmood A, Muhmood T (2021) Machine learning-integrated omics for the risk and safety assessment of nanomaterials. Biomater Sci 9(5):1598–1608 CrossRef
10.
go back to reference Mahmood A, Wang JL (2021) A time and resource efficient machine learning assisted design of non-fullerene small molecule acceptors for P3HT-based organic solar cells and green solvent selection. J Mater Chem A 9(28):15684–15695 CrossRef Mahmood A, Wang JL (2021) A time and resource efficient machine learning assisted design of non-fullerene small molecule acceptors for P3HT-based organic solar cells and green solvent selection. J Mater Chem A 9(28):15684–15695 CrossRef
11.
go back to reference Mahmood A, Ahmad A, Wang JL. Developing efficient small molecule acceptors with sp2‐hybridized nitrogen at different positions by density functional theory calculations, molecular dynamics simulations and machine learning. Chem–A Eur J 28(2):e202103712. Mahmood A, Ahmad A, Wang JL. Developing efficient small molecule acceptors with sp2‐hybridized nitrogen at different positions by density functional theory calculations, molecular dynamics simulations and machine learning. Chem–A Eur J 28(2):e202103712.
12.
go back to reference Mahmood A, Irfan A, Wang JL (2022) Machine learning and molecular dynamics simulation-assisted evolutionary design and discovery pipeline to screen efficient small molecule acceptors for PTB7-Th-based organic solar cells with over 15% efficiency. J Mater Chem A 10(8):4170–4180 CrossRef Mahmood A, Irfan A, Wang JL (2022) Machine learning and molecular dynamics simulation-assisted evolutionary design and discovery pipeline to screen efficient small molecule acceptors for PTB7-Th-based organic solar cells with over 15% efficiency. J Mater Chem A 10(8):4170–4180 CrossRef
13.
go back to reference Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Ho-Baillie AWY (2018) Solar cell efficiency tables (version 51). Prog Photovoltaics Res Appl 26(1):3–12 CrossRef Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Ho-Baillie AWY (2018) Solar cell efficiency tables (version 51). Prog Photovoltaics Res Appl 26(1):3–12 CrossRef
14.
go back to reference Kazim S, Nazeeruddin MK, Gratzel M, Ahmad S (2014) Perovskite as light harvester: a game changer in photovoltaics. Angew Chem, Int Ed Engl 53(11):2812–2824 CrossRef Kazim S, Nazeeruddin MK, Gratzel M, Ahmad S (2014) Perovskite as light harvester: a game changer in photovoltaics. Angew Chem, Int Ed Engl 53(11):2812–2824 CrossRef
15.
go back to reference Wu X (2004) High-efficiency polycrystalline CdTe thin-film solar cells. Sol Energy 77(6):803–814 CrossRef Wu X (2004) High-efficiency polycrystalline CdTe thin-film solar cells. Sol Energy 77(6):803–814 CrossRef
16.
go back to reference Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M (2011) New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%. Prog Photovolt Res Appl 19(7):894–897 CrossRef Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M (2011) New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%. Prog Photovolt Res Appl 19(7):894–897 CrossRef
17.
go back to reference Fthenakis V (2009) Sustainability of photovoltaics: the case for thin-film solar cells. Renew Sustain Energy Rev 13(9):2746–2750 CrossRef Fthenakis V (2009) Sustainability of photovoltaics: the case for thin-film solar cells. Renew Sustain Energy Rev 13(9):2746–2750 CrossRef
18.
go back to reference Bin H, Gao L, Zhang ZG, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y (2016) 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat Commun 7:13651 CrossRef Bin H, Gao L, Zhang ZG, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y (2016) 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat Commun 7:13651 CrossRef
19.
go back to reference Gnes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338 CrossRef Gnes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338 CrossRef
20.
