Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 1/2022

01-01-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Changes in the Phase Composition of High-Manganese Steels during Tensile Deformation

Authors: M. A. Gervasyev, S. Kh. Estemirova, A. N. Mushnikov, V. A. Sharapova, A. A. Gusev, M. A. Bashirova

Published in: Physics of Metals and Metallography | Issue 1/2022

Login to get access
share
SHARE

Abstract

High manganese steels with different contents of carbon and additionally alloyed with silicon are investigated. Mechanical properties of the steels under tensile deformation are determined, and the changes in their phase compositions are studied. The phase compositions of steels after quenching and after quenching with subsequent deformation are investigated by the X-ray diffraction method. Magnetometric measurements are performed directly during tensile deformation. It is shown that deformation has a different effect on the phase composition of steels, namely: in steel 40G20, a small amount of strain martensite is formed as a result of deformation; in steel 25G20S3, a substantial part of austenite undergoes a martensitic transformation (γ → ε).
Literature
1.
go back to reference R. A. Hadfield, “Hadfield’s manganese steel,” Science 12, No. 306, 284–286 (1888). R. A. Hadfield, “Hadfield’s manganese steel,” Science 12, No. 306, 284–286 (1888).
2.
go back to reference M. A. Filippov, A. A. Filipenkov, and G. M. Plotnikov, Wear-Resistant Steels for Castings (USTU-UPI, Yekaterinburg, 2009) [in Russian]. M. A. Filippov, A. A. Filipenkov, and G. M. Plotnikov, Wear-Resistant Steels for Castings (USTU-UPI, Yekaterinburg, 2009) [in Russian].
3.
go back to reference L. G. Korshunov, “Structural transformations during friction and wear resistance of austenitic steels,” Fiz. Met. Metalloved., No. 8, 3–21 (1992). L. G. Korshunov, “Structural transformations during friction and wear resistance of austenitic steels,” Fiz. Met. Metalloved., No. 8, 3–21 (1992).
4.
go back to reference I. N. Bogachev and V. F. Egolaev, Structure and Properties of Ferromanganese Alloys (Metallurgiya, Moscow, 1973) [in Russian]. I. N. Bogachev and V. F. Egolaev, Structure and Properties of Ferromanganese Alloys (Metallurgiya, Moscow, 1973) [in Russian].
5.
go back to reference V. V. Sagaradze and A. I. Uvarov, Strengthening and Properties of Austenitic Steels (RIO UrO RAN, Yekaterinburg, 2013) [in Russian]. V. V. Sagaradze and A. I. Uvarov, Strengthening and Properties of Austenitic Steels (RIO UrO RAN, Yekaterinburg, 2013) [in Russian].
6.
go back to reference O. Bouaziz, H. Zurob, B. Chehab, J. D. Embury, S. Allain, and M. Huang, “Effect of chemical composition on work hardening of Fe–Mn–C TWIP-steels,” Mater. Sci. Technol. 27, No. 3, 707–709 (2011). CrossRef O. Bouaziz, H. Zurob, B. Chehab, J. D. Embury, S. Allain, and M. Huang, “Effect of chemical composition on work hardening of Fe–Mn–C TWIP-steels,” Mater. Sci. Technol. 27, No. 3, 707–709 (2011). CrossRef
7.
go back to reference X. Liang, J. R. McDermid, O. Bouaziz, X. Wang, J. D. Embury, and H. S. Zurob, “Microstructural evolution and strain hardening of Fe–24Mn and Fe–30Mn alloys during tensile deformation,” Acta Mater. 57, No. 13, 3978–3988 (2009). CrossRef X. Liang, J. R. McDermid, O. Bouaziz, X. Wang, J. D. Embury, and H. S. Zurob, “Microstructural evolution and strain hardening of Fe–24Mn and Fe–30Mn alloys during tensile deformation,” Acta Mater. 57, No. 13, 3978–3988 (2009). CrossRef
8.
