Skip to main content
Top

2020 | OriginalPaper | Chapter

7. Challenges of Reinforcement Learning

Authors : Zihan Ding, Hao Dong

Published in: Deep Reinforcement Learning

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter introduces the existing challenges in deep reinforcement learning research and applications, including: (1) the sample efficiency problem; (2) stability of training; (3) the catastrophic interference problem; (4) the exploration problems; (5) meta-learning and representation learning for the generality of reinforcement learning methods across tasks; (6) multi-agent reinforcement learning with other agents as part of the environment; (7) sim-to-real transfer for bridging the gaps between simulated environments and the real world; (8) large-scale reinforcement learning with parallel training frameworks to shorten the wall-clock time for training, etc. This chapter proposes the above challenges with potential solutions and research directions, as the primers of the advanced topics in the second main part of the book, including Chaps. 812, to provide the readers a relatively comprehensive understanding about the deficiencies of present methods, recent development, and future directions in deep reinforcement learning.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
3
Data source: Oriol Vinyals, Deep Reinforcement Learning Workshop, NeurIPS 2019.
 
4
Richard S. Sutton. “The Bitter Lesson.” March 13, 2019.
 
Literature
go back to reference Abdolmaleki A, Springenberg JT, Tassa Y, Munos R, Heess N, Riedmiller M (2018) Maximum a posteriori policy optimisation. arXiv:180606920 Abdolmaleki A, Springenberg JT, Tassa Y, Munos R, Heess N, Riedmiller M (2018) Maximum a posteriori policy optimisation. arXiv:180606920
go back to reference Akkaya I, Andrychowicz M, Chociej M, Litwin M, McGrew B, Petron A, Paino A, Plappert M, Powell G, Ribas R, et al (2019) Solving Rubik’s cube with a robot hand. arXiv:191007113 Akkaya I, Andrychowicz M, Chociej M, Litwin M, McGrew B, Petron A, Paino A, Plappert M, Powell G, Ribas R, et al (2019) Solving Rubik’s cube with a robot hand. arXiv:191007113
go back to reference Andrychowicz M, Wolski F, Ray A, Schneider J, Fong R, Welinder P, McGrew B, Tobin J, Abbeel OP, Zaremba W (2017) Hindsight experience replay. In: Advances in neural information processing systems, pp 5048–5058 Andrychowicz M, Wolski F, Ray A, Schneider J, Fong R, Welinder P, McGrew B, Tobin J, Abbeel OP, Zaremba W (2017) Hindsight experience replay. In: Advances in neural information processing systems, pp 5048–5058
go back to reference Andrychowicz M, Baker B, Chociej M, Jozefowicz R, McGrew B, Pachocki J, Petron A, Plappert M, Powell G, Ray A, et al (2018) Learning dexterous in-hand manipulation. arXiv:180800177 Andrychowicz M, Baker B, Chociej M, Jozefowicz R, McGrew B, Pachocki J, Petron A, Plappert M, Powell G, Ray A, et al (2018) Learning dexterous in-hand manipulation. arXiv:180800177
go back to reference Arndt K, Hazara M, Ghadirzadeh A, Kyrki V (2019) Meta reinforcement learning for sim-to-real domain adaptation. arXiv:190912906 Arndt K, Hazara M, Ghadirzadeh A, Kyrki V (2019) Meta reinforcement learning for sim-to-real domain adaptation. arXiv:190912906
go back to reference Aytar Y, Pfaff T, Budden D, Paine T, Wang Z, de Freitas N (2018) Playing hard exploration games by watching YouTube. In: Advances in neural information processing systems, pp 2930–2941 Aytar Y, Pfaff T, Budden D, Paine T, Wang Z, de Freitas N (2018) Playing hard exploration games by watching YouTube. In: Advances in neural information processing systems, pp 2930–2941
go back to reference Bengio Y, Bengio S, Cloutier J (1990) Learning a synaptic learning rule. Université de Montréal, Département d’informatique et de recherche opérationnelle Bengio Y, Bengio S, Cloutier J (1990) Learning a synaptic learning rule. Université de Montréal, Département d’informatique et de recherche opérationnelle
go back to reference Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef
go back to reference Berkenkamp F, Turchetta M, Schoellig A, Krause A (2017) Safe model-based reinforcement learning with stability guarantees. In: Advances in neural information processing systems, pp 908–918 Berkenkamp F, Turchetta M, Schoellig A, Krause A (2017) Safe model-based reinforcement learning with stability guarantees. In: Advances in neural information processing systems, pp 908–918