go back to reference Grossiord N, Kroon JM, Andriessen R, Blom PWM (2012) Degradation mechanisms in organic photovoltaic devices. Org Electron 13(3):432–456 CrossRef Grossiord N, Kroon JM, Andriessen R, Blom PWM (2012) Degradation mechanisms in organic photovoltaic devices. Org Electron 13(3):432–456 CrossRef
21.
go back to reference Sanehira EM, Marshall AR, Christians JA, Harvey SP, Ciesielski PN, Wheeler LM, Schulz P, Lin LY, Beard MC, Luther JM (2017) Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci Adv 3(10):eaao4204 Sanehira EM, Marshall AR, Christians JA, Harvey SP, Ciesielski PN, Wheeler LM, Schulz P, Lin LY, Beard MC, Luther JM (2017) Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci Adv 3(10):eaao4204
22.
23.
go back to reference Dette C, Prez-Osorio MA, Kley CS, Punke P, Patrick CE, Jacobson P, Giustino F, Jung SJ, Kern K (2014) TiO 2 anatase with a bandgap in the visible region. Nano Lett 14(11):6533–6538 CrossRef Dette C, Prez-Osorio MA, Kley CS, Punke P, Patrick CE, Jacobson P, Giustino F, Jung SJ, Kern K (2014) TiO 2 anatase with a bandgap in the visible region. Nano Lett 14(11):6533–6538 CrossRef
24.
go back to reference Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051 CrossRef Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051 CrossRef
25.
go back to reference Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8(7):506–514 CrossRef Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8(7):506–514 CrossRef
26.
go back to reference Chen Y, Zhang L, Zhang Y, Gao H, Yan H (2018) Large-area perovskite solar cells – a review of recent progress and issues. RSC Adv 8(19):10489–10508 CrossRef Chen Y, Zhang L, Zhang Y, Gao H, Yan H (2018) Large-area perovskite solar cells – a review of recent progress and issues. RSC Adv 8(19):10489–10508 CrossRef
27.
go back to reference Adjogri SJ, Meyer EL (2021) Chalcogenide perovskites and perovskite-based chalcohalide as photoabsorbers: a study of their properties, and potential photovoltaic applications. Materials 14(24):7857 CrossRef Adjogri SJ, Meyer EL (2021) Chalcogenide perovskites and perovskite-based chalcohalide as photoabsorbers: a study of their properties, and potential photovoltaic applications. Materials 14(24):7857 CrossRef
28.
go back to reference Goldschmidt VM (1926) Die Gesetze der Krystallochemie. Die Naturwissenschaften 14(21):477–485 CrossRef Goldschmidt VM (1926) Die Gesetze der Krystallochemie. Die Naturwissenschaften 14(21):477–485 CrossRef
29.
go back to reference Travis W, Glover ENK, Bronstein H, Scanlon DO, Palgrave RG (2016) On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem Sci 7(7):4548–4556 CrossRef Travis W, Glover ENK, Bronstein H, Scanlon DO, Palgrave RG (2016) On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem Sci 7(7):4548–4556 CrossRef
30.
go back to reference Huang TJ, Thiang ZX, Yin X, Tang C, Qi G, Gong H (2016) (CH 3NH 3) 2PdCl 4: a compound with two-dimensional organic-inorganic layered perovskite structure. Chem Eur J 22(6):2146–2152 CrossRef Huang TJ, Thiang ZX, Yin X, Tang C, Qi G, Gong H (2016) (CH 3NH 3) 2PdCl 4: a compound with two-dimensional organic-inorganic layered perovskite structure. Chem Eur J 22(6):2146–2152 CrossRef
31.
go back to reference Li C, Lu X, Ding W, Feng L, Gao Y, Guo Z (2008) Formability of ABX 3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr B 64(6):702–707 CrossRef Li C, Lu X, Ding W, Feng L, Gao Y, Guo Z (2008) Formability of ABX 3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr B 64(6):702–707 CrossRef
32.