go back to reference M. Eskandari, M. A. Mohtadi-Bonab, A. Zarei-Hanzaki, J. A. Szpunar and R. Basu, “Texture and microstructure development of tensile deformed high-Mn steel during early stage of recrystallization,” Phys. Met. Metallogr. 120, No. 1, 32–40 (2019). CrossRef M. Eskandari, M. A. Mohtadi-Bonab, A. Zarei-Hanzaki, J. A. Szpunar and R. Basu, “Texture and microstructure development of tensile deformed high-Mn steel during early stage of recrystallization,” Phys. Met. Metallogr. 120, No. 1, 32–40 (2019). CrossRef
9.
go back to reference I. Yu. Pyshmintsev, Strengthening of Sheet Steel for Cold Forming (USTU-UPI, Yekaterinburg, 2004) [in Russian]. I. Yu. Pyshmintsev, Strengthening of Sheet Steel for Cold Forming (USTU-UPI, Yekaterinburg, 2004) [in Russian].
10.
go back to reference M. Koyamata, T. Sawaguchi, T. Lee, Ch. S. Lee, and K. Tsuzaki, “Work hardening assotiated with ε-martensitic transformation, deformation twinning and dynamic strain aging in Fe–17Mn–0.6C and Fe–17Mn–0.8C TWIP steels,” Mater. Sci. Eng., A 528, No. 24, 7310–7316 (2011). CrossRef M. Koyamata, T. Sawaguchi, T. Lee, Ch. S. Lee, and K. Tsuzaki, “Work hardening assotiated with ε-martensitic transformation, deformation twinning and dynamic strain aging in Fe–17Mn–0.6C and Fe–17Mn–0.8C TWIP steels,” Mater. Sci. Eng., A 528, No. 24, 7310–7316 (2011). CrossRef
11.
go back to reference B. C. De Cooman, Yu. Estrin, and S. K. Kim, “Twinning induced plasticity (TWIP) steels,” Acta Mater. 142, 283–362 (2018). CrossRef B. C. De Cooman, Yu. Estrin, and S. K. Kim, “Twinning induced plasticity (TWIP) steels,” Acta Mater. 142, 283–362 (2018). CrossRef
12.
go back to reference D. T. Pierce, J. A. Jimenez, J. Bentley, D. Raabe, and J. E. Witting, “The influence of stacking fault energy of the microstructural and strain hardening evolution of Fe–Mn–Al–Si steels during tensile deformation,” Acta Mater. 100, 178–190 (2015). CrossRef D. T. Pierce, J. A. Jimenez, J. Bentley, D. Raabe, and J. E. Witting, “The influence of stacking fault energy of the microstructural and strain hardening evolution of Fe–Mn–Al–Si steels during tensile deformation,” Acta Mater. 100, 178–190 (2015). CrossRef
13.
go back to reference S. Curtze and V. -T. Kuokkala, “Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate,” Acta Mater. 58, No. 15, 5129–5141 (2010). CrossRef S. Curtze and V. -T. Kuokkala, “Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate,” Acta Mater. 58, No. 15, 5129–5141 (2010). CrossRef
14.
go back to reference J. Talonen, P. Aspegren, and H. Hanninen, “Comparison of different methods for measuring strain induced martensite content in austenitic steels,” Mater. Sci. Technol. 20, 1506–1512 (2004). CrossRef J. Talonen, P. Aspegren, and H. Hanninen, “Comparison of different methods for measuring strain induced martensite content in austenitic steels,” Mater. Sci. Technol. 20, 1506–1512 (2004). CrossRef
15.
go back to reference J. K. Kim and B. C. De Cooman, “Stacking fault energy and deformation mechanisms in Fe– xMn–0.6C– yAl TWIP steel,” Mater. Sci. Eng., A 676, 216–231 (2016). CrossRef J. K. Kim and B. C. De Cooman, “Stacking fault energy and deformation mechanisms in Fe– xMn–0.6C– yAl TWIP steel,” Mater. Sci. Eng., A 676, 216–231 (2016). CrossRef
16.
go back to reference D. T. Pierce, J. Bentley, J. A. Jimenez, and J. E. Witting, “Stacking fault energy of measurements of Fe–Mn–Al–Si austenitic twinning induced plasticity steels,” Scr. Mater. 66, 753–756 (2012). CrossRef D. T. Pierce, J. Bentley, J. A. Jimenez, and J. E. Witting, “Stacking fault energy of measurements of Fe–Mn–Al–Si austenitic twinning induced plasticity steels,” Scr. Mater. 66, 753–756 (2012). CrossRef
