Skip to main content
Top

2024 | OriginalPaper | Chapter

Challenges in Developing Great Quasi-Monte Carlo Software

Authors : Sou-Cheng T. Choi, Yuhan Ding, Fred J. Hickernell, Jagadeeswaran Rathinavel, Aleksei G. Sorokin

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quasi-Monte Carlo (QMC) methods have developed over several decades. With the explosion in computational science, there is a need for great software that implements QMC algorithms. We summarize the QMC software that has been developed to date, propose some criteria for developing great QMC software, and suggest some steps toward achieving great software. We illustrate these criteria and steps with the Quasi-Monte Carlo Python library (QMCPy), an open-source community software framework, extensible by design with common programming interfaces to an increasing number of existing or emerging QMC libraries developed by the greater community of QMC researchers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Adams, B.M., Bohnhoff, W.J., Dalbey, K.R., Ebeida, M.S., Eddy, J.P., Eldred, M.S., Hooper, R.W., Hough, P.D., Hu, K.T., Jakeman, J.D., Khalil, M., Maupin, K.A., Monschke, J.A., Ridgway, E.M., Rushdi, A.A., Seidl, D.T., Stephens, J.A., Swiler, L.P., Tran, A., Winokur, J.G.: Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.16 User’s Manual. Sandia National Laboratories (2022) Adams, B.M., Bohnhoff, W.J., Dalbey, K.R., Ebeida, M.S., Eddy, J.P., Eldred, M.S., Hooper, R.W., Hough, P.D., Hu, K.T., Jakeman, J.D., Khalil, M., Maupin, K.A., Monschke, J.A., Ridgway, E.M., Rushdi, A.A., Seidl, D.T., Stephens, J.A., Swiler, L.P., Tran, A., Winokur, J.G.: Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.16 User’s Manual. Sandia National Laboratories (2022)
3.
go back to reference Bernholdt, D.E., Cary, J., Heroux, M., McInnes, L.C.: The science of scientific-software development and use (2022) Bernholdt, D.E., Cary, J., Heroux, M., McInnes, L.C.: The science of scientific-software development and use (2022)
4.
go back to reference Bratley, P., Fox, B.L.: Algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 14, 88–100 (1988)CrossRef Bratley, P., Fox, B.L.: Algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 14, 88–100 (1988)CrossRef
5.
go back to reference Bratley, P., Fox, B.L., Niederreiter, H.: Implementation and tests of low-discrepancy sequences. ACM Trans. Model. Comput. Simul. 2, 195–213 (1992)CrossRef Bratley, P., Fox, B.L., Niederreiter, H.: Implementation and tests of low-discrepancy sequences. ACM Trans. Model. Comput. Simul. 2, 195–213 (1992)CrossRef
8.
go back to reference Choi, S.C.T., Hickernell, F.J., Jagadeeswaran, R., McCourt, M.J., Sorokin, A.G.: Quasi-Monte Carlo software. In: A. Keller (ed.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Oxford, England, August 2020, Springer Proceedings in Mathematics and Statistics, pp. 23–50. Springer, Cham (2022). https://arxiv.org/abs/2102.07833 Choi, S.C.T., Hickernell, F.J., Jagadeeswaran, R., McCourt, M.J., Sorokin, A.G.: Quasi-Monte Carlo software. In: A. Keller (ed.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Oxford, England, August 2020, Springer Proceedings in Mathematics and Statistics, pp. 23–50. Springer, Cham (2022). https://​arxiv.​org/​abs/​2102.​07833
13.
go back to reference Friedel, I., Keller, A.: Fast generation of randomized low-discrepancy point sets. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 257–273. Springer, Berlin (2002)CrossRef Friedel, I., Keller, A.: Fast generation of randomized low-discrepancy point sets. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 257–273. Springer, Berlin (2002)CrossRef
14.
go back to reference Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis. CRC Texts in Statistical Science. Chapman & Hall (2013) Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis. CRC Texts in Statistical Science. Chapman & Hall (2013)
15.
go back to reference Glasserman, P.: Monte Carlo Methods in Financial Engineering, Applications of Mathematics, vol. 53. Springer, New York (2004) Glasserman, P.: Monte Carlo Methods in Financial Engineering, Applications of Mathematics, vol. 53. Springer, New York (2004)
17.