go back to reference Uribe JI, Ramirez D, Osorio-Guillen JM, Osorio J, Jaramillo F (2016) CH 3NH 3CaI 3 perovskite: synthesis, characterization, and first principles studies. J Phys Chem C 120:16393–16398 CrossRef Uribe JI, Ramirez D, Osorio-Guillen JM, Osorio J, Jaramillo F (2016) CH 3NH 3CaI 3 perovskite: synthesis, characterization, and first principles studies. J Phys Chem C 120:16393–16398 CrossRef
33.
go back to reference Kieslich G, Sun S, Cheetham AK (2014) Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem Sci 5(12):4712–4715 CrossRef Kieslich G, Sun S, Cheetham AK (2014) Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem Sci 5(12):4712–4715 CrossRef
34.
go back to reference Ishihara T (2017) Springer handbook of electronic and photonic materials. Springer handbooks (Eds: S. Kasap, P. Capper), Springer, Cham Ishihara T (2017) Springer handbook of electronic and photonic materials. Springer handbooks (Eds: S. Kasap, P. Capper), Springer, Cham
35.
go back to reference Sopiha KV, Comparotto C, Márquez JA, Scragg JAJJ (2022) Chalcogenide perovskites: tantalizing prospects, challenging materials. Adv Opt Mater 10(3):2101704 CrossRef Sopiha KV, Comparotto C, Márquez JA, Scragg JAJJ (2022) Chalcogenide perovskites: tantalizing prospects, challenging materials. Adv Opt Mater 10(3):2101704 CrossRef
36.
go back to reference Mitzi DB, Wang S, Feild CA, Chess CA, Guloy AM (1995) Conducting layered organic–inorganic halides containing oriented perovskite sheets. Science 267(1473):35 Mitzi DB, Wang S, Feild CA, Chess CA, Guloy AM (1995) Conducting layered organic–inorganic halides containing oriented perovskite sheets. Science 267(1473):35
37.
go back to reference Mitzi DB, Chondroudis K, Kagan CR (2001) Organic-inorganic electronics. IBM J Res Dev 45(29):36 Mitzi DB, Chondroudis K, Kagan CR (2001) Organic-inorganic electronics. IBM J Res Dev 45(29):36
38.
go back to reference Topsöe H (1884) Krystallographisch-chemische untersuchungen homologer verbindungen. Z Krist 8:246 Topsöe H (1884) Krystallographisch-chemische untersuchungen homologer verbindungen. Z Krist 8:246
39.
go back to reference Kojima A, Teshima K, Miyasaka T, Shirai Y (2006) Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2). In Proc. 210th ECS Meeting (ECS) Kojima A, Teshima K, Miyasaka T, Shirai Y (2006) Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2). In Proc. 210th ECS Meeting (ECS)
40.
go back to reference Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050 CrossRef Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050 CrossRef
41.
go back to reference Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(4088):4088 CrossRef Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(4088):4088 CrossRef
42.
go back to reference Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2(591):1–7 Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2(591):1–7
43.
go back to reference Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13(4):1764–1769 CrossRef Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13(4):1764–1769 CrossRef
44.
go back to reference Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Gratzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319 CrossRef Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Gratzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319 CrossRef
45.
go back to reference Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398 CrossRef Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398 CrossRef
46.
go back to reference Park NG (2013) Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J Phys Chem Lett 4:2423–2429 CrossRef Park NG (2013) Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J Phys Chem Lett 4:2423–2429 CrossRef
47.
go back to reference Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348:1234 CrossRef Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348:1234 CrossRef
48.
go back to reference Saliba M, Matsui T, Seo JY, Domanski K, Correa-Baena JP, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldt A, Gratzel M (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9:1989 CrossRef Saliba M, Matsui T, Seo JY, Domanski K, Correa-Baena JP, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldt A, Gratzel M (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9:1989 CrossRef
49.