17.
go back to reference M. A. Gervas’ev, V. A. Khotinov, N. N. Ozerets, M. S. Khadyev, M. A. Bashirova, and A. A. Gusev, “Changes in microstructure and strain hardening of high-manganese steels under tension,” Met. Sci. Heat Treat. 62, 183–187 (2020). CrossRef M. A. Gervas’ev, V. A. Khotinov, N. N. Ozerets, M. S. Khadyev, M. A. Bashirova, and A. A. Gusev, “Changes in microstructure and strain hardening of high-manganese steels under tension,” Met. Sci. Heat Treat. 62, 183–187 (2020). CrossRef
18.
go back to reference M. N. Mikheev and E. S. Gorkunov, Magnetic Methods of Structural Analysis and Non-Destructive Testing (Nauka, Moscow, 1993) [in Russian]. M. N. Mikheev and E. S. Gorkunov, Magnetic Methods of Structural Analysis and Non-Destructive Testing (Nauka, Moscow, 1993) [in Russian].
19.
go back to reference M. S. Ogneva, M. B. Rigmant, N. V. Kazantseva, D. I. Davydov, and M. K. Korkh, “Effect of deformation martensite on the electrical and magnetic properties of plastically deformed chromium–nickel steel,” Russ. J. Nondestr. Test. 53, No. 9, 644–651 (2017). CrossRef M. S. Ogneva, M. B. Rigmant, N. V. Kazantseva, D. I. Davydov, and M. K. Korkh, “Effect of deformation martensite on the electrical and magnetic properties of plastically deformed chromium–nickel steel,” Russ. J. Nondestr. Test. 53, No. 9, 644–651 (2017). CrossRef
20.
go back to reference M. K. Korkh, M. B. Rigmant, E. Yu. Sazhina, and A. V. Kochnev, “Measuring ferromagnetic phase content based on magnetic properties in two-phase chromium–nickel steels,” Russ. J. Nondestr. Test. 55, No. 11, 837–850 (2019). CrossRef M. K. Korkh, M. B. Rigmant, E. Yu. Sazhina, and A. V. Kochnev, “Measuring ferromagnetic phase content based on magnetic properties in two-phase chromium–nickel steels,” Russ. J. Nondestr. Test. 55, No. 11, 837–850 (2019). CrossRef
21.
go back to reference Merinov P., Entin S., Beketov B., Runov A., “The magnetic testing of the ferrite content of austenitic stainless steel weld metal,” NDT Int. 11, 9–14 (1978). CrossRef Merinov P., Entin S., Beketov B., Runov A., “The magnetic testing of the ferrite content of austenitic stainless steel weld metal,” NDT Int. 11, 9–14 (1978). CrossRef
22.
go back to reference P. E. Merinov and A. G. Mazepa, “Determination of deformation martensite in austenitic steels by the magnetic method,” Zavod. Lab., No. 3, 47–49 (1997). P. E. Merinov and A. G. Mazepa, “Determination of deformation martensite in austenitic steels by the magnetic method,” Zavod. Lab., No. 3, 47–49 (1997).
23.
go back to reference E. S. Gorkunov, S. V. Gladkovskii, S. M. Zadvorkin, S. Yu. Mitropol’skaya, and D. I. Vichuzhanin, “Evolution of magnetic properties of Fe–Mn and Fe–Mn–Cr steels with different stability of austenite during plastic deformation,” Phys. Met. Metallogr. 105, No. 4, 343–350 (2008). CrossRef E. S. Gorkunov, S. V. Gladkovskii, S. M. Zadvorkin, S. Yu. Mitropol’skaya, and D. I. Vichuzhanin, “Evolution of magnetic properties of Fe–Mn and Fe–Mn–Cr steels with different stability of austenite during plastic deformation,” Phys. Met. Metallogr. 105, No. 4, 343–350 (2008). CrossRef
Metadata
Title
Changes in the Phase Composition of High-Manganese Steels during Tensile Deformation
Authors
M. A. Gervasyev
S. Kh. Estemirova
A. N. Mushnikov
V. A. Sharapova
A. A. Gusev
M. A. Bashirova
Publication date
01-01-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 1/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22010057