Skip to main content
Top
Published in:

01-12-2020 | Original Paper

Change detection in noisy dynamic networks: a spectral embedding approach

Authors: Isuru Udayangani Hewapathirana, Dominic Lee, Elena Moltchanova, Jeanette McLeod

Published in: Social Network Analysis and Mining | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Change detection in dynamic networks is an important problem in many areas, such as fraud detection, cyber intrusion detection and healthcare monitoring. It is a challenging problem because it involves a time sequence of graphs, each of which is usually very large and sparse with heterogeneous vertex degrees, resulting in a complex, high-dimensional mathematical object. Spectral embedding methods provide an effective way to transform a graph to a lower dimensional latent Euclidean space that preserves the underlying structure of the network. Although change detection methods that use spectral embedding are available, they do not address sparsity and degree heterogeneity that usually occur in noisy real-world graphs and a majority of these methods focus on changes in the behaviour of the overall network. In this paper, we adapt previously developed techniques in spectral graph theory and propose a novel concept of applying Procrustes techniques to embedded points for vertices in a graph to detect changes in entity behaviour. Our spectral embedding approach not only addresses sparsity and degree heterogeneity issues, but also obtains an estimate of the appropriate embedding dimension. We call this method CDP (change detection using Procrustes analysis). We demonstrate the performance of CDP through extensive simulation experiments and a real-world application. CDP successfully detects various types of vertex-based changes including (1) changes in vertex degree, (2) changes in community membership of vertices, and (3) unusual increase or decrease in edge weights between vertices. The change detection performance of CDP is compared with two other baseline methods that employ alternative spectral embedding approaches. In both cases, CDP generally shows superior performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The Frobenius norm of a matrix measures its average linear trend (Achlioptas and McSherry 2007). Hence, the division by the Frobenius norm of \(R_k\) in step 9 of the algorithm provides a standardization to each \(\rho _k\) (Skillicorn 2007).
 
2
Note that the graphs generated at each time instant are independent samples from a given generative model (\(F_0\) or \(F_1\)). Thus, within the same generative model, edge weights can change from one time instant to another, also causing the connectivity patterns of vertices to change. Hence, in Fig. 3, \(\pmb {\eta }^{t}\)s are positive even at time instants that do not correspond to a change.
 