go back to reference Ahmad S, Abbas H, Khan MB, Nagal V, Hafiz AK, Khan ZH (2021) ZnO for stable and efficient perovskite bulk heterojunction solar cell fabricated under ambient atmosphere. Sol Energy 216:164–170 CrossRef Ahmad S, Abbas H, Khan MB, Nagal V, Hafiz AK, Khan ZH (2021) ZnO for stable and efficient perovskite bulk heterojunction solar cell fabricated under ambient atmosphere. Sol Energy 216:164–170 CrossRef
50.
go back to reference Zhao L, Kerner RA, Xiao Z, Hui Y, Lin L, Lee KM, Schwartz J, Rand BP (2016) Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices. ACS Energy Lett 1:595–602 CrossRef Zhao L, Kerner RA, Xiao Z, Hui Y, Lin L, Lee KM, Schwartz J, Rand BP (2016) Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices. ACS Energy Lett 1:595–602 CrossRef
51.
go back to reference Khan ZH, Khan SA, Agel FA, Salah NA, Husain MM (2016) Chalcogenides to nanochalcogenides; exploring possibilities for future R&D. In: Husain M, Khan Z (eds) Advances in nanomaterials. Adv Struct Mater 79 Khan ZH, Khan SA, Agel FA, Salah NA, Husain MM (2016) Chalcogenides to nanochalcogenides; exploring possibilities for future R&D. In: Husain M, Khan Z (eds) Advances in nanomaterials. Adv Struct Mater 79
52.
53.
go back to reference Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13(9):838–842 CrossRef Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13(9):838–842 CrossRef
56.
go back to reference Tiwari D, Hutter OS, Longo G (2021) Chalcogenide perovskites for photovoltaics: current status and prospects. J Phys: Energy 3(3):034010 Tiwari D, Hutter OS, Longo G (2021) Chalcogenide perovskites for photovoltaics: current status and prospects. J Phys: Energy 3(3):034010
57.
go back to reference Edelstein AS, Cammarata RC (1998) Nanomaterials: synthesis, properties and applications. CRC Press. Edelstein AS, Cammarata RC (1998) Nanomaterials: synthesis, properties and applications. CRC Press.
58.
go back to reference Clearfield A (1963) The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Crystallogr 16:135–142 CrossRef Clearfield A (1963) The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Crystallogr 16:135–142 CrossRef
59.
go back to reference Wang Y, Sato N, Fujino T (2001) Synthesis of BaZrS 3 by short time reaction at lower temperatures. J Alloy Compd 327(1–2):104–112 CrossRef Wang Y, Sato N, Fujino T (2001) Synthesis of BaZrS 3 by short time reaction at lower temperatures. J Alloy Compd 327(1–2):104–112 CrossRef
60.
go back to reference Perera S, Hui H, Zhao C, Xue H, Sun F, Deng C, Gross N, Milleville C, Xiaohong Xu, Watson DF, Weinstein B, Sun YY, Zhang S, Zeng H (2016) Chalcogenide perovskites – an emerging class of ionic semiconductors. Nano Energy 22:129–135 CrossRef Perera S, Hui H, Zhao C, Xue H, Sun F, Deng C, Gross N, Milleville C, Xiaohong Xu, Watson DF, Weinstein B, Sun YY, Zhang S, Zeng H (2016) Chalcogenide perovskites – an emerging class of ionic semiconductors. Nano Energy 22:129–135 CrossRef
61.
go back to reference Wang Y, Sato N, Yamada K, Fujino T (2000) Synthesis of BaZrS 3 in the presence of excess sulfur. J Alloys Compd 311(2):214–223 CrossRef Wang Y, Sato N, Yamada K, Fujino T (2000) Synthesis of BaZrS 3 in the presence of excess sulfur. J Alloys Compd 311(2):214–223 CrossRef
62.
go back to reference Meng W, Saparov B, Hong F, Wang J, Mitzi DB, Yan Y (2016) Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem Mater 28:821–829 CrossRef Meng W, Saparov B, Hong F, Wang J, Mitzi DB, Yan Y (2016) Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem Mater 28:821–829 CrossRef
63.