go back to reference Hickernell, F.J., Choi, S.C.T., Jiang, L., Jiménez Rugama, Ll.A.: Monte Carlo simulation, automatic stopping criteria for. In: Davidian, M., Everitt, B., Kenett, R.S., Molenberghs, G., Piegorsch, W., Ruggeri, F. (eds.) Wiley StatsRef-Statistics Reference Online. John Wiley & Sons Ltd. (2018). https://doi.org/10.1002/9781118445112.stat08035 Hickernell, F.J., Choi, S.C.T., Jiang, L., Jiménez Rugama, Ll.A.: Monte Carlo simulation, automatic stopping criteria for. In: Davidian, M., Everitt, B., Kenett, R.S., Molenberghs, G., Piegorsch, W., Ruggeri, F. (eds.) Wiley StatsRef-Statistics Reference Online. John Wiley & Sons Ltd. (2018). https://​doi.​org/​10.​1002/​9781118445112.​stat08035
18.
go back to reference Hickernell, F.J., Jiang, L., Liu, Y., Owen, A.B.: Guaranteed conservative fixed width confidence intervals via Monte Carlo sampling. In: Dick, J., Kuo, F.Y., Peters, G.W., Sloan, I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, Springer Proceedings in Mathematics and Statistics, vol. 65, pp. 105–128. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-41095-6 Hickernell, F.J., Jiang, L., Liu, Y., Owen, A.B.: Guaranteed conservative fixed width confidence intervals via Monte Carlo sampling. In: Dick, J., Kuo, F.Y., Peters, G.W., Sloan, I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, Springer Proceedings in Mathematics and Statistics, vol. 65, pp. 105–128. Springer, Berlin (2013). https://​doi.​org/​10.​1007/​978-3-642-41095-6
19.
go back to reference Hickernell, F.J., Jiménez Rugama, Ll.A.: Reliable adaptive cubature using digital sequences. In: Cools, R., Nuyens, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014, Springer Proceedings in Mathematics and Statistics, vol. 163, pp. 367–383. Springer, Berlin (2016). ArXiv:1410.8615 [math.NA] Hickernell, F.J., Jiménez Rugama, Ll.A.: Reliable adaptive cubature using digital sequences. In: Cools, R., Nuyens, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014, Springer Proceedings in Mathematics and Statistics, vol. 163, pp. 367–383. Springer, Berlin (2016). ArXiv:​1410.​8615 [math.NA]
20.
go back to reference Hickernell, F.J., Jiménez Rugama, Ll.A., Li, D.: Adaptive quasi-Monte Carlo methods for cubature. In: Dick, J., Kuo, F.Y., Woźniakowski, H. (eds.) Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan, pp. 597–619. Springer (2018). https://doi.org/10.1007/978-3-319-72456-0 Hickernell, F.J., Jiménez Rugama, Ll.A., Li, D.: Adaptive quasi-Monte Carlo methods for cubature. In: Dick, J., Kuo, F.Y., Woźniakowski, H. (eds.) Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan, pp. 597–619. Springer (2018). https://​doi.​org/​10.​1007/​978-3-319-72456-0
24.
go back to reference Jagadeeswaran, R., Hickernell, F.J.: Fast automatic Bayesian cubature using Sobol’ sampling. In: Botev, Z., Keller, A., Lemieux, C., Tuffin, B. (eds.) Advances in Modeling and Simulation: Festschrift in Honour of Pierre L’Ecuyer, pp. 301–318. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10193-9_15 Jagadeeswaran, R., Hickernell, F.J.: Fast automatic Bayesian cubature using Sobol’ sampling. In: Botev, Z., Keller, A., Lemieux, C., Tuffin, B. (eds.) Advances in Modeling and Simulation: Festschrift in Honour of Pierre L’Ecuyer, pp. 301–318. Springer, Cham (2022). https://​doi.​org/​10.​1007/​978-3-031-10193-9_​15
25.
go back to reference Jiang, L.: Guaranteed adaptive Monte Carlo methods for estimating means of random variables. Ph.D. thesis, Illinois Institute of Technology (2016) Jiang, L.: Guaranteed adaptive Monte Carlo methods for estimating means of random variables. Ph.D. thesis, Illinois Institute of Technology (2016)
27.
go back to reference Jiménez Rugama, Ll.A., Hickernell, F.J.: Adaptive multidimensional integration based on rank-1 lattices. In: Cools, R., Nuyens, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014, Springer Proceedings in Mathematics and Statistics, vol. 163, pp. 407–422. Springer, Berlin (2016). ArXiv:1411.1966 Jiménez Rugama, Ll.A., Hickernell, F.J.: Adaptive multidimensional integration based on rank-1 lattices. In: Cools, R., Nuyens, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014, Springer Proceedings in Mathematics and Statistics, vol. 163, pp. 407–422. Springer, Berlin (2016). ArXiv:​1411.​1966
29.
go back to reference Joe, S., Kuo, F.Y.: Remark on algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 29, 49–57 (2003)MathSciNetCrossRef Joe, S., Kuo, F.Y.: Remark on algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 29, 49–57 (2003)MathSciNetCrossRef
30.