Literature
go back to reference Akoglu L, Faloutsos C (2010) Event detection in time series of mobile communication graphs. In: Army science conference, pp 77–79 Akoglu L, Faloutsos C (2010) Event detection in time series of mobile communication graphs. In: Army science conference, pp 77–79
go back to reference Ali HT, Couillet R (2017) Improved spectral community detection in large heterogeneous networks. J Mach Learn Res 18(1):8344–8392MathSciNet Ali HT, Couillet R (2017) Improved spectral community detection in large heterogeneous networks. J Mach Learn Res 18(1):8344–8392MathSciNet
go back to reference Amini AA, Chen A, Bickel PJ, Levina E et al (2013b) Pseudo-likelihood methods for community detection in large sparse networks. Ann Stat 41(4):2097–2122MathSciNetCrossRef Amini AA, Chen A, Bickel PJ, Levina E et al (2013b) Pseudo-likelihood methods for community detection in large sparse networks. Ann Stat 41(4):2097–2122MathSciNetCrossRef
go back to reference Anderson E, Bai Z, Dongarra J, Greenbaum A, McKenney A, Du Croz J, Hammarling S, Demmel J, Bischof C, Sorensen D (1990) Lapack: a portable linear algebra library for high-performance computers. In: Proceedings of the 1990 ACM/IEEE conference on supercomputing. IEEE Computer Society Press, pp 2–11 Anderson E, Bai Z, Dongarra J, Greenbaum A, McKenney A, Du Croz J, Hammarling S, Demmel J, Bischof C, Sorensen D (1990) Lapack: a portable linear algebra library for high-performance computers. In: Proceedings of the 1990 ACM/IEEE conference on supercomputing. IEEE Computer Society Press, pp 2–11
go back to reference Brand M, Huang K (2003) A unifying theorem for spectral embedding and clustering. In: Proceedings of the ninth international workshop on artificial intelligence and statistics Brand M, Huang K (2003) A unifying theorem for spectral embedding and clustering. In: Proceedings of the ninth international workshop on artificial intelligence and statistics
go back to reference Cho H, Yu Y (2018) Link prediction for interdisciplinary collaboration via co-authorship network. Soc Netw Anal Min 8(1):25CrossRef Cho H, Yu Y (2018) Link prediction for interdisciplinary collaboration via co-authorship network. Soc Netw Anal Min 8(1):25CrossRef
go back to reference Chung FR (1997) Spectral graph theory, vol 92. American Mathematical Society, ProvidenceMATH Chung FR (1997) Spectral graph theory, vol 92. American Mathematical Society, ProvidenceMATH
go back to reference Cootes TF, Taylor CJ, Cooper DH, Graham J (1992) Training models of shape from sets of examples. In: BMVC92. Springer, Berlin, pp 9–18 Cootes TF, Taylor CJ, Cooper DH, Graham J (1992) Training models of shape from sets of examples. In: BMVC92. Springer, Berlin, pp 9–18
go back to reference De Ridder S, Vandermarliere B, Ryckebusch J (2016) Detection and localization of change points in temporal networks with the aid of stochastic block models. J Stat Mech: Theory Exp 2016(11):113302CrossRef De Ridder S, Vandermarliere B, Ryckebusch J (2016) Detection and localization of change points in temporal networks with the aid of stochastic block models. J Stat Mech: Theory Exp 2016(11):113302CrossRef
go back to reference Dryden IL, Mardia KV (1998) Statistical shape analysis, vol 4. Wiley, ChichesterMATH Dryden IL, Mardia KV (1998) Statistical shape analysis, vol 4. Wiley, ChichesterMATH
go back to reference Fang S (2018) Distributed computing of large-scale singular value decompositions. PhD thesis, University of Oxford Fang S (2018) Distributed computing of large-scale singular value decompositions. PhD thesis, University of Oxford
go back to reference Goswami S (2019) Network neighborhood analysis for detecting anomalies in time series of graphs. PhD thesis, George Mason University Goswami S (2019) Network neighborhood analysis for detecting anomalies in time series of graphs. PhD thesis, George Mason University
go back to reference Gupta M, Gao J, Sun Y, Han J (2012) Integrating community matching and outlier detection for mining evolutionary community outliers. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, pp 859–867. ACM Gupta M, Gao J, Sun Y, Han J (2012) Integrating community matching and outlier detection for mining evolutionary community outliers. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, pp 859–867. ACM
go back to reference Hewapathirana IU (2019) Change detection in dynamic attributed networks. Data Min Knowl Discov 9(3):e1286 Hewapathirana IU (2019) Change detection in dynamic attributed networks. Data Min Knowl Discov 9(3):e1286
go back to reference Hoff PD, Raftery AE, Handcock MS (2002) Latent space approaches to social network analysis. J Am Stat Assoc 97(460):1090–1098MathSciNetCrossRef Hoff PD, Raftery AE, Handcock MS (2002) Latent space approaches to social network analysis. J Am Stat Assoc 97(460):1090–1098MathSciNetCrossRef
go back to reference Idé T, Kashima H (2004) Eigenspace-based anomaly detection in computer systems. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp 440–449. ACM Idé T, Kashima H (2004) Eigenspace-based anomaly detection in computer systems. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp 440–449. ACM