go back to reference Niu S, Huyan H, Liu Y, Yeung M, Ye K, Blankemeier L, Orvis T, Sarkar D, Singh DJ, Kapadia R, Jayakanth R (2017) Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv Mater 29(9):1604733 CrossRef Niu S, Huyan H, Liu Y, Yeung M, Ye K, Blankemeier L, Orvis T, Sarkar D, Singh DJ, Kapadia R, Jayakanth R (2017) Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv Mater 29(9):1604733 CrossRef
64.
go back to reference Nitta T, Hayakawa K, Hayakawa S (1970) Formation, microstructure, and properties of barium zirconium sulfide ceramics. J Am Ceram Soc 53:601–604 CrossRef Nitta T, Hayakawa K, Hayakawa S (1970) Formation, microstructure, and properties of barium zirconium sulfide ceramics. J Am Ceram Soc 53:601–604 CrossRef
65.
go back to reference Lee CS, Kleinke KM, Kleinke H (2005) Synthesis, structure, and electronic and physical properties of the two SrZrS 3 modifications. Solid State Sci 7:1049–1054 CrossRef Lee CS, Kleinke KM, Kleinke H (2005) Synthesis, structure, and electronic and physical properties of the two SrZrS 3 modifications. Solid State Sci 7:1049–1054 CrossRef
66.
go back to reference Hanzawa K, Iimura S, Hiramatsu H, Hosono H (2019) Material design of green-light-emitting semiconductors: perovskite-type sulfide SrHfS 3. J Am Chem Soc 141:5343–5349 CrossRef Hanzawa K, Iimura S, Hiramatsu H, Hosono H (2019) Material design of green-light-emitting semiconductors: perovskite-type sulfide SrHfS 3. J Am Chem Soc 141:5343–5349 CrossRef
67.
go back to reference Ravi VK, Yu SH, Rajput PK, Nayak C, Bhattacharyya D, Chung DS, Nag A (2021) Colloidal BaZrS 3 chalcogenide perovskite nanocrystals for thin film device fabrication. Nanoscale 13(3):1616–1623 CrossRef Ravi VK, Yu SH, Rajput PK, Nayak C, Bhattacharyya D, Chung DS, Nag A (2021) Colloidal BaZrS 3 chalcogenide perovskite nanocrystals for thin film device fabrication. Nanoscale 13(3):1616–1623 CrossRef
68.
go back to reference Swarnkar A, Mir WJ, Chakraborty R, Jagadeeswararao M, Sheikh T, Nag A (2019) Are chalcogenide perovskites an emerging class of semiconductors for optoelectronic properties and solar cell? Chem Mater 31(3):565–575 CrossRef Swarnkar A, Mir WJ, Chakraborty R, Jagadeeswararao M, Sheikh T, Nag A (2019) Are chalcogenide perovskites an emerging class of semiconductors for optoelectronic properties and solar cell? Chem Mater 31(3):565–575 CrossRef
69.
go back to reference Lelieveld R, Ijdo DJW (1980) Sulphides with the GdFeO 3 structure. Acta Cryst B 36:2223–2226 CrossRef Lelieveld R, Ijdo DJW (1980) Sulphides with the GdFeO 3 structure. Acta Cryst B 36:2223–2226 CrossRef
70.
go back to reference Sun YY, Agiorgousis ML, Zhang P, Zhang S (2015) Chalcogenide perovskites for photovoltaics. Nano Lett 15(1):581–585 CrossRef Sun YY, Agiorgousis ML, Zhang P, Zhang S (2015) Chalcogenide perovskites for photovoltaics. Nano Lett 15(1):581–585 CrossRef
72.