go back to reference Berner C, Brockman G, Chan B, Cheung V, Debiak P, Dennison C, Farhi D, Fischer Q, Hashme S, Hesse C, et al (2019) Dota 2 with large scale deep reinforcement learning. arXiv:191206680 Berner C, Brockman G, Chan B, Cheung V, Debiak P, Dennison C, Farhi D, Fischer Q, Hashme S, Hesse C, et al (2019) Dota 2 with large scale deep reinforcement learning. arXiv:191206680
go back to reference Deisenroth M, Rasmussen CE (2011) PILCO: a model-based and data-efficient approach to policy search. In: Proceedings of the 28th international conference on machine learning (ICML-11), pp 465–472 Deisenroth M, Rasmussen CE (2011) PILCO: a model-based and data-efficient approach to policy search. In: Proceedings of the 28th international conference on machine learning (ICML-11), pp 465–472
go back to reference Espeholt L, Soyer H, Munos R, Simonyan K, Mnih V, Ward T, Doron Y, Firoiu V, Harley T, Dunning I, et al (2018) IMPALA: scalable distributed deep-RL with importance weighted actor-learner architectures. arXiv:180201561 Espeholt L, Soyer H, Munos R, Simonyan K, Mnih V, Ward T, Doron Y, Firoiu V, Harley T, Dunning I, et al (2018) IMPALA: scalable distributed deep-RL with importance weighted actor-learner architectures. arXiv:180201561
go back to reference Espeholt L, Marinier R, Stanczyk P, Wang K, Michalski M (2019) Seed RL: Scalable and efficient deep-RL with accelerated central inference. arXiv:191006591 Espeholt L, Marinier R, Stanczyk P, Wang K, Michalski M (2019) Seed RL: Scalable and efficient deep-RL with accelerated central inference. arXiv:191006591
go back to reference Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th international conference on machine learning, vol 70, pp 1126–1135. https://JMLR.org Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th international conference on machine learning, vol 70, pp 1126–1135. https://​JMLR.​org
go back to reference Fujimoto S, van Hoof H, Meger D (2018) Addressing function approximation error in actor-critic methods. arXiv:180209477 Fujimoto S, van Hoof H, Meger D (2018) Addressing function approximation error in actor-critic methods. arXiv:180209477
go back to reference Garcıa J, Fernández F (2015) A comprehensive survey on safe reinforcement learning. J Mach Learn Res 16(1):1437–1480MathSciNetMATH Garcıa J, Fernández F (2015) A comprehensive survey on safe reinforcement learning. J Mach Learn Res 16(1):1437–1480MathSciNetMATH
go back to reference Heess N, Sriram S, Lemmon J, Merel J, Wayne G, Tassa Y, Erez T, Wang Z, Eslami S, Riedmiller M, et al (2017) Emergence of locomotion behaviours in rich environments. arXiv:170702286 Heess N, Sriram S, Lemmon J, Merel J, Wayne G, Tassa Y, Erez T, Wang Z, Eslami S, Riedmiller M, et al (2017) Emergence of locomotion behaviours in rich environments. arXiv:170702286
go back to reference Heinrich J, Silver D (2016) Deep reinforcement learning from self-play in imperfect-information games. arXiv:160301121 Heinrich J, Silver D (2016) Deep reinforcement learning from self-play in imperfect-information games. arXiv:160301121
go back to reference Henderson P, Islam R, Bachman P, Pineau J, Precup D, Meger D (2018) Deep reinforcement learning that matters. In: Thirty-second AAAI conference on artificial intelligence Henderson P, Islam R, Bachman P, Pineau J, Precup D, Meger D (2018) Deep reinforcement learning that matters. In: Thirty-second AAAI conference on artificial intelligence
go back to reference Houthooft R, Chen X, Duan Y, Schulman J, Turck FD, Abbeel P (2016) VIME: variational information maximizing exploration. https://1605.09674 Houthooft R, Chen X, Duan Y, Schulman J, Turck FD, Abbeel P (2016) VIME: variational information maximizing exploration. https://​1605.​09674
go back to reference Jaderberg M, Dalibard V, Osindero S, Czarnecki WM, Donahue J, Razavi A, Vinyals O, Green T, Dunning I, Simonyan K, et al (2017) Population based training of neural networks. arXiv:171109846 Jaderberg M, Dalibard V, Osindero S, Czarnecki WM, Donahue J, Razavi A, Vinyals O, Green T, Dunning I, Simonyan K, et al (2017) Population based training of neural networks. arXiv:171109846
go back to reference James S, Wohlhart P, Kalakrishnan M, Kalashnikov D, Irpan A, Ibarz J, Levine S, Hadsell R, Bousmalis K (2019) Sim-to-real via sim-to-sim: data-efficient robotic grasping via randomized-to-canonical adaptation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 12627–12637 James S, Wohlhart P, Kalakrishnan M, Kalashnikov D, Irpan A, Ibarz J, Levine S, Hadsell R, Bousmalis K (2019) Sim-to-real via sim-to-sim: data-efficient robotic grasping via randomized-to-canonical adaptation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 12627–12637
go back to reference Jeong R, Aytar Y, Khosid D, Zhou Y, Kay J, Lampe T, Bousmalis K, Nori F (2019a) Self-supervised sim-to-real adaptation for visual robotic manipulation. arXiv:191009470 Jeong R, Aytar Y, Khosid D, Zhou Y, Kay J, Lampe T, Bousmalis K, Nori F (2019a) Self-supervised sim-to-real adaptation for visual robotic manipulation. arXiv:191009470
go back to reference Jeong R, Kay J, Romano F, Lampe T, Rothorl T, Abdolmaleki A, Erez T, Tassa Y, Nori F (2019b) Modelling generalized forces with reinforcement learning for sim-to-real transfer. arXiv:191009471 Jeong R, Kay J, Romano F, Lampe T, Rothorl T, Abdolmaleki A, Erez T, Tassa Y, Nori F (2019b) Modelling generalized forces with reinforcement learning for sim-to-real transfer. arXiv:191009471
go back to reference Jin C, Allen-Zhu Z, Bubeck S, Jordan MI (2018) Is Q-learning provably efficient? In: Advances in neural information processing systems, pp 4863–4873 Jin C, Allen-Zhu Z, Bubeck S, Jordan MI (2018) Is Q-learning provably efficient? In: Advances in neural information processing systems, pp 4863–4873
go back to reference Johannink T, Bahl S, Nair A, Luo J, Kumar A, Loskyll M, Ojea JA, Solowjow E, Levine S (2019) Residual reinforcement learning for robot control. In: 2019 international conference on robotics and automation (ICRA). IEEE, Piscataway, pp 6023–6029CrossRef Johannink T, Bahl S, Nair A, Luo J, Kumar A, Loskyll M, Ojea JA, Solowjow E, Levine S (2019) Residual reinforcement learning for robot control. In: 2019 international conference on robotics and automation (ICRA). IEEE, Piscataway, pp 6023–6029CrossRef
go back to reference Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Jang E, Quillen D, Holly E, Kalakrishnan M, Vanhoucke V, et al (2018) QT-opt: scalable deep reinforcement learning for vision-based robotic manipulation. arXiv:180610293 Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Jang E, Quillen D, Holly E, Kalakrishnan M, Vanhoucke V, et al (2018) QT-opt: scalable deep reinforcement learning for vision-based robotic manipulation. arXiv:180610293
go back to reference Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, Milan K, Quan J, Ramalho T, Grabska-Barwinska A, et al (2017) Overcoming catastrophic forgetting in neural networks. Proc Natl Acad Sci 114(13):3521–3526MathSciNetCrossRef Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, Milan K, Quan J, Ramalho T, Grabska-Barwinska A, et al (2017) Overcoming catastrophic forgetting in neural networks. Proc Natl Acad Sci 114(13):3521–3526MathSciNetCrossRef
go back to reference Koenig S, Simmons RG (1993) Complexity analysis of real-time reinforcement learning. In: Proceedings of the AAAI conference on artificial intelligence, pp 99–107 Koenig S, Simmons RG (1993) Complexity analysis of real-time reinforcement learning. In: Proceedings of the AAAI conference on artificial intelligence, pp 99–107
go back to reference Kulkarni TD, Narasimhan K, Saeedi A, Tenenbaum J (2016) Hierarchical deep reinforcement learning: integrating temporal abstraction and intrinsic motivation. In: Advances in neural information processing systems, pp 3675–3683 Kulkarni TD, Narasimhan K, Saeedi A, Tenenbaum J (2016) Hierarchical deep reinforcement learning: integrating temporal abstraction and intrinsic motivation. In: Advances in neural information processing systems, pp 3675–3683
go back to reference Lanctot M, Zambaldi V, Gruslys A, Lazaridou A, Tuyls K, Pérolat J, Silver D, Graepel T (2017) A unified game-theoretic approach to multiagent reinforcement learning. In: Advances in neural information processing systems, pp 4190–4203 Lanctot M, Zambaldi V, Gruslys A, Lazaridou A, Tuyls K, Pérolat J, Silver D, Graepel T (2017) A unified game-theoretic approach to multiagent reinforcement learning. In: Advances in neural information processing systems, pp 4190–4203
go back to reference Lattimore T, Hutter M, Sunehag P, et al (2013) The sample-complexity of general reinforcement learning. In: Proceedings of the 30th international conference on machine learning Lattimore T, Hutter M, Sunehag P, et al (2013) The sample-complexity of general reinforcement learning. In: Proceedings of the 30th international conference on machine learning
go back to reference Levine S, Koltun V (2013) Guided policy search. In: International conference on machine learning, pp 1–9 Levine S, Koltun V (2013) Guided policy search. In: International conference on machine learning, pp 1–9
go back to reference Levine S, Pastor P, Krizhevsky A, Ibarz J, Quillen D (2018) Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int J Robot Res 37(4–5):421–436CrossRef Levine S, Pastor P, Krizhevsky A, Ibarz J, Quillen D (2018) Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int J Robot Res 37(4–5):421–436CrossRef
go back to reference Madumal P, Miller T, Sonenberg L, Vetere F (2019) Explainable reinforcement learning through a causal lens. arXiv:190510958 Madumal P, Miller T, Sonenberg L, Vetere F (2019) Explainable reinforcement learning through a causal lens. arXiv:190510958
go back to reference Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013) Playing Atari with deep reinforcement learning. arXiv:13125602 Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013) Playing Atari with deep reinforcement learning. arXiv:13125602
go back to reference Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K (2016) Asynchronous methods for deep reinforcement learning. In: International conference on machine learning (ICML), pp 1928–1937 Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K (2016) Asynchronous methods for deep reinforcement learning. In: International conference on machine learning (ICML), pp 1928–1937
go back to reference Nagabandi A, Clavera I, Liu S, Fearing RS, Abbeel P, Levine S, Finn C (2018) Learning to adapt in dynamic, real-world environments through meta-reinforcement learning. arXiv:180311347 Nagabandi A, Clavera I, Liu S, Fearing RS, Abbeel P, Levine S, Finn C (2018) Learning to adapt in dynamic, real-world environments through meta-reinforcement learning. arXiv:180311347
go back to reference Nowé A, Vrancx P, De Hauwere YM (2012) Game theory and multi-agent reinforcement learning. In: Reinforcement learning. Springer, Berlin, pp 441–470CrossRef Nowé A, Vrancx P, De Hauwere YM (2012) Game theory and multi-agent reinforcement learning. In: Reinforcement learning. Springer, Berlin, pp 441–470CrossRef
go back to reference Papavassiliou VA, Russell S (1999) Convergence of reinforcement learning with general function approximators. In: International joint conference on artificial intelligence, vol 99, pp 748–755 Papavassiliou VA, Russell S (1999) Convergence of reinforcement learning with general function approximators. In: International joint conference on artificial intelligence, vol 99, pp 748–755
go back to reference Pathak D, Agrawal P, Efros AA, Darrell T (2017) Curiosity-driven exploration by self-supervised prediction. In: Proceedings of the international conference on machine learning (ICML) Pathak D, Agrawal P, Efros AA, Darrell T (2017) Curiosity-driven exploration by self-supervised prediction. In: Proceedings of the international conference on machine learning (ICML)
go back to reference Peng XB, Andrychowicz M, Zaremba W, Abbeel P (2018) Sim-to-real transfer of robotic control with dynamics randomization. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE, Piscataway, pp 1–8 Peng XB, Andrychowicz M, Zaremba W, Abbeel P (2018) Sim-to-real transfer of robotic control with dynamics randomization. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE, Piscataway, pp 1–8
go back to reference Ramstedt S, Pal C (2019) Real-time reinforcement learning. In: Advances in neural information processing systems, pp 3067–3076 Ramstedt S, Pal C (2019) Real-time reinforcement learning. In: Advances in neural information processing systems, pp 3067–3076
go back to reference Rusu AA, Rabinowitz NC, Desjardins G, Soyer H, Kirkpatrick J, Kavukcuoglu K, Pascanu R, Hadsell R (2016a) Progressive neural networks. arXiv:160604671 Rusu AA, Rabinowitz NC, Desjardins G, Soyer H, Kirkpatrick J, Kavukcuoglu K, Pascanu R, Hadsell R (2016a) Progressive neural networks. arXiv:160604671
go back to reference Rusu AA, Vecerik M, Rothörl T, Heess N, Pascanu R, Hadsell R (2016b) Sim-to-real robot learning from pixels with progressive nets. arXiv:161004286 Rusu AA, Vecerik M, Rothörl T, Heess N, Pascanu R, Hadsell R (2016b) Sim-to-real robot learning from pixels with progressive nets. arXiv:161004286
go back to reference Sadeghi F, Levine S (2016) Cad2rl: Real single-image flight without a single real image. arXiv:161104201 Sadeghi F, Levine S (2016) Cad2rl: Real single-image flight without a single real image. arXiv:161104201
go back to reference Shoham Y, Powers R, Grenager T (2003) Multi-agent reinforcement learning: a critical survey. Web manuscript Shoham Y, Powers R, Grenager T (2003) Multi-agent reinforcement learning: a critical survey. Web manuscript
go back to reference Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot M, Sifre L, Kumaran D, Graepel T, et al (2018a) A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362(6419):1140–1144MathSciNetCrossRef Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot M, Sifre L, Kumaran D, Graepel T, et al (2018a) A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362(6419):1140–1144MathSciNetCrossRef
go back to reference Silver T, Allen K, Tenenbaum J, Kaelbling L (2018b) Residual policy learning. arXiv:181206298 Silver T, Allen K, Tenenbaum J, Kaelbling L (2018b) Residual policy learning. arXiv:181206298
go back to reference Song HF, Abdolmaleki A, Springenberg JT, Clark A, Soyer H, Rae JW, Noury S, Ahuja A, Liu S, Tirumala D, et al (2019) V-MPO: On-policy maximum a posteriori policy optimization for discrete and continuous control. arXiv:190912238 Song HF, Abdolmaleki A, Springenberg JT, Clark A, Soyer H, Rae JW, Noury S, Ahuja A, Liu S, Tirumala D, et al (2019) V-MPO: On-policy maximum a posteriori policy optimization for discrete and continuous control. arXiv:190912238
go back to reference Tan M (1993) Multi-agent reinforcement learning: independent vs. cooperative agents. In: Proceedings of the international conference on machine learning (ICML) Tan M (1993) Multi-agent reinforcement learning: independent vs. cooperative agents. In: Proceedings of the international conference on machine learning (ICML)
go back to reference Tobin J, Fong R, Ray A, Schneider J, Zaremba W, Abbeel P (2017) Domain randomization for transferring deep neural networks from simulation to the real world. In: International conference on intelligent robots and systems (IROS) Tobin J, Fong R, Ray A, Schneider J, Zaremba W, Abbeel P (2017) Domain randomization for transferring deep neural networks from simulation to the real world. In: International conference on intelligent robots and systems (IROS)
go back to reference Vezhnevets AS, Osindero S, Schaul T, Heess N, Jaderberg M, Silver D, Kavukcuoglu K (2017) Feudal networks for hierarchical reinforcement learning. In: Proceedings of the 34th international conference on machine learning, vol 70, pp 3540–3549. https://JMLR.org Vezhnevets AS, Osindero S, Schaul T, Heess N, Jaderberg M, Silver D, Kavukcuoglu K (2017) Feudal networks for hierarchical reinforcement learning. In: Proceedings of the 34th international conference on machine learning, vol 70, pp 3540–3549. https://​JMLR.​org
go back to reference Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J, Choi DH, Powell R, Ewalds T, Georgiev P, et al (2019) Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575(7782):350–354CrossRef Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J, Choi DH, Powell R, Ewalds T, Georgiev P, et al (2019) Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575(7782):350–354CrossRef
go back to reference Yu W, Tan J, Liu CK, Turk G (2017) Preparing for the unknown: learning a universal policy with online system identification. arXiv:170202453 Yu W, Tan J, Liu CK, Turk G (2017) Preparing for the unknown: learning a universal policy with online system identification. arXiv:170202453
go back to reference Zhou W, Pinto L, Gupta A (2019) Environment probing interaction policies. arXiv:190711740 Zhou W, Pinto L, Gupta A (2019) Environment probing interaction policies. arXiv:190711740
Metadata
Title
Challenges of Reinforcement Learning
Authors
Zihan Ding
Hao Dong
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4095-0_7

Premium Partner