go back to reference Idé T, Papadimitriou S, Vlachos M(2007) Computing correlation anomaly scores using stochastic nearest neighbors. In: Seventh IEEE international conference on data mining, 2007. ICDM 2007, pp 523–528. IEEE Idé T, Papadimitriou S, Vlachos M(2007) Computing correlation anomaly scores using stochastic nearest neighbors. In: Seventh IEEE international conference on data mining, 2007. ICDM 2007, pp 523–528. IEEE
go back to reference Iwen M, Ong B (2016) A distributed and incremental svd algorithm for agglomerative data analysis on large networks. SIAM J Matrix Anal Appl 37(4):1699–1718MathSciNetCrossRef Iwen M, Ong B (2016) A distributed and incremental svd algorithm for agglomerative data analysis on large networks. SIAM J Matrix Anal Appl 37(4):1699–1718MathSciNetCrossRef
go back to reference Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214CrossRef Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214CrossRef
go back to reference Jolliffe I (2002) Principal component analysis. Wiley, New YorkMATH Jolliffe I (2002) Principal component analysis. Wiley, New YorkMATH
go back to reference Klimt B, Yang Y (2004) Introducing the Enron Corpus. In: CEAS Klimt B, Yang Y (2004) Introducing the Enron Corpus. In: CEAS
go back to reference Le Bars B, Kalogeratos A (2019) A probabilistic framework to node-level anomaly detection in communication networks. In: IEEE INFOCOM 2019-IEEE conference on computer communications, pp 2188–2196 Le Bars B, Kalogeratos A (2019) A probabilistic framework to node-level anomaly detection in communication networks. In: IEEE INFOCOM 2019-IEEE conference on computer communications, pp 2188–2196
go back to reference Li Y, Lu A, Wu X, Yuan S (2019) Dynamic anomaly detection using vector autoregressive model. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, Berlin, pp 600–611 Li Y, Lu A, Wu X, Yuan S (2019) Dynamic anomaly detection using vector autoregressive model. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, Berlin, pp 600–611
go back to reference Mihail M, Papadimitriou C (2002) On the eigenvalue power law. In: International workshop on randomization and approximation techniques in computer science. Springer, Berlin, pp 254–262 Mihail M, Papadimitriou C (2002) On the eigenvalue power law. In: International workshop on randomization and approximation techniques in computer science. Springer, Berlin, pp 254–262
go back to reference Neil J, Hash C, Brugh A, Fisk M, Storlie CB (2013) Scan statistics for the online detection of locally anomalous subgraphs. Technometrics 55(4):403–414MathSciNetCrossRef Neil J, Hash C, Brugh A, Fisk M, Storlie CB (2013) Scan statistics for the online detection of locally anomalous subgraphs. Technometrics 55(4):403–414MathSciNetCrossRef
go back to reference Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering1 analysis and an algorithm. In: Proceedings of advances in neural information processing systems. MIT Press, Cambridge, vol 14, pp 849–856 Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering1 analysis and an algorithm. In: Proceedings of advances in neural information processing systems. MIT Press, Cambridge, vol 14, pp 849–856
go back to reference Nickel CLM (2008) Random dot product graphs: a model for social networks. Doctoral dissertation, Johns Hopkins University Nickel CLM (2008) Random dot product graphs: a model for social networks. Doctoral dissertation, Johns Hopkins University
go back to reference Papalexakis EE, Faloutsos C, Sidiropoulos ND (2012) Parcube: sparse parallelizable tensor decompositions. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, Berlin, Heidelberg, pp 521–536 CrossRef Papalexakis EE, Faloutsos C, Sidiropoulos ND (2012) Parcube: sparse parallelizable tensor decompositions. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, Berlin, Heidelberg, pp 521–536 CrossRef
go back to reference Peel L, Clauset A (2015) Detecting change points in the large-scale structure of evolving networks. In: Twenty-ninth AAAI conference on artificial intelligence Peel L, Clauset A (2015) Detecting change points in the large-scale structure of evolving networks. In: Twenty-ninth AAAI conference on artificial intelligence
go back to reference Poole D (2014) Linear algebra: a modern introduction. Cengage Learning, Boston Poole D (2014) Linear algebra: a modern introduction. Cengage Learning, Boston
go back to reference Priebe CE, Conroy JM, Marchette DJ, Park Y (2005) Scan statistics on enron graphs. Comput Math Organ Theory 11(3):229–247CrossRef Priebe CE, Conroy JM, Marchette DJ, Park Y (2005) Scan statistics on enron graphs. Comput Math Organ Theory 11(3):229–247CrossRef
go back to reference Qabaja A, Alshalalfa M, Alanazi E, Alhajj R (2014) Prediction of novel drug indications using network driven biological data prioritization and integration. J Cheminform 6(1):1CrossRef Qabaja A, Alshalalfa M, Alanazi E, Alhajj R (2014) Prediction of novel drug indications using network driven biological data prioritization and integration. J Cheminform 6(1):1CrossRef
go back to reference Ramirez-Velarde RV, Roderus M, Barba-Jimenez C, Perez-Cazares R (2014) A parallel implementation of singular value decomposition for video-on-demand services design using principal component analysis. Procedia Comput Sci 29:1876–1887CrossRef Ramirez-Velarde RV, Roderus M, Barba-Jimenez C, Perez-Cazares R (2014) A parallel implementation of singular value decomposition for video-on-demand services design using principal component analysis. Procedia Comput Sci 29:1876–1887CrossRef
go back to reference Rossi RA, Gallagher B, Neville J, Henderson K (2013) Modeling dynamic behavior in large evolving graphs. In: Proceedings of the sixth ACM international conference on Web search and data mining. ACM, pp 667–676 Rossi RA, Gallagher B, Neville J, Henderson K (2013) Modeling dynamic behavior in large evolving graphs. In: Proceedings of the sixth ACM international conference on Web search and data mining. ACM, pp 667–676
go back to reference Saerens M, Fouss F, Yen L, Dupont P (2004) The principal components analysis of a graph, and its relationships to spectral clustering. In: European conference on machine learning. Springer, Berlin, pp 371–383 Saerens M, Fouss F, Yen L, Dupont P (2004) The principal components analysis of a graph, and its relationships to spectral clustering. In: European conference on machine learning. Springer, Berlin, pp 371–383
go back to reference Skillicorn D (2007) Understanding complex datasets: data mining with matrix decompositions. CRC Press, Boca RatonCrossRef Skillicorn D (2007) Understanding complex datasets: data mining with matrix decompositions. CRC Press, Boca RatonCrossRef
go back to reference Sricharan K, Das K (2014) Localizing anomalous changes in time-evolving graphs. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data. ACM, pp 1347–1358 Sricharan K, Das K (2014) Localizing anomalous changes in time-evolving graphs. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data. ACM, pp 1347–1358
go back to reference Stegmann MB, Gomez DD (2002) A brief introduction to statistical shape analysis. Informatics and mathematical modelling. Technical University of Denmark, DTU, Lyngby Stegmann MB, Gomez DD (2002) A brief introduction to statistical shape analysis. Informatics and mathematical modelling. Technical University of Denmark, DTU, Lyngby
go back to reference Sun J, Papadimitriou S, Philip SY (2006) Window-based tensor analysis on high-dimensional and multi-aspect streams. ICDM 6:1076–1080 Sun J, Papadimitriou S, Philip SY (2006) Window-based tensor analysis on high-dimensional and multi-aspect streams. ICDM 6:1076–1080
go back to reference Sun J, Xie Y, Zhang H, Faloutsos C (2008) Less is more: sparse graph mining with compact matrix decomposition. Stat Anal Data Min 1(1):6–22MathSciNetCrossRef Sun J, Xie Y, Zhang H, Faloutsos C (2008) Less is more: sparse graph mining with compact matrix decomposition. Stat Anal Data Min 1(1):6–22MathSciNetCrossRef
go back to reference Swarnkar M, Hubballi N (2019) Spamdetector: detecting spam callers in voice over internet protocol with graph anomalies. Secur Priv 2(1):e54CrossRef Swarnkar M, Hubballi N (2019) Spamdetector: detecting spam callers in voice over internet protocol with graph anomalies. Secur Priv 2(1):e54CrossRef
go back to reference Taheri SM, Mahyar H, Firouzi M, Ghalebi E, Grosu R, Movaghar A (2017) Hellrank: a hellinger-based centrality measure for bipartite social networks. Soc Netw Anal Min 7(1):22CrossRef Taheri SM, Mahyar H, Firouzi M, Ghalebi E, Grosu R, Movaghar A (2017) Hellrank: a hellinger-based centrality measure for bipartite social networks. Soc Netw Anal Min 7(1):22CrossRef
go back to reference Tang L, Liu H, Zhang J, Nazeri Z (2008) Community evolution in dynamic multi-mode networks. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 677–685 Tang L, Liu H, Zhang J, Nazeri Z (2008) Community evolution in dynamic multi-mode networks. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 677–685
go back to reference Tang L, Wang X, Liu H (2012) Community detection via heterogeneous interaction analysis. Data Min Knowl Disc 25(1):1–33MathSciNetCrossRef Tang L, Wang X, Liu H (2012) Community detection via heterogeneous interaction analysis. Data Min Knowl Disc 25(1):1–33MathSciNetCrossRef
go back to reference Thomas CW (2002) The rise and fall of enron. J Account 193(4):41–52 Thomas CW (2002) The rise and fall of enron. J Account 193(4):41–52
go back to reference Wang Y, Chakrabarti A, Sivakoff D, Parthasarathy S (2017) Fast change point detection on dynamic social networks. arXiv preprint arXiv:1705.07325 Wang Y, Chakrabarti A, Sivakoff D, Parthasarathy S (2017) Fast change point detection on dynamic social networks. arXiv preprint arXiv:​1705.​07325
go back to reference Yu L, Zwetsloot IM, Stevens NT, Wilson JD, Tsui KL (2019) Monitoring dynamic networks: a simulation-based strategy for comparing monitoring methods and a comparative study. arXiv preprint arXiv:1905.10302 Yu L, Zwetsloot IM, Stevens NT, Wilson JD, Tsui KL (2019) Monitoring dynamic networks: a simulation-based strategy for comparing monitoring methods and a comparative study. arXiv preprint arXiv:​1905.​10302
Metadata
Title
Change detection in noisy dynamic networks: a spectral embedding approach
Authors
Isuru Udayangani Hewapathirana
Dominic Lee
Elena Moltchanova
Jeanette McLeod
Publication date
01-12-2020
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2020
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-020-0625-3

Premium Partner