go back to reference Wei X, Hui H, Perera S, Sheng A, Watson DF, Sun YY, Jia Q, Zhang S, Zeng H (2020) Ti-alloying of BaZrS 3 chalcogenide perovskite for photovoltaics. ACS Omega 5:18579–18583 CrossRef Wei X, Hui H, Perera S, Sheng A, Watson DF, Sun YY, Jia Q, Zhang S, Zeng H (2020) Ti-alloying of BaZrS 3 chalcogenide perovskite for photovoltaics. ACS Omega 5:18579–18583 CrossRef
73.
go back to reference Pandey J, Ghoshal D, Dey D, Gupta T, Taraphder A, Koratkar N, Soni A. Ferroelectric polarization in antiferroelectric chalcogenide perovskite BaZrS 3 thin film. arXiv preprint arXiv:2004.13678 Pandey J, Ghoshal D, Dey D, Gupta T, Taraphder A, Koratkar N, Soni A. Ferroelectric polarization in antiferroelectric chalcogenide perovskite BaZrS 3 thin film. arXiv preprint arXiv:2004.13678
74.
go back to reference Comparotto C, Davydova A, Ericson T, Riekehr L, Moro MV, Kubart T, Scragg J (2020) Chalcogenide perovskite BaZrS 3: thin film growth by sputtering and rapid thermal processing. ACS Appl Energy Mater 3:2762–2770 CrossRef Comparotto C, Davydova A, Ericson T, Riekehr L, Moro MV, Kubart T, Scragg J (2020) Chalcogenide perovskite BaZrS 3: thin film growth by sputtering and rapid thermal processing. ACS Appl Energy Mater 3:2762–2770 CrossRef
75.
go back to reference Buffiere M, Dhawale DS, El-Mellouhi F (2019) Chalcogenide materials and derivatives for photovoltaic applications. Energ Technol 7(11):1900819 CrossRef Buffiere M, Dhawale DS, El-Mellouhi F (2019) Chalcogenide materials and derivatives for photovoltaic applications. Energ Technol 7(11):1900819 CrossRef
76.
go back to reference Nishigaki Y, Nagai T, Nishiwaki M, Aizawa T, Kozawa M, Hanzawa K, Kato Y, Sai H, Hiramatsu H, Hosono H, Fujiwara H (2020) Extraordinary strong band-edge absorption in distorted chalcogenide perovskites. Sol RRL 4(5):1900555 CrossRef Nishigaki Y, Nagai T, Nishiwaki M, Aizawa T, Kozawa M, Hanzawa K, Kato Y, Sai H, Hiramatsu H, Hosono H, Fujiwara H (2020) Extraordinary strong band-edge absorption in distorted chalcogenide perovskites. Sol RRL 4(5):1900555 CrossRef
77.
go back to reference Huo Z, Wei SH, Yin WJ (2018) High-throughput screening of chalcogenide single perovskites by first-principles calculations for photovoltaics. J Phys D Appl Phys 51(2018):474003 CrossRef Huo Z, Wei SH, Yin WJ (2018) High-throughput screening of chalcogenide single perovskites by first-principles calculations for photovoltaics. J Phys D Appl Phys 51(2018):474003 CrossRef
78.
go back to reference Kuhar K, Crovetto A, Pandey M, Thygesen KS, Jacobsen KW (2017) Energy Environ Sci 10:2579 CrossRef Kuhar K, Crovetto A, Pandey M, Thygesen KS, Jacobsen KW (2017) Energy Environ Sci 10:2579 CrossRef
79.
go back to reference Yamaoka S, Okai B (1970) Preparations of BaSnS 3, SrSnS 3 and PbSnS 3 at high pressure. Mater Res Bull 5(10):789–794 CrossRef Yamaoka S, Okai B (1970) Preparations of BaSnS 3, SrSnS 3 and PbSnS 3 at high pressure. Mater Res Bull 5(10):789–794 CrossRef
80.
go back to reference Bennett JW, Grinberg I, Rappe AM (2009) Phys Rev B: Condens Matter Mater Phys 79:1 Bennett JW, Grinberg I, Rappe AM (2009) Phys Rev B: Condens Matter Mater Phys 79:1
81.
go back to reference Ju MG, Dai J, Ma L, Zeng XC (2017) Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices. Adv Energy Mater 7(18):1700216 CrossRef Ju MG, Dai J, Ma L, Zeng XC (2017) Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices. Adv Energy Mater 7(18):1700216 CrossRef
83.
go back to reference Tranchitella LJ, Chen BH, Fettinger JC, Eichhorn BW (1997) Structural evolutions in the Sr 1−xBa xZrSe 3 series. J Solid State Chem 130:20–27 CrossRef Tranchitella LJ, Chen BH, Fettinger JC, Eichhorn BW (1997) Structural evolutions in the Sr 1−xBa xZrSe 3 series. J Solid State Chem 130:20–27 CrossRef
84.
go back to reference Tranchitella LJ, Fettinger JC, Dorhout PK, Van Calcar PM, Eichhorn BW (1998) Commensurate columnar composite compounds: synthesis and structure of Ba 15Zr 14Se 42 and Sr 21Ti 19Se 57. J Am Chem Soc 120:7639–7640 CrossRef Tranchitella LJ, Fettinger JC, Dorhout PK, Van Calcar PM, Eichhorn BW (1998) Commensurate columnar composite compounds: synthesis and structure of Ba 15Zr 14Se 42 and Sr 21Ti 19Se 57. J Am Chem Soc 120:7639–7640 CrossRef
85.
go back to reference Moroz NA, Bauer C, Williams L, Olvera A, Casamento J, Page AA, Bailey TP, Weiland A, Stoyko SS, Kioupakis E, Uher C, Aitken JA, Poudeu PFP (2018) Insights on the synthesis, crystal and electronic structures, and optical and thermoelectric properties of Sr 1−xSb xHfSe 3 orthorhombic perovskite. Inorg Chem 57:7402–7411 CrossRef Moroz NA, Bauer C, Williams L, Olvera A, Casamento J, Page AA, Bailey TP, Weiland A, Stoyko SS, Kioupakis E, Uher C, Aitken JA, Poudeu PFP (2018) Insights on the synthesis, crystal and electronic structures, and optical and thermoelectric properties of Sr 1−xSb xHfSe 3 orthorhombic perovskite. Inorg Chem 57:7402–7411 CrossRef
86.
go back to reference Dilena E, Dorfs D, George C, Miszta K, Povia M, Genovese A, Casu A, Prato M, Manna L (2012) Colloidal Cu 2−x(S ySe 1−y) alloy nanocrystals with controllable crystal phase: synthesis, plasmonic properties, cation exchange and electrochemical lithiation. J Mater Chem 22(26):13023–13031 CrossRef Dilena E, Dorfs D, George C, Miszta K, Povia M, Genovese A, Casu A, Prato M, Manna L (2012) Colloidal Cu 2−x(S ySe 1−y) alloy nanocrystals with controllable crystal phase: synthesis, plasmonic properties, cation exchange and electrochemical lithiation. J Mater Chem 22(26):13023–13031 CrossRef
87.
go back to reference Dutta SK, Bera S, Pradhan N (2021) Why is making epitaxially grown all inorganic perovskite–chalcogenide nanocrystal heterostructures challenging? Some facts and some strategies. Chem Mater 33(11):3868–3877 CrossRef Dutta SK, Bera S, Pradhan N (2021) Why is making epitaxially grown all inorganic perovskite–chalcogenide nanocrystal heterostructures challenging? Some facts and some strategies. Chem Mater 33(11):3868–3877 CrossRef
Metadata
Title
Chalcogenide perovskites for photovoltaic applications: a review
Authors
Moh Suhail
Hasan Abbas
Mohd. Bilal Khan
Zishan H. Khan
Publication date
01-07-2022
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 7/2022
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-022-05525-0

Other articles of this Issue 7/2022

Journal of Nanoparticle Research 7/2022 Go to the issue

Premium Partners