go back to reference Joe, S., Kuo, F.Y.: Constructing Sobol sequences with better two-dimensional projections. SIAM J. Sci. Comput. 30, 2635–2654 (2008)MathSciNetCrossRef Joe, S., Kuo, F.Y.: Constructing Sobol sequences with better two-dimensional projections. SIAM J. Sci. Comput. 30, 2635–2654 (2008)MathSciNetCrossRef
31.
go back to reference Kämmerer, L., Potts, D., Volkmer, T.: Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling. J. Complex. 31(4), 543–576 (2015) Kämmerer, L., Potts, D., Volkmer, T.: Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling. J. Complex. 31(4), 543–576 (2015)
35.
go back to reference L’Ecuyer, P., Marion, P., Godin, M., Puchhammer, F.: A tool for custom construction of QMC and RQMC point sets. In: Keller, A. (ed.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Oxford, 2020, Springer Proceedings in Mathematics and Statistics. Springer, Cham (2022) L’Ecuyer, P., Marion, P., Godin, M., Puchhammer, F.: A tool for custom construction of QMC and RQMC point sets. In: Keller, A. (ed.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Oxford, 2020, Springer Proceedings in Mathematics and Statistics. Springer, Cham (2022)
36.
go back to reference L’Ecuyer, P., Meliani, L., Vaucher, J.: Ssj: a framework for stochastic simulation in Java. In: Proceedings of the Winter Simulation Conference, vol. 1, pp. 234–242. IEEE (2002) L’Ecuyer, P., Meliani, L., Vaucher, J.: Ssj: a framework for stochastic simulation in Java. In: Proceedings of the Winter Simulation Conference, vol. 1, pp. 234–242. IEEE (2002)
37.
go back to reference L’Ecuyer, P., Munger, D., Lécot, C., Tuffin, B.: Sorting methods and convergence rates for Array-RQMC: some empirical comparisons. Math. Comput. Simul. 143, 191–201 (2018)MathSciNetCrossRef L’Ecuyer, P., Munger, D., Lécot, C., Tuffin, B.: Sorting methods and convergence rates for Array-RQMC: some empirical comparisons. Math. Comput. Simul. 143, 191–201 (2018)MathSciNetCrossRef
38.
go back to reference L’Ecuyer, P., Puchhammer, F., Ben Abdellah, A.: Monte carlo and quasi–monte carlo density estimation via conditioning. INFORMS J. Comput. 34(3), 1729–1748 (2022) L’Ecuyer, P., Puchhammer, F., Ben Abdellah, A.: Monte carlo and quasi–monte carlo density estimation via conditioning. INFORMS J. Comput. 34(3), 1729–1748 (2022)
39.
go back to reference Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1992) Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1992)
40.
go back to reference Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems Volume II: Standard Information for Functionals. No. 12 in EMS Tracts in Mathematics. European Mathematical Society, Zürich (2010) Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems Volume II: Standard Information for Functionals. No. 12 in EMS Tracts in Mathematics. European Mathematical Society, Zürich (2010)
42.
go back to reference Owen, A.B.: On dropping the first Sobol’ point. In: Keller, A. (ed.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Oxford, England, August 2020, Springer Proceedings in Mathematics and Statistics, pp. 71–86. Springer, Cham (2022). https://arxiv.org/pdf/2008.08051.pdf Owen, A.B.: On dropping the first Sobol’ point. In: Keller, A. (ed.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Oxford, England, August 2020, Springer Proceedings in Mathematics and Statistics, pp. 71–86. Springer, Cham (2022). https://​arxiv.​org/​pdf/​2008.​08051.​pdf
46.
go back to reference Paskov, S., Traub, J.: Faster valuation of financial derivatives. J. Portfolio Manag. 22, 113–120 (1995)CrossRef Paskov, S., Traub, J.: Faster valuation of financial derivatives. J. Portfolio Manag. 22, 113–120 (1995)CrossRef
47.
go back to reference Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019)
49.
go back to reference Potts, D., Schmischke, M.: Approximation of high-dimensional periodic functions with fourier-based methods. SIAM J. Numer. Anal. 59(5), 2393–2429 (2021) Potts, D., Schmischke, M.: Approximation of high-dimensional periodic functions with fourier-based methods. SIAM J. Numer. Anal. 59(5), 2393–2429 (2021)
50.
go back to reference Puchhammer, F., Ben Abdellah, A., L’Ecuyer, P.: Variance reduction with Array-RQMC for tau-leaping simulation of stochastic biological and chemical reaction networks. Bull. Math. Biol. 83(8), 91 (2021)MathSciNetCrossRef Puchhammer, F., Ben Abdellah, A., L’Ecuyer, P.: Variance reduction with Array-RQMC for tau-leaping simulation of stochastic biological and chemical reaction networks. Bull. Math. Biol. 83(8), 91 (2021)MathSciNetCrossRef
55.
go back to reference Seelinger, L., Reinarz, A., Benezech, J., Lykkegaard, M.B., Tamellini, L., Scheichl, R.: Lowering the entry bar to HPC-scale uncertainty quantification (2023) Seelinger, L., Reinarz, A., Benezech, J., Lykkegaard, M.B., Tamellini, L., Scheichl, R.: Lowering the entry bar to HPC-scale uncertainty quantification (2023)
56.
go back to reference Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford (1994)CrossRef Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford (1994)CrossRef
57.
go back to reference Smith, A.M., Katz, D.S., Niemeyer, K.E.: Software citation principles. PeerJ Comput. Sci. 2, e86 (2016)CrossRef Smith, A.M., Katz, D.S., Niemeyer, K.E.: Software citation principles. PeerJ Comput. Sci. 2, e86 (2016)CrossRef
58.
go back to reference Sorokin, A.G., Jagadeeswaran, R.: Monte Carlo for vector functions of integrals. In: Hinrichs, A., Kritzer, P., Pillichshammer, F. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Linz, Austria, July 2022, Springer Proceedings in Mathematics and Statistics. Springer, Cham (2023+). Submitted for publication Sorokin, A.G., Jagadeeswaran, R.: Monte Carlo for vector functions of integrals. In: Hinrichs, A., Kritzer, P., Pillichshammer, F. (eds.) Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Linz, Austria, July 2022, Springer Proceedings in Mathematics and Statistics. Springer, Cham (2023+). Submitted for publication
60.
go back to reference The MathWorks Inc: MATLAB R2022b. Natick, MA (2022) The MathWorks Inc: MATLAB R2022b. Natick, MA (2022)
61.
go back to reference The Numerical Algorithms Group: The NAG Library, 27th edn. Oxford, Mark (2021) The Numerical Algorithms Group: The NAG Library, 27th edn. Oxford, Mark (2021)
62.
go back to reference Tong, X., Choi, S.C.T., Ding, Y., Hickernell, F.J., Jiang, L., Jiménez Rugama, Ll.A., Jagadeeswaran, R., Zhang, K., Zhang, Y., Zhou, X.: Guaranteed automatic integration library (GAIL): an open-source MATLAB library for function approximation, minimization, and integration. J. Open Res. Softw. 10, 7 (2022). https://doi.org/10.5334/jors.381 Tong, X., Choi, S.C.T., Ding, Y., Hickernell, F.J., Jiang, L., Jiménez Rugama, Ll.A., Jagadeeswaran, R., Zhang, K., Zhang, Y., Zhou, X.: Guaranteed automatic integration library (GAIL): an open-source MATLAB library for function approximation, minimization, and integration. J. Open Res. Softw. 10, 7 (2022). https://​doi.​org/​10.​5334/​jors.​381
64.
go back to reference Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A.P., Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.A., Hagen, D.R., Pasechnik, D.V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G.A., Ingold, G.L., Allen, G.E., Lee, G.R., Audren, H., Probst, I., Dietrich, J.P., Silterra, J., Webber, J.T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J.L., de Miranda Cardoso, J., Reimer, J., Harrington, J., Rodríguez, J.L.C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y.O., Vázquez-Baeza, Y., Contributors: Scipy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17(3), 261–272 (2020) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A.P., Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.A., Hagen, D.R., Pasechnik, D.V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G.A., Ingold, G.L., Allen, G.E., Lee, G.R., Audren, H., Probst, I., Dietrich, J.P., Silterra, J., Webber, J.T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J.L., de Miranda Cardoso, J., Reimer, J., Harrington, J., Rodríguez, J.L.C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y.O., Vázquez-Baeza, Y., Contributors: Scipy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17(3), 261–272 (2020)
65.
go back to reference Woźniakowski, H.: Efficiency of quasi-Monte Carlo algorithms for high dimensions. In: Niederreiter, H., Spanier, J. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1998, pp. 114–136. Springer, Berlin (2000)CrossRef Woźniakowski, H.: Efficiency of quasi-Monte Carlo algorithms for high dimensions. In: Niederreiter, H., Spanier, J. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1998, pp. 114–136. Springer, Berlin (2000)CrossRef
Metadata
Title
Challenges in Developing Great Quasi-Monte Carlo Software
Authors
Sou-Cheng T. Choi
Yuhan Ding
Fred J. Hickernell
Jagadeeswaran Rathinavel
Aleksei G. Sorokin
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_9

Premium